1
|
Almahmoud SAJ, Alzahrani SS, Abdulkhair BY. Efficacious Removal of Organic Contaminants from Water Using a Novel CoO-NiO@MgAl 2O 4 Nanocomposite. ACS OMEGA 2025; 10:11188-11201. [PMID: 40160728 PMCID: PMC11947789 DOI: 10.1021/acsomega.4c10353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
Herein, novel MgAl2O4-based quadruple nanocomposites containing different contents of Co/Ni bimetallic doping were synthesized employing gelatin as a green capping agent. Typically, MgAl2O4 (MgAl2O4-1), 5% NiO-5% CoO@MgAl2O4 (MgAl2O4-2), 2.5% CoO-5% NiO@MgAl2O4 (MgAl2O4-3), and 5% CoO-2.5% NiO@MgAl2O4 (MgAl2O4-4) were synthesized via a one-pot method. The prepared quadruple nanocomposites were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), surface analysis, and Fourier transform infrared spectroscopy (FTIR) spectroscopy. MgAl2O4-1, MgAl2O4-2, MgAl2O4-3, and MgAl2O4-4 exhibited surface areas of 75.4, 118.4, 141.1, and 123.0 m2 g-1, respectively, and possessed qt values of 46.8, 60.9, 72.4, and 60.2 mg g-1, respectively, toward the indigo carmine (INCR) dye. The INCR sorption onto MgAl2O4-1, MgAl2O4-2, MgAl2O4-3, and MgAl2O4-4 followed the pseudo-second-order model, and the liquid film diffusion model controlled the INCR sorption onto MgAl2O4-1, MgAl2O4-2, MgAl2O4-3, and MgAl2O4-4 nanocomposites. MgAl2O4-3 was selected as the best sorbent for eliminating INCR, and it exhibited enhanced performance at pH 6.0. The MgAl2O4 qt value increased proportionally with the INCR concentration (20 to 100 mg L-1), and increasing the temperature affected the sorption positively, indicating endothermic sorption. The Langmuir model best fitted among the tested isotherm models, and it predicted a maximum adsorption capacity of 181.0 mg g-1. MgAl2O4-3 was tested for removing INCR from tap water, groundwater, and seawater at 313 K, and it showed an average efficiency of 97.1%, with a standard deviation of 2.4%.
Collapse
Affiliation(s)
- Sondos A. J. Almahmoud
- Chemistry Department, College
of Science, Imam Mohammad Ibn Saud Islamic
University (IMSIU), PO. Box 90950, Riyadh 11623, Saudi Arabia
| | - Soad S. Alzahrani
- Chemistry Department, College
of Science, Imam Mohammad Ibn Saud Islamic
University (IMSIU), PO. Box 90950, Riyadh 11623, Saudi Arabia
| | - Babiker Y. Abdulkhair
- Chemistry Department, College
of Science, Imam Mohammad Ibn Saud Islamic
University (IMSIU), PO. Box 90950, Riyadh 11623, Saudi Arabia
| |
Collapse
|
2
|
Ibrahim TG, Almufarij RS, Abdulkhair BY, Ramadan RS, Eltoum MS, Abd Elaziz ME. A Thorough Examination of the Solution Conditions and the Use of Carbon Nanoparticles Made from Commercial Mesquite Charcoal as a Successful Sorbent for Water Remediation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091485. [PMID: 37177030 PMCID: PMC10180082 DOI: 10.3390/nano13091485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Water pollution has invaded seas, rivers, and tap water worldwide. This work employed commercial Mesquite charcoal as a low-cost precursor for fabricating Mesquite carbon nanoparticles (MUCNPs) using a ball-milling process. The scanning electron energy-dispersive microscopy results for MUCNPs revealed a particle size range of 52.4-75.0 nm. The particles were composed mainly of carbon with trace amounts of aluminum, potassium, calcium, titanium, and zinc. The X-ray diffraction peaks at 26.76 and 43.28 2θ° ascribed to the (002) and (100) planes indicated a crystalized graphite phase. Furthermore, the lack of FT-IR vibrations above 3000 cm-1 showed that the MUCNPs were not functionalized. The MUCNPs' pore diameter, volume, and surface area were 114.5 Ǻ, 0.363 cm3 g-1, and 113.45 m2 g-1. The batch technique was utilized to investigate MUCNPs' effectiveness in removing chlorohexidine gluconate (CHDNG) from water, which took 90 min to achieve equilibrium and had an adsorption capacity of 65.8 mg g-1. The adsorption of CHDNG followed pseudo-second-order kinetics, with the rate-limiting step being diffusion in the liquid film. The Langmuir isotherm dominated the CHDNG adsorption on the MUCNPs with a correlation coefficient of 0.99. The thermodynamic studies revealed that CHDNG adsorption onto the MUCNPs was exothermic and favorable, and its spontaneity increased inversely with CHDNG concentration. The ball-milling-made MUCNPs demonstrated consistent efficiency through regeneration-reuse cycles.
Collapse
Affiliation(s)
- Tarig G Ibrahim
- Chemistry Department, Faculty of Science, Sudan University of Science and Technology (SUST), Khartoum P.O. Box 13311, Sudan
| | - Rasmiah S Almufarij
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Babiker Y Abdulkhair
- Chemistry Department, Faculty of Science, Sudan University of Science and Technology (SUST), Khartoum P.O. Box 13311, Sudan
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11564, Saudi Arabia
| | - Rasha S Ramadan
- Central Research Laboratory, Female Campus, King Saud University, Riyadh 11495, Saudi Arabia
| | - Mohamed S Eltoum
- Chemistry Department, Faculty of Science, Sudan University of Science and Technology (SUST), Khartoum P.O. Box 13311, Sudan
| | - Mohamed E Abd Elaziz
- Chemistry Department, Faculty of Science, Sudan University of Science and Technology (SUST), Khartoum P.O. Box 13311, Sudan
| |
Collapse
|
3
|
Application of Synthesized Vanadium-Titanium Oxide Nanocomposite to Eliminate Rhodamine-B Dye from Aqueous Medium. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010176. [PMID: 36615371 PMCID: PMC9821815 DOI: 10.3390/molecules28010176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
In this study, a V@TiO2 nanocomposite is examined for its ability to eliminate carcinogenic Rhodamine (Rh-B) dye from an aqueous medium. A simple ultrasonic method was used to produce the nanosorbent. In addition, V@TiO2 was characterized using various techniques, including XRD, HRTEM, XPS, and FTIR. Batch mode studies were used to study the removal of Rh-B dye. In the presence of pH 9, the V@TiO2 nanocomposite was able to remove Rh-B dye to its maximum extent. A correlation regression of 0.95 indicated that the Langmuir model was a better fit for dye adsorption. Moreover, the maximum adsorption capacity of the V@TiO2 nanocomposite was determined to be 158.8 mg/g. According to the thermodynamic parameters, dye adsorption followed a pseudo-first-order model. Based on the results of the study, a V@TiO2 nanocomposite can be reused for dye removal using ethanol.
Collapse
|
4
|
Excellent Adsorption of Dyes via MgTiO3@g-C3N4 Nanohybrid: Construction, Description and Adsorption Mechanism. INORGANICS 2022. [DOI: 10.3390/inorganics10110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This report investigates the elimination of hazardous Rhodamine B dye (RhB) from an aqueous medium utilizing MgTiO3@g-C3N4 nanohybrids manufactured using a facile method. The nanohybrid MgTiO3@g-C3N4 was generated using an ultrasonic approach in the alcoholic solvent. Various techniques, including HRTEM, EDX, XRD, BET, and FTIR, were employed to describe the fabricated MgTiO3@g-C3N4 nanohybrids. RhB elimination was investigated utilizing batch mode studies, and the maximum removal was attained at pH 7.0. The RhB adsorption process is more consistent with the Langmuir isotherm model. The highest adsorption capacity of MgTiO3@g-C3N4 nanohybrids for RhB was determined to be 232 mg/g. The dye adsorption followed a pseudo-second-order model, and the parameters calculated indicated that the kinetic adsorption process was spontaneous. Using ethanol and water, the reusability of the nanomaterial was investigated, and based on the results; it can be concluded that the MgTiO3@g-C3N4 nanohybrids are easily regenerated for dye removal. The removal mechanism for the removal of RhB dye into MgTiO3@g-C3N4 nanohybrids was also investigated.
Collapse
|
5
|
Almufarij RS, Abdulkhair BY, Salih M, Alhamdan NM. Sweep-Out of Tigecycline, Chlortetracycline, Oxytetracycline, and Doxycycline from Water by Carbon Nanoparticles Derived from Tissue Waste. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203617. [PMID: 36296807 PMCID: PMC9610714 DOI: 10.3390/nano12203617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 05/27/2023]
Abstract
Pharmaceutical pollution has pervaded many water resources all over the globe. The propagation of this health threat drew the researchers' concern in seeking an efficient solution. This study introduced toilet paper waste as a precursor for carbon nanoparticles (CRNPs). The TEM results showed a particle size range of 30.2 nm to 48.1 nm, the BET surface area was 283 m2 g-1, and the XRD pattern indicated cubical-graphite crystals. The synthesized CRNPs were tested for removing tigecycline (TGCN), chlortetracycline (CTCN), oxytetracycline (OTCN), and doxycycline (DXCN) via the batch process. The adsorption equilibrium time for TGCN, DXCN, CTCN, and OTCN was 60 min, and the concentration influence revealed an adsorption capacity of 172.5, 200.1, 202.4, and 200.0 mg g-1, respectively. The sorption of the four drugs followed the PSFO, and the LFDM models indicated their high sorption affinity to the CRNPs. The adsorption of the four drugs fitted the multilayer FIM that supported the high-affinity claim. The removals of the four drugs were exothermic and spontaneous physisorption. The fabricated CRNPs possessed an excellent remediation efficiency for contaminated SW and GW; therefore, CRNPs are suggested for water remediation as low-cost sorbent.
Collapse
Affiliation(s)
- Rasmiah S. Almufarij
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Babiker Y. Abdulkhair
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90905, Riyadh 11623, Saudi Arabia
- Chemistry Department, Faculty of Science, Sudan University of Science and Technology (SUST), Khartoum P.O. Box 13311, Sudan
| | - Mutaz Salih
- Department of Chemistry, College of Science and Humanities-Hurrymilla, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Nujud M. Alhamdan
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
6
|
Influence of Doping-Ion-Type on the Characteristics of Al2O3-Based Nanocomposites and Their Capabilities of Removing Indigo Carmine from Water. INORGANICS 2022. [DOI: 10.3390/inorganics10090144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Globally, the continuous contamination of natural water resources is a severe issue, and looking for a solution for such a massive problem should be the researcher’s concern. Herein, Al2O3, Al2O3-CuO, Al2O3-NiO, and Al2O3-CoO were prepared via a simple and fast route, utilizing glucose as a capping material. All synthesis conditions were uniform to make the fabricated nanomaterials’ characteristics exclusively influenced by only the ion type. The SEM analysis showed that the particles of the synthesized Al2O3, Al2O3-CuO, Al2O3-NiO, and Al2O3-CoO were all less than 25 nm. The Al2O3-NiO showed the smallest particle size (11 to 14 nm) and the best BET surface area of 125.6 m2 g−1. All sorbents were tested for removing organic pollutants, as exemplified by indigo carmine (IGC) dye. The Al2O3-NiO possessed the highest adsorption capacity among the other sorbents for which it had been selected for further investigations. The IGC sorption reached equilibrium within 2.0 h, and the kinetic study revealed that the IGC removal by Al2O3-NiO nanocomposite fitted the FOM and the LFM. The sorbent showed an experimental adsorption capacity (qt) of 456.3 mg g−1 from a 200 mg L−1 IGC solution and followed the Langmuir model. The thermodynamic findings indicated an endothermic, spontaneous, and physisorption nature. The seawater and groundwater samples contaminated with 5.0 mg L−1 IGC concentrations were fully remediated using the Al2O3-NiO nanocomposite. The reuse study showed 93.3% average efficiency during four successive cycles. Consequently, prepared Al2O3-NiO nanocomposite is recommended for the treatment of contaminated water.
Collapse
|
7
|
Almufarij RS, Abdulkhair BY, Salih M, Aldosari H, Aldayel NW. Optimization, Nature, and Mechanism Investigations for the Adsorption of Ciprofloxacin and Malachite Green onto Carbon Nanoparticles Derived from Low-Cost Precursor via a Green Route. Molecules 2022; 27:molecules27144577. [PMID: 35889452 PMCID: PMC9318547 DOI: 10.3390/molecules27144577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
The spread of organic pollutants in water spoils the environment, and among the best-known sorbents for removing organic compounds are carbonaceous materials. Sunflower seed waste (SFSW) was employed as a green and low-cost precursor to prepare carbon nanoparticles (CNPs) via pyrolysis, followed by a ball-milling process. The CNPs were treated with a nitric–sulfuric acid mixture (1:1) at 100 °C. The scanning electron microscopy (SEM) showed a particle size range of 38 to 45 nm, and the Brunauer–Emmett–Teller (BET) surface area was 162.9 m2 g−1. The elemental analysis was performed using energy-dispersive X-ray spectroscopy, and the functional groups on the CNPs were examined with Fourier transform infrared spectroscopy. Additionally, an X-ray diffractometer was employed to test the phase crystallinity of the prepared CNPs. The fabricated CNPs were used to adsorb ciprofloxacin (CFXN) and malachite green (MLG) from water. The experimentally obtained adsorption capacities for CFXN and MLG were 103.6 and 182.4 mg g−1, respectively. The kinetic investigation implied that the adsorption of both pollutants fitted the pseudo-first-order model, and the intraparticle diffusion step controlled the process. The equilibrium findings for CFXN and MLG sorption on the CNPs followed the Langmuir and the Fredulich isotherm models, respectively. It was concluded that both pollutants spontaneously adsorbed on the CNPs, with physisorption being the likely mechanism. Additionally, the FTIR analysis of the adsorbed CFXN showed the disappearance of some functional groups, suggesting a chemisorption contribution. The CNPs showed an excellent performance in removing CFXN and MLG from groundwater and seawater samples and possessed consistent efficiency during the recycle–reuse study. The application of CNPs to treat synthetically contaminated natural water samples indicated the complete remediation of polluted water using the ball-mill-fabricated CNPs.
Collapse
Affiliation(s)
- Rasmiah S. Almufarij
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (R.S.A.); (N.W.A.)
| | - Babiker Y. Abdulkhair
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90905, Riyadh 11623, Saudi Arabia
- Correspondence: or
| | - Mutaz Salih
- Department of Chemistry-Hurrymilla, College of Science and Humanities, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Hurrymilla 11432, Saudi Arabia;
| | - Haia Aldosari
- Department of Physics, College of Science, Shaqra University, P.O. Box 5701, Shaqra 11961, Saudi Arabia;
| | - Najla W. Aldayel
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (R.S.A.); (N.W.A.)
| |
Collapse
|