1
|
Hsu FC, Chen JTC, Yamada A, Hsiao Y, Ho CK, Lin CC, Oguri E, Tseng SP. Hidden invaders: intraspecific cryptic invasion and hybridization of Dolichoderus thoracicus (Hymenoptera: Formicidae) in Taiwan. JOURNAL OF ECONOMIC ENTOMOLOGY 2025; 118:320-328. [PMID: 39673211 DOI: 10.1093/jee/toae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/16/2024] [Accepted: 11/02/2024] [Indexed: 12/16/2024]
Abstract
Biological invasions pose substantial threats to global biodiversity, agriculture, and ecological stability. Among these, intraspecific cryptic invasions, characterized by the spread of nonnative genotypes within a species, present unique challenges for detection and management. Despite the well-documented influence of invasive ants on ecosystems, instances of intraspecific cryptic ant invasions have rarely been documented. This study focused on the black cocoa ant, Dolichoderus thoracicus (Smith 1860), which has been increasingly reported as a pest in Taiwan over the past decade. In this study, we utilized a genome-wide approach employing multiplexed inter-simple sequence repeats genotyping by sequencing to identify single nucleotide polymorphisms across the D. thoracicus populations, elucidating the variations in the genetic population structure of the species in Taiwan. Our findings confirmed the occurrence of intraspecific cryptic invasions, demonstrating the coexistence of native and nonnative lineages, along with potential hybridization events between them. This study underscores the critical role of comprehensive genetic analysis in uncovering the complex dynamics of species invasions.
Collapse
Affiliation(s)
- Feng-Chuan Hsu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | | | - Aiki Yamada
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yun Hsiao
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Chuan-Kai Ho
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chung-Chi Lin
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Emiko Oguri
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Shu-Ping Tseng
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Tseng SP, Darras H, Hsu PW, Yoshimura T, Lee CY, Wetterer JK, Keller L, Yang CCS. Genetic analysis reveals the putative native range and widespread double-clonal reproduction in the invasive longhorn crazy ant. Mol Ecol 2023; 32:1020-1033. [PMID: 36527320 DOI: 10.1111/mec.16827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Clonal reproduction can provide an advantage for invasive species to establish as it can circumvent inbreeding depression which often plagues introduced populations. The world's most widespread invasive ant, Paratrechina longicornis, was previously found to display a double-clonal reproduction system, whereby both males and queens are produced clonally, resulting in separate male and queen lineages, while workers are produced sexually. Under this unusual reproduction mode, inbreeding is avoided in workers as they carry hybrid interlineage genomes. Despite the ubiquitous distribution of P. longicornis, the significance of this reproductive system for the ant's remarkable success remains unclear, as its prevalence is still unknown. Further investigation into the controversial native origin of P. longicornis is also required to reconstruct the evolutionary histories of double-clonal lineages. Here, we examine genetic variation and characterize the reproduction mode of P. longicornis populations sampled worldwide using microsatellites and mitochondrial DNA sequences to infer the ant's putative native range and the distribution of the double-clonal reproductive system. Analyses of global genetic variations indicate that the Indian subcontinent is a genetic diversity hotspot of this species, suggesting that P. longicornis probably originates from this geographical area. Our analyses revealed that both the inferred native and introduced populations exhibit double-clonal reproduction, with queens and males around the globe belonging to two separate, nonrecombining clonal lineages. By contrast, workers are highly heterozygous because they are first-generation interlineage hybrids. Overall, these data indicate a worldwide prevalence of double clonality in P. longicornis and support the prediction that the unusual genetic system may have pre-adapted this ant for global colonization by maintaining heterozygosity in the worker force and alleviating genetic bottlenecks.
Collapse
Affiliation(s)
- Shu-Ping Tseng
- Department of Entomology, National Taiwan University, Taipei, Taiwan.,Department of Entomology, University of California, Riverside, California, USA.,Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Hugo Darras
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Po-Wei Hsu
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Yoshimura
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Chow-Yang Lee
- Department of Entomology, University of California, Riverside, California, USA
| | - James K Wetterer
- Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, USA
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Chin-Cheng Scotty Yang
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
3
|
Fenn‐Moltu G, Ollier S, Caton B, Liebhold AM, Nahrung H, Pureswaran DS, Turner RM, Yamanaka T, Bertelsmeier C. Alien insect dispersal mediated by the global movement of commodities. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2721. [PMID: 36372556 PMCID: PMC10078186 DOI: 10.1002/eap.2721] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/23/2022] [Accepted: 06/23/2022] [Indexed: 06/16/2023]
Abstract
Globalization and economic growth are recognized as key drivers of biological invasions. Alien species have become a feature of almost every biological community worldwide, and rates of new introductions continue to rise as the movement of people and goods accelerates. Insects are among the most numerous and problematic alien organisms, and are mainly introduced unintentionally with imported cargo or arriving passengers. However, the processes occurring prior to insect introductions remain poorly understood. We used a unique dataset of 1,902,392 border interception records from inspections at air, land, and maritime ports in Australia, New Zealand, Europe, Japan, USA, and Canada to identify key commodities associated with insect movement through trade and travel. In total, 8939 species were intercepted, and commodity association data were available for 1242 species recorded between 1960 and 2019. We used rarefaction and extrapolation methods to estimate the total species richness and diversity associated with different commodity types. Plant and wood products were the main commodities associated with insect movement across cargo, passenger baggage, and international mail. Furthermore, certain species were mainly associated with specific commodities within these, and other broad categories. More closely related species tended to share similar commodity associations, but this occurred largely at the genus level rather than within orders or families. These similarities within genera can potentially inform pathway management of new alien species. Combining interception records across regions provides a unique window into the unintentional movement of insects, and provides valuable information on establishment risks associated with different commodity types and pathways.
Collapse
Affiliation(s)
- Gyda Fenn‐Moltu
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Sébastien Ollier
- Department of Ecology, Systematics and EvolutionUniversity Paris‐SaclayOrsayFrance
| | - Barney Caton
- United States Department of Agriculture, Animal and Plant Health Inspection ServicesPlant Protection and QuarantineRaleighNorth CarolinaUSA
| | - Andrew M. Liebhold
- USDA Forest Service Northern Research StationMorgantownWest VirginiaUSA
- Faculty of Forestry and Wood SciencesCzech University of Life Sciences PragueSuchdolCzech Republic
| | - Helen Nahrung
- Forest Research InstituteUniversity of the Sunshine CoastMaroochydore DCQueenslandAustralia
| | | | - Rebecca M. Turner
- Scion (New Zealand Forest Research Institute)ChristchurchNew Zealand
| | | | - Cleo Bertelsmeier
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
4
|
Liu K, Tseng S, Tatsuta H, Tsuji K, Tay J, Singham GV, Yang CS, Neoh K. Population genetic structure of the globally introduced big-headed ant in Taiwan. Ecol Evol 2022; 12:e9660. [PMID: 36582779 PMCID: PMC9789323 DOI: 10.1002/ece3.9660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022] Open
Abstract
Global commerce and transportation facilitate the spread of invasive species. The African big-headed ant, Pheidole megacephala (Fabricius), has achieved worldwide distribution through globalization. Since the late 19th century, Taiwan has served as a major seaport because of its strategic location. The population genetic structure of P. megacephala in Taiwan is likely to be shaped by international trade and migration between neighboring islands. In this study, we investigated the population genetics of P. megacephala colonies sampled from four geographical regions in Taiwan and elucidated the population genetic structures of P. megacephala sampled from Taiwan, Okinawa, and Hawaii. We observed a low genetic diversity of P. megacephala across regions in Taiwan. Moreover, we noted low regional genetic differentiation and did not observe isolation by distance, implying that long-distance jump dispersal might have played a crucial role in the spread of P. megacephala. We sequenced the partial cytochrome oxidase I gene and observed three mitochondrial haplotypes (TW1-TW3). TW1 and TW3 most likely originated from populations within the species' known invasive range, suggesting that secondary introduction is the predominant mode of introduction for this invasive ant. TW2 represents a novel haplotype that was previously unreported in other regions. P. megacephala populations from Taiwan, Okinawa, and Hawaii exhibited remarkable genetic similarity, which may reflect their relative geographic proximity and the historical connectedness of the Asia-Pacific region.
Collapse
Affiliation(s)
- Kuan‐Ling Liu
- Department of EntomologyNational Chung Hsing UniversityTaichungTaiwan
| | - Shu‐Ping Tseng
- Department of EntomologyNational Taiwan UniversityTaipeiTaiwan
| | - Haruki Tatsuta
- Graduate School of Systems Life SciencesKyushu UniversityFukuokaJapan
| | - Kazuki Tsuji
- Department of Subtropical Agro‐Environmental SciencesUniversity of the RyukyusOkinawaJapan
| | - Jia‐Wei Tay
- Department of Plant and Environmental Protection SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - G. Veera Singham
- Centre for Chemical BiologyUniversiti Sains MalaysiaPenangMalaysia
| | - Chin‐Cheng Scotty Yang
- Department of EntomologyVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Kok‐Boon Neoh
- Department of EntomologyNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
5
|
Xu Y, Vargo EL, Tsuji K, Wylie R. Exotic Ants of the Asia-Pacific: Invasion, National Response, and Ongoing Needs. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:27-42. [PMID: 34582264 DOI: 10.1146/annurev-ento-060721-085603] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Human activity has facilitated the introduction of many exotic species via global trade. Asia-Pacific countries comprise one of the most economically and trade-active regions in the world, which makes it an area that is highly vulnerable to invasive species, including ants. There are currently over 60 exotic ant species in the Asia-Pacific, with the red imported fire ant, Solenopsis invicta, among the most destructive. Exotic ants pose many economic and ecological problems for the region. Countries in the Asia-Pacific have dealt with the problem of exotic ants in very different ways, and there has been an overall lack of preparedness. To improve the management of risks associated with invasive ants, we recommend that countries take action across the biosecurity spectrum, spanning prevention, containment, and quarantine. The creation of an Asia-Pacific network for management of invasive ants should help prevent their introduction and mitigate their impacts.
Collapse
Affiliation(s)
- Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou 510642, People's Republic of China;
| | - Edward L Vargo
- Department of Entomology, Texas A&M University, College Station, Texas 77843, USA
| | - Kazuki Tsuji
- Department of Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Ross Wylie
- Biosecurity Queensland, Department of Agriculture and Fisheries, Brisbane, Queensland 4118, Australia
| |
Collapse
|
6
|
Bertelsmeier C. Globalization and the anthropogenic spread of invasive social insects. CURRENT OPINION IN INSECT SCIENCE 2021; 46:16-23. [PMID: 33545436 DOI: 10.1016/j.cois.2021.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Social insects are among the worst invasive species and a better understanding of their anthropogenic spread is needed. I highlight recent research demonstrating that social insects have been dispersed since the early beginnings of globalized trade and in particular after the Industrial Revolution, following two waves of globalization. Many species have complex invasion histories, with multiple independent introduction events and frequent secondary spread. The major source and recipient regions differ markedly across ants, wasps, termites and bees, probably linked to their different introduction pathways. At a more local scale, anthropogenic factors such as irrigation, urbanization or the presence of railways facilitate invasions. In the future, social insect invasions could further accelerate due to intensifying global trade and novel introduction pathways.
Collapse
Affiliation(s)
- Cleo Bertelsmeier
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
7
|
Wu YH, Kamiyama MT, Chung CC, Tzeng HY, Hsieh CH, Yang CCS. Population Monitoring, Egg Parasitoids, and Genetic Structure of the Invasive Litchi Stink Bug, Tessaratoma papillosa in Taiwan. INSECTS 2020; 11:insects11100690. [PMID: 33053731 PMCID: PMC7600713 DOI: 10.3390/insects11100690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 01/31/2023]
Abstract
Simple Summary The litchi stink bug (LSB) was inadvertently introduced to Taiwan recently and has since become a severe pest with substantial economic losses. The aim of this study is therefore to improve our knowledge of this invasive pest through multiple approaches including population monitoring, surveillance of natural enemies, and population genetic analysis. Major findings include: (1) a population fluctuation trend that is largely similar to most native LSB populations, (2) a total of seven egg parasitoid species were discovered, two of which (Anastatusdexingensis and A. fulloi) being most abundant throughout the LSB infestation in Taiwan, and (3) the occurrence of multiple introductions of LSB to Taiwan. All these data represent a preliminary yet necessary step for the design of future integrated pest management strategies and would help mitigate negative impacts of this invasive pest in Taiwan. Abstract Here we assessed population dynamics, natural enemy fauna (with emphasis on egg parasitoid), and population genetic structure (based on mitochondrial DNA) of the invasive litchi stink bug (LSB), Tessaratoma papillosa in Taiwan. Our major findings include: (1) fluctuations of LSB in numbers of adults, mating pairs, and egg masses over a 2-year period in Taiwan generally resemble those in the native populations; (2) Anastatusdexingensis and A. fulloi are among the most dominant LSB egg parasitoids, with the former consistently outnumbering the latter throughout Taiwan; (3) the presence of two genetically distinct clades suggests LSB in Taiwan most likely derived from multiple invasions. All these data practically improve our understanding of this invasive insect pest, particularly its ecological and genetic characteristics in the introduced area, which represents critical baseline information for the design of future integrated pest management strategies.
Collapse
Affiliation(s)
- Yi-Hui Wu
- Miaoli District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Miaoli 36346, Taiwan; (Y.-H.W.); (C.-C.C.)
- Department of Forestry, National Chung Hsing University, Taichung 402204, Taiwan;
| | - Matthew T. Kamiyama
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan;
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan
| | - Chuan-Cheng Chung
- Miaoli District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Miaoli 36346, Taiwan; (Y.-H.W.); (C.-C.C.)
| | - Hsy-Yu Tzeng
- Department of Forestry, National Chung Hsing University, Taichung 402204, Taiwan;
| | - Chia-Hung Hsieh
- Department of Forestry and Nature Conservation, Chinese Culture University, Taipei 11114, Taiwan
- Correspondence: (C.-H.H.); (C.-C.S.Y.); Tel.: +886-2-2861-0511 (ext. 31334) (C.-H.H.); Tel.: +886-4-2284-0361 (ext. 540) (C.-C.S.Y.)
| | - Chin-Cheng Scotty Yang
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Department of Entomology, National Chung Hsing University, Taichung 402204, Taiwan
- Correspondence: (C.-H.H.); (C.-C.S.Y.); Tel.: +886-2-2861-0511 (ext. 31334) (C.-H.H.); Tel.: +886-4-2284-0361 (ext. 540) (C.-C.S.Y.)
| |
Collapse
|