1
|
Gates C, Williams JM, Ananyev G, Dismukes GC. How chloride functions to enable proton conduction in photosynthetic water oxidation: Time-resolved kinetics of intermediates (S-states) in vivo and bromide substitution. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148998. [PMID: 37499962 DOI: 10.1016/j.bbabio.2023.148998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Chloride (Cl-) is essential for O2 evolution during photosynthetic water oxidation. Two chlorides near the water-oxidizing complex (WOC) in Photosystem II (PSII) structures from Thermosynechococcus elongatus (and T. vulcanus) have been postulated to transfer protons generated from water oxidation. We monitored four criteria: primary charge separation flash yield (P* → P+QA-), rates of water oxidation steps (S-states), rate of proton evolution, and flash O2 yield oscillations by measuring chlorophyll variable fluorescence (P* quenching), pH-sensitive dye changes, and oximetry. Br-substitution slows and destabilizes cellular growth, resulting from lower light-saturated O2 evolution rate (-20 %) and proton release (-36 % ΔpH gradient). The latter implies less ATP production. In Br- cultures, protonogenic S-state transitions (S2 → S3 → S0') slow with increasing light intensity and during O2/water exchange (S0' → S0 → S1), while the non-protonogenic S1 → S2 transition is kinetically unaffected. As flash rate increases in Cl- cultures, both rate and extent of acidification of the lumen increase, while charge recombination is suppressed relative to Br-. The Cl- advantage in rapid proton escape from the WOC to lumen is attributed to correlated ion-pair movement of H3O+Cl- in dry water channels vs. separated Br- and H+ ion movement through different regions (>200-fold difference in Bronsted acidities). By contrast, at low flash rates a previously unreported reversal occurs that favors Br- cultures for both proton evolution and less PSII charge recombination. In Br- cultures, slower proton transfer rate is attributed to stronger ion-pairing of Br- with AA residues lining the water channels. Both anions charge-neutralize protons and shepherd them to the lumen using dry aqueous channels.
Collapse
Affiliation(s)
- Colin Gates
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Computational Biology and Molecular Biophysics, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Biochemistry, Loyola University Chicago, IL 60660, USA
| | - Jonah M Williams
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - Gennady Ananyev
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - G Charles Dismukes
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, NJ 08854, USA.
| |
Collapse
|
2
|
Sirohiwal A, Pantazis DA. Functional Water Networks in Fully Hydrated Photosystem II. J Am Chem Soc 2022; 144:22035-22050. [PMID: 36413491 PMCID: PMC9732884 DOI: 10.1021/jacs.2c09121] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Water channels and networks within photosystem II (PSII) of oxygenic photosynthesis are critical for enzyme structure and function. They control substrate delivery to the oxygen-evolving center and mediate proton transfer at both the oxidative and reductive endpoints. Current views on PSII hydration are derived from protein crystallography, but structural information may be compromised by sample dehydration and technical limitations. Here, we simulate the physiological hydration structure of a cyanobacterial PSII model following a thorough hydration procedure and large-scale unconstrained all-atom molecular dynamics enabled by massively parallel simulations. We show that crystallographic models of PSII are moderately to severely dehydrated and that this problem is particularly acute for models derived from X-ray free electron laser (XFEL) serial femtosecond crystallography. We present a fully hydrated representation of cyanobacterial PSII and map all water channels, both static and dynamic, associated with the electron donor and acceptor sides. Among them, we describe a series of transient channels and the attendant conformational gating role of protein components. On the acceptor side, we characterize a channel system that is absent from existing crystallographic models but is likely functionally important for the reduction of the terminal electron acceptor plastoquinone QB. The results of the present work build a foundation for properly (re)evaluating crystallographic models and for eliciting new insights into PSII structure and function.
Collapse
|
3
|
Shimada Y, Sugiyama A, Nagao R, Noguchi T. Role of D1-Glu65 in Proton Transfer during Photosynthetic Water Oxidation in Photosystem II. J Phys Chem B 2022; 126:8202-8213. [PMID: 36199221 DOI: 10.1021/acs.jpcb.2c05869] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Photosynthetic water oxidation takes place at the Mn4CaO5 cluster in photosystem II (PSII) through a light-driven cycle of five intermediates called S states (S0-S4). Although the PSII structures have shown the presence of several channels around the Mn4CaO5 cluster leading to the lumen, the pathways for proton release in the individual S-state transitions remain unidentified. Here, we studied the involvement of the so-called Cl channel in proton transfer during water oxidation by examining the effect of the mutation of D1-Glu65, a key residue in this channel, to Ala using Fourier transform infrared difference and time-resolved infrared spectroscopies together with thermoluminescence and delayed luminescence measurements. It was shown that the structure and the redox property of the catalytic site were little affected by the D1-Glu65Ala mutation. In the S2 → S3 transition, the efficiency was still high and the transition rate was only moderately retarded in the D1-Glu65Ala mutant. In contrast, the S3 → S0 transition was significantly inhibited by this mutation. These results suggest that proton transfer in the S2 → S3 transition occurs through multiple pathways including the Cl channel, whereas this channel likely serves as a single pathway for proton exit in the S3 → S0 transition.
Collapse
Affiliation(s)
- Yuichiro Shimada
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8602, Japan
| | - Ayane Sugiyama
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8602, Japan
| | - Ryo Nagao
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8602, Japan.,Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Okayama700-8530, Japan
| | - Takumi Noguchi
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya464-8602, Japan
| |
Collapse
|
4
|
Imaizumi K, Ifuku K. Binding and functions of the two chloride ions in the oxygen-evolving center of photosystem II. PHOTOSYNTHESIS RESEARCH 2022; 153:135-156. [PMID: 35698013 DOI: 10.1007/s11120-022-00921-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Light-driven water oxidation in photosynthesis occurs at the oxygen-evolving center (OEC) of photosystem II (PSII). Chloride ions (Cl-) are essential for oxygen evolution by PSII, and two Cl- ions have been found to specifically bind near the Mn4CaO5 cluster in the OEC. The retention of these Cl- ions within the OEC is critically supported by some of the membrane-extrinsic subunits of PSII. The functions of these two Cl- ions and the mechanisms of their retention both remain to be fully elucidated. However, intensive studies performed recently have advanced our understanding of the functions of these Cl- ions, and PSII structures from various species have been reported, aiding the interpretation of previous findings regarding Cl- retention by extrinsic subunits. In this review, we summarize the findings to date on the roles of the two Cl- ions bound within the OEC. Additionally, together with a short summary of the functions of PSII membrane-extrinsic subunits, we discuss the mechanisms of Cl- retention by these extrinsic subunits.
Collapse
Affiliation(s)
- Ko Imaizumi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Kentaro Ifuku
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
5
|
Debus RJ. Alteration of the O 2-Producing Mn 4Ca Cluster in Photosystem II by the Mutation of a Metal Ligand. Biochemistry 2021; 60:3841-3855. [PMID: 34898175 DOI: 10.1021/acs.biochem.1c00504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The O2-evolving Mn4Ca cluster in photosystem II (PSII) is arranged as a distorted Mn3Ca cube that is linked to a fourth Mn ion (denoted as Mn4) by two oxo bridges. The Mn4 and Ca ions are bridged by residue D1-D170. This is also the only residue known to participate in the high-affinity Mn(II) site that participates in the light-driven assembly of the Mn4Ca cluster. In this study, we use Fourier transform infrared difference spectroscopy to characterize the impact of the D1-D170E mutation. On the basis of analyses of carboxylate and carbonyl stretching modes and the O-H stretching modes of hydrogen-bonded water molecules, we show that this mutation alters the extensive network of hydrogen bonds that surrounds the Mn4Ca cluster in the same manner as that of many other mutations. It also alters the equilibrium between conformers of the Mn4Ca cluster in the dark-stable S1 state so that a high-spin form of the S2 state is produced during the S1-to-S2 transition instead of the low-spin form that gives rise to the S2 state multiline electron paramagnetic resonance signal. The mutation may also change the coordination mode of the carboxylate group at position 170 to unidentate ligation of Mn4. This is the first mutation of a metal ligand in PSII that substantially impacts the spectroscopic signatures of the Mn4Ca cluster without substantially eliminating O2 evolution. The results have significant implications for our understanding of the roles of alternate active/inactive conformers of the Mn4Ca cluster in the mechanism of O2 formation.
Collapse
Affiliation(s)
- Richard J Debus
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
6
|
Gera R, Bakker HJ, Franklin-Mergarejo R, Morzan UN, Falciani G, Bergamasco L, Versluis J, Sen I, Dante S, Chiavazzo E, Hassanali AA. Emergence of Electric Fields at the Water-C12E6 Surfactant Interface. J Am Chem Soc 2021; 143:15103-15112. [PMID: 34498857 DOI: 10.1021/jacs.1c05112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We study the properties of the interface of water and the surfactant hexaethylene glycol monododecyl ether (C12E6) with a combination of heterodyne-detected vibrational sum frequency generation (HD-VSFG), Kelvin-probe measurements, and molecular dynamics (MD) simulations. We observe that the addition of the hydrogen-bonding surfactant C12E6, close to the critical micelle concentration (CMC), induces a drastic enhancement in the hydrogen bond strength of the water molecules close to the interface, as well as a flip in their net orientation. The mutual orientation of the water and C12E6 molecules leads to the emergence of a broad (∼3 nm) interface with a large electric field of ∼1 V/nm, as evidenced by the Kelvin-probe measurements and MD simulations. Our findings may open the door for the design of novel electric-field-tuned catalytic and light-harvesting systems anchored at the water-surfactant-air interface.
Collapse
Affiliation(s)
- Rahul Gera
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Huib J Bakker
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | | - Uriel N Morzan
- International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Gabriele Falciani
- Energy Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Luca Bergamasco
- Energy Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Jan Versluis
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Indraneel Sen
- Uppsala University, Laegerhyddsvaegen 1, 751 20 Uppsala, Sweden
| | - Silvia Dante
- Materials Characterization Facility, Italian Institute of Technology, 16163 Genoa, Italy
| | - Eliodoro Chiavazzo
- Energy Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Ali A Hassanali
- International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
7
|
Okamoto Y, Shimada Y, Nagao R, Noguchi T. Proton and Water Transfer Pathways in the S 2 → S 3 Transition of the Water-Oxidizing Complex in Photosystem II: Time-Resolved Infrared Analysis of the Effects of D1-N298A Mutation and NO 3- Substitution. J Phys Chem B 2021; 125:6864-6873. [PMID: 34152151 DOI: 10.1021/acs.jpcb.1c03386] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Photosynthetic water oxidation is performed through a light-driven cycle of five intermediates (S0-S4 states) in photosystem II (PSII). The S2 → S3 transition, which involves concerted water and proton transfer, is a key process for understanding the water oxidation mechanism. Here, to identify the water and proton transfer pathways during the S2 → S3 transition, we examined the effects of D1-N298A mutation and NO3- substitution for Cl-, which perturbed the O1 and Cl channels, respectively, on the S2 → S3 kinetics using time-resolved infrared spectroscopy. The S2 → S3 transition was retarded both upon NO3- substitution and upon D1-N298A mutation, whereas it was unaffected by further NO3- substitution in N298A PSII. The H/D kinetic isotope effect in N298A PSII was relatively small, revealing that water transfer is a rate-limiting step in this mutant. From these results, it was suggested that during the S2 → S3 transition, water delivery and proton release occur through the O1 and Cl channels, respectively.
Collapse
Affiliation(s)
- Yasutada Okamoto
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuichiro Shimada
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Ryo Nagao
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
8
|
Kaur D, Zhang Y, Reiss KM, Mandal M, Brudvig GW, Batista VS, Gunner MR. Proton exit pathways surrounding the oxygen evolving complex of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148446. [PMID: 33964279 DOI: 10.1016/j.bbabio.2021.148446] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/17/2022]
Abstract
Photosystem II allows water to be the primary electron source for the photosynthetic electron transfer chain. Water is oxidized to dioxygen at the Oxygen Evolving Complex (OEC), a Mn4CaO5 inorganic core embedded on the lumenal side of PSII. Water-filled channels surrounding the OEC must bring in substrate water molecules, remove the product protons to the lumen, and may transport the product oxygen. Three water-filled channels, denoted large, narrow, and broad, extend from the OEC towards the aqueous surface more than 15 Å away. However, the role of each pathway in the transport in and out of the OEC is yet to be established. Here, we combine Molecular Dynamics (MD), Multi Conformation Continuum Electrostatics (MCCE) and Network Analysis to compare and contrast the three potential proton transfer paths. Hydrogen bond network analysis shows that near the OEC the waters are highly interconnected with similar free energy for hydronium at all locations. The paths diverge as they move towards the lumen. The water chain in the broad channel is better connected than in the narrow and large channels, where disruptions in the network are observed approximately 10 Å from the OEC. In addition, the barrier for hydronium translocation is lower in the broad channel. Thus, a proton released from any location on the OEC can access all paths, but the likely exit to the lumen passes through PsbO via the broad channel.
Collapse
Affiliation(s)
- Divya Kaur
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY 10016, United States; Department of Physics, City College of New York, NY 10031, United States
| | - Yingying Zhang
- Department of Physics, City College of New York, NY 10031, United States; Department of Physics, The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - Krystle M Reiss
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Manoj Mandal
- Department of Physics, City College of New York, NY 10031, United States
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - M R Gunner
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY 10016, United States; Department of Physics, City College of New York, NY 10031, United States; Department of Physics, The Graduate Center of the City University of New York, New York, NY 10016, United States.
| |
Collapse
|
9
|
Raven JA. Chloride involvement in the synthesis, functioning and repair of the photosynthetic apparatus in vivo. THE NEW PHYTOLOGIST 2020; 227:334-342. [PMID: 32170958 DOI: 10.1111/nph.16541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Cl- has long been known as a micronutrient for oxygenic photosynthetic resulting from its role an essential cofactor for photosystem II (PSII). Evidence on the in vivo Cl- distribution in Spinacia oleracea leaves and chloroplasts shows that sufficient Cl- is present for the involvement in PSII function, as indicated by in vitro studies on, among other organisms, S. oleracea PsII. There is also sufficient Cl- to function, with K+ , in parsing the H+ electrochemical potential difference (proton motive force) across the illuminated thylakoid membrane into electrical potential difference and pH difference components. However, recent in vitro work on PSII from S. oleracea shows that oxygen evolving complex (OEC) synthesis, and resynthesis after photodamage, requires significantly higher Cl- concentrations than would satisfy the function of assembled PSII O2 evolution of the synthesised PSII with the OEC. The low Cl- affinity of OEC (re-)assembly could be a component limiting the rate of OEC (re-)assembly.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Climate Change Cluster, University of Technology, Ultimo, Sydney, NSW, 2007, Australia
- School of Biological Science, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
10
|
Liguori N, Croce R, Marrink SJ, Thallmair S. Molecular dynamics simulations in photosynthesis. PHOTOSYNTHESIS RESEARCH 2020; 144:273-295. [PMID: 32297102 PMCID: PMC7203591 DOI: 10.1007/s11120-020-00741-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/24/2020] [Indexed: 05/12/2023]
Abstract
Photosynthesis is regulated by a dynamic interplay between proteins, enzymes, pigments, lipids, and cofactors that takes place on a large spatio-temporal scale. Molecular dynamics (MD) simulations provide a powerful toolkit to investigate dynamical processes in (bio)molecular ensembles from the (sub)picosecond to the (sub)millisecond regime and from the Å to hundreds of nm length scale. Therefore, MD is well suited to address a variety of questions arising in the field of photosynthesis research. In this review, we provide an introduction to the basic concepts of MD simulations, at atomistic and coarse-grained level of resolution. Furthermore, we discuss applications of MD simulations to model photosynthetic systems of different sizes and complexity and their connection to experimental observables. Finally, we provide a brief glance on which methods provide opportunities to capture phenomena beyond the applicability of classical MD.
Collapse
Affiliation(s)
- Nicoletta Liguori
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| | - Roberta Croce
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Sebastian Thallmair
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
11
|
The Biochemical Properties of Manganese in Plants. PLANTS 2019; 8:plants8100381. [PMID: 31569811 PMCID: PMC6843630 DOI: 10.3390/plants8100381] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/12/2023]
Abstract
Manganese (Mn) is an essential micronutrient with many functional roles in plant metabolism. Manganese acts as an activator and co-factor of hundreds of metalloenzymes in plants. Because of its ability to readily change oxidation state in biological systems, Mn plays and important role in a broad range of enzyme-catalyzed reactions, including redox reactions, phosphorylation, decarboxylation, and hydrolysis. Manganese(II) is the prevalent oxidation state of Mn in plants and exhibits fast ligand exchange kinetics, which means that Mn can often be substituted by other metal ions, such as Mg(II), which has similar ion characteristics and requirements to the ligand environment of the metal binding sites. Knowledge of the molecular mechanisms catalyzed by Mn and regulation of Mn insertion into the active site of Mn-dependent enzymes, in the presence of other metals, is gradually evolving. This review presents an overview of the chemistry and biochemistry of Mn in plants, including an updated list of known Mn-dependent enzymes, together with enzymes where Mn has been shown to exchange with other metal ions. Furthermore, the current knowledge of the structure and functional role of the three most well characterized Mn-containing metalloenzymes in plants; the oxygen evolving complex of photosystem II, Mn superoxide dismutase, and oxalate oxidase is summarized.
Collapse
|
12
|
Ghosh I, Khan S, Banerjee G, Dziarski A, Vinyard DJ, Debus RJ, Brudvig GW. Insights into Proton-Transfer Pathways during Water Oxidation in Photosystem II. J Phys Chem B 2019; 123:8195-8202. [DOI: 10.1021/acs.jpcb.9b06244] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ipsita Ghosh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Sahr Khan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Gourab Banerjee
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Alisha Dziarski
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - David J. Vinyard
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Richard J. Debus
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
13
|
Research on Invulnerability Technology of Node Attack in Space-Based Information Network Based on Complex Network. ELECTRONICS 2019. [DOI: 10.3390/electronics8050507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the rapid development of communications technology, the space-based information network (SBIN) is increasingly threatened by the outside world. Dynamic changes in any part of its interior can cause the collapse of the entire network. Therefore, research on the invulnerability of SBIN has become an urgent need to promote the economic development of our country and improve the living standards of our people. To this end, this paper has carried out research on the node-attacked invulnerability of SBIN based on the complex network theory. First, based on the model of SBIN, the internal parameters of the network are analyzed theoretically based on complex networks. Second, the paper proposes an improved tree attack strategy to analyze the invulnerability of SBIN, which constitutes a problem where the traditional attack strategy has a low invulnerability and the connected edge cannot fully realize the network function. Then, based on the improved tree attack strategy algorithm, this paper optimizes the invulnerability of SBIN by constructing four different edge-increasing strategies. Through the research, the LDF edge-increasing strategy makes the entire network flatter and can effectively improve the network’s ability to resist destruction. The research of invulnerability based on the complex network has a certain technical support and theoretical guidance for the construction of a reasonable and stable SBIN.
Collapse
|