1
|
Cruces L, de la Peña E, De Clercq P. Advances in the Integrated Pest Management of Quinoa ( Chenopodium quinoa Willd.): A Global Perspective. INSECTS 2024; 15:540. [PMID: 39057272 PMCID: PMC11276635 DOI: 10.3390/insects15070540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Since ancestral times, quinoa (Chenopodium quinoa Willd.) has been cultivated in the Andean regions. Recently, this pseudocereal has received increasing international attention due to its beneficial properties, such as adaptation and resilience in the context of global change, and the nutritional value of the grains. As a result, its production areas have not only increased in the highlands of South America but have also expanded outside of its Andean origins, and the crop is currently produced worldwide. The key pests of quinoa in the Andean region are the gelechiid moths Eurysacca melanocampta and Eurysacca quinoae; in other parts of the world, new pest problems have recently been identified limiting quinoa production, including the gelechiid Scrobipalpa atripicella in North America and Europe and the agromyzid fly Amauromyza karli in North America. In this review, the status of quinoa pests in the world is presented, and different aspects of their integrated management are discussed, including sampling methodologies for pest monitoring, economic threshold levels, and various control strategies.
Collapse
Affiliation(s)
- Luis Cruces
- Department of Entomology, Faculty of Agronomy, Universidad Nacional Agraria La Molina, Lima 12-056, Peru
| | - Eduardo de la Peña
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (E.d.l.P.); (P.D.C.)
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Spanish National Research Council (CSIC), Estación Experimental “La Mayora”, Algarrobo-Costa, 29750 Malaga, Spain
| | - Patrick De Clercq
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (E.d.l.P.); (P.D.C.)
| |
Collapse
|
2
|
Piesik D, Miler N, Lemańczyk G, Tymoszuk A, Lisiecki K, Bocianowski J, Krawczyk K, Mayhew CA. Induction of volatile organic compounds in chrysanthemum plants following infection by Rhizoctonia solani. PLoS One 2024; 19:e0302541. [PMID: 38696430 PMCID: PMC11065281 DOI: 10.1371/journal.pone.0302541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
This study investigated the effects of Rhizoctonia solani J.G. Kühn infestation on the volatile organic compound (VOC) emissions and biochemical composition of ten cultivars of chrysanthemum (Chrysanthemum × morifolium /Ramat./ Hemsl.) to bring new insights for future disease management strategies and the development of resistant chrysanthemum cultivars. The chrysanthemum plants were propagated vegetatively and cultivated in a greenhouse under semi-controlled conditions. VOCs emitted by the plants were collected using a specialized system and analyzed by gas chromatography/mass spectrometry. Biochemical analyses of the leaves were performed, including the extraction and quantification of chlorophylls, carotenoids, and phenolic compounds. The emission of VOCs varied among the cultivars, with some cultivars producing a wider range of VOCs compared to others. The analysis of the VOC emissions from control plants revealed differences in both their quality and quantity among the tested cultivars. R. solani infection influenced the VOC emissions, with different cultivars exhibiting varying responses to the infection. Statistical analyses confirmed the significant effects of cultivar, collection time, and their interaction on the VOCs. Correlation analyses revealed positive relationships between certain pairs of VOCs. The results show significant differences in the biochemical composition among the cultivars, with variations in chlorophyll, carotenoids, and phenolic compounds content. Interestingly, R. solani soil and leaf infestation decreased the content of carotenoids in chrysanthemums. Plants subjected to soil infestation were characterized with the highest content of phenolics. This study unveils alterations in the volatile and biochemical responses of chrysanthemum plants to R. solani infestation, which can contribute to the development of strategies for disease management and the improvement of chrysanthemum cultivars with enhanced resistance to R. solani.
Collapse
Affiliation(s)
- Dariusz Piesik
- Department of Biology and Plant Protection, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Natalia Miler
- Department of Biotechnology, Laboratory of Horticulture, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Grzegorz Lemańczyk
- Department of Biology and Plant Protection, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Alicja Tymoszuk
- Department of Biotechnology, Laboratory of Horticulture, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Karol Lisiecki
- Department of Biology and Plant Protection, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland
| | - Krzysztof Krawczyk
- Department of Virology and Bacteriology, Institute of Plant Protection – National Research Institute, Poznań, Poland
| | - Chris A. Mayhew
- Institute for Breath Research, Universität Innsbruck, Innrain, Innsbruck, Austria
| |
Collapse
|
3
|
Sentis A, Hemptinne J, Magro A, Outreman Y. Biological control needs evolutionary perspectives of ecological interactions. Evol Appl 2022; 15:1537-1554. [PMID: 36330295 PMCID: PMC9624075 DOI: 10.1111/eva.13457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 05/30/2024] Open
Abstract
While ecological interactions have been identified as determinant for biological control efficiency, the role of evolution remains largely underestimated in biological control programs. With the restrictions on the use of both pesticides and exotic biological control agents (BCAs), the evolutionary optimization of local BCAs becomes central for improving the efficiency and the resilience of biological control. In particular, we need to better account for the natural processes of evolution to fully understand the interactions of pests and BCAs, including in biocontrol strategies integrating human manipulations of evolution (i.e., artificial selection and genetic engineering). In agroecosystems, the evolution of BCAs traits and performance depends on heritable phenotypic variation, trait genetic architecture, selection strength, stochastic processes, and other selective forces. Humans can manipulate these natural processes to increase the likelihood of evolutionary trait improvement, by artificially increasing heritable phenotypic variation, strengthening selection, controlling stochastic processes, or overpassing evolution through genetic engineering. We highlight these facets by reviewing recent studies addressing the importance of natural processes of evolution and human manipulations of these processes in biological control. We then discuss the interactions between the natural processes of evolution occurring in agroecosystems and affecting the artificially improved BCAs after their release. We emphasize that biological control cannot be summarized by interactions between species pairs because pests and biological control agents are entangled in diverse communities and are exposed to a multitude of deterministic and stochastic selective forces that can change rapidly in direction and intensity. We conclude that the combination of different evolutionary approaches can help optimize BCAs to remain efficient under changing environmental conditions and, ultimately, favor agroecosystem sustainability.
Collapse
Affiliation(s)
- Arnaud Sentis
- INRAEAix Marseille University, UMR RECOVERAix‐en‐ProvenceFrance
| | - Jean‐Louis Hemptinne
- Laboratoire Évolution et Diversité biologiqueUMR 5174 CNRS/UPS/IRDToulouseFrance
- Université Fédérale de Toulouse Midi‐Pyrénées – ENSFEACastanet‐TolosanFrance
| | - Alexandra Magro
- Laboratoire Évolution et Diversité biologiqueUMR 5174 CNRS/UPS/IRDToulouseFrance
- Université Fédérale de Toulouse Midi‐Pyrénées – ENSFEACastanet‐TolosanFrance
| | | |
Collapse
|
4
|
Piesik D, Bocianowski J, Kotwica K, Lemańczyk G, Piesik M, Ruzsanyi V, Mayhew CA. Responses of Adult Hypera rumicis L. to Synthetic Plant Volatile Blends. Molecules 2022; 27:molecules27196290. [PMID: 36234827 PMCID: PMC9572268 DOI: 10.3390/molecules27196290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
The behavioral responses of Hypera rumicis L. adults to varying blends of synthetic plant volatiles (SPVs) at various concentrations in lieu of single compounds are reported for the first time. For this study, Rumex confertus plants were treated with two blends of SPVs at different quantities that act as either attractants or repellents to insects. Blend 1 (B1) consisted of five green leaf volatiles (GLVs), namely (Z)-3-hexenal, (E)-2-hexenal, (Z)-3-hexenol, (E)-2-hexenol, and (Z)-3-hexen-1-yl acetate. Blend 2 (B2) contained six plant volatiles, namely (Z)-ocimene, linalool, benzyl acetate, methyl salicylate, β-caryophyllene, and (E)-β-farnesene. Each blend was made available in four different amounts of volatiles, corresponding to each compound being added to 50 µL of hexane in amounts of 1, 5, 25 and 125 ng. The effects of the two blends at the different concentrations on the insects were evaluated using a Y-tube olfactometer. Both sexes of the insects were found to be significantly repelled by the highest volatile levels of B1 and by two levels of B2 (25 and 125 ng). Females were also observed to be repelled using B2 with 5 ng of each volatile. Attraction was observed for both sexes only for B1 at the three lower volatile levels (1, 5 and 25 ng). In additional experiments, using only attractants, unmated females were found to be attracted to males, whereas mated females were only attracted to B1. Both unmated and mated males (previously observed in copula) were attracted only to females.
Collapse
Affiliation(s)
- Dariusz Piesik
- Department of Biology and Plant Protection, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 7 Prof. Kaliskiego Ave., 85-796 Bydgoszcz, Poland
- Correspondence: (D.P.); (C.A.M.)
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 28 Wojska Polskiego, 60-637 Poznań, Poland
| | - Karol Kotwica
- Department of Agronomy, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 7 Prof. Kaliskiego Ave., 85-796 Bydgoszcz, Poland
| | - Grzegorz Lemańczyk
- Department of Biology and Plant Protection, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 7 Prof. Kaliskiego Ave., 85-796 Bydgoszcz, Poland
| | - Magdalena Piesik
- Oncology Center of F. Łukaszczyk in Bydgoszcz, 2 I. Romanowskiej St., 85-796 Bydgoszcz, Poland
| | - Veronika Ruzsanyi
- Institute for Breath Research, University of Innsbruck and Tiroler Krebsforschungsinstitut (TKFI), Innrain 66, A-6020 Innsbruck, Austria
| | - Chris A. Mayhew
- Institute for Breath Research, University of Innsbruck and Tiroler Krebsforschungsinstitut (TKFI), Innrain 66, A-6020 Innsbruck, Austria
- Correspondence: (D.P.); (C.A.M.)
| |
Collapse
|
5
|
Lynch CA, Smith OM, Chapman EG, Crossley MS, Crowder DW, Fu Z, Harwood JD, Jensen AS, Krey KL, Snyder GB, Snyder WE. Alternative prey and farming system mediate predation of Colorado potato beetles by generalists. PEST MANAGEMENT SCIENCE 2022; 78:3769-3777. [PMID: 34250727 DOI: 10.1002/ps.6553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Biological control by generalist predators can be mediated by the abundance and biodiversity of alternative prey. When alternative prey draw predator attacks away from the control target, they can weaken pest suppression. In other cases, a diverse prey base can promote predator abundance and biodiversity, reduce predator-predator interference, and benefit biocontrol. Here, we used molecular gut-content analysis to assess how community composition altered predation of Colorado potato beetle (Leptinotarsa decemlineata (Say)) by Nabis sp. and Geocoris sp. Predators were collected from organic or conventional potato (Solanum tuberosum L.) fields, encouraging differences in arthropod community composition. RESULTS In organic fields, Nabis predation of potato beetles decreased with increasing arthropod richness and predator abundance. This is consistent with Nabis predators switching to other prey species when available and with growing predator-predator interference. In conventional fields these patterns were reversed, however, with potato beetle predation by Nabis increasing with greater arthropod richness and predator abundance. For Geocoris, Colorado potato beetle predation was more frequent in organic than in conventional fields. However, Geocoris predation of beetles was less frequent in fields with higher abundance of the detritus-feeding fly Scaptomyza pallida Zetterstedt, or of all arthropods, consistent with predators choosing other prey when available. CONCLUSION Alternative prey generally dampened predation of potato beetles, suggesting these pests were less-preferred prey. Nabis and Geocoris differed in which alternative prey were most disruptive to feeding on potato beetles, and in the effects of farm management on predation, consistent with the two predator species occupying complementary feeding niches. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Christine A Lynch
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Olivia M Smith
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Eric G Chapman
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | | | - David W Crowder
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Zhen Fu
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - James D Harwood
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | | | - Karol L Krey
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - Gretchen B Snyder
- Department of Entomology, Washington State University, Pullman, WA, USA
| | - William E Snyder
- Department of Entomology, University of Georgia, Athens, GA, USA
| |
Collapse
|
6
|
Smith OM, Chapman EG, Crossley MS, Crowder DW, Fu Z, Harwood JD, Jensen AS, Krey KL, Lynch CA, Snyder GB, Snyder WE. Alternative Prey and Predator Interference Mediate Thrips Consumption by Generalists. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.752159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Generalist predators’ complex feeding relationships make it difficult to predict their contribution to pest suppression. Alternative prey can either distract predators from attacking pests, weakening biocontrol, or provide food that support larger predator communities to enhance it. Similarly, predator species might both feed upon and complement one another by occupying different niches. Here, we use molecular gut-content analysis to examine predation of western flower thrips (Frankliniella occidentalis) by two generalist predatory bugs, Geocoris sp. and Nabis sp. We collected predators from conventional and organic potato fields that differed in arthropod abundance and composition, so that we could draw correlations between abundance and biodiversity of predators and prey, and thrips predation. We found that alternative prey influenced the probability of detecting Geocoris predation of thrips through a complex interaction. In conventionally-managed potato fields, thrips DNA was more likely to be detected in Geocoris as total abundance of all arthropods in the community increased. But the opposite pattern was found in organic fields, where the probability of detecting thrips predation by Geocoris decreased with increasing total arthropod abundance. Perhaps, increasing abundance (from a relatively low baseline) of alternative prey triggered greater foraging activity in conventional fields, but drew attacks away from thrips in organic fields where prey were consistently relatively bountiful. The probability of detecting Geocoris predation of thrips generally increased with increasing thrips density, but this correlation was steeper in organic than conventional fields. For both Geocoris and Nabis, greater Nabis abundance correlated with reduced probability of detecting thrips DNA; for Nabis this was the only important variable. Nabis is a common intraguild predator of the smaller Geocoris, and is highly cannibalistic, suggesting that predator-predator interference increased with more Nabis present. Complex patterns of thrips predation seemed to result from a dynamic interaction with alternative prey abundance, alongside consistently negative interactions among predators. This provides further evidence that alternative prey and predator interference must be studied in concert to accurately predict the contributions of generalists to biocontrol.
Collapse
|
7
|
Dong Z, Xia M, Li C, Mu B, Zhang Z. A Comparison of Flower and Grass Strips for Augmentation of Beneficial Arthropods in Apple Orchards. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.697864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sowing plants that provide food resources in orchards is a potential habitat management practice for enhancing biological control. Flowering plants (providing pollen and nectar) and grasses (providing alternative prey) can benefit natural enemies in orchards; however, little is known about their relative importance. We studied the effect of management practices (flower strips, grass strips, and spontaneous grass) on arthropod predators under organic apple management regimes in apple orchards in Beijing, China. Orchards located at two different sites were assessed for 3 years (2017–2019). The cover crops had a significant impact on the abundance and diversity of arthropod predators. The grass treatment consistently supported significantly greater densities of alternative prey resources for predators, and predators were more abundant in the grass than in the other treatments. The Shannon–Wiener diversity was significantly higher for the cover crop treatment than for the control. Community structure was somewhat similar between the grass and control, but it differed between the flower treatment and grass/control. Weak evidence for an increase in mobile predators (ladybirds and lacewings) in the orchard canopy was found. Ladybirds and lacewings were more abundant in the grass treatment than in the other treatments in 2019 only, while the aphid abundance in the grass treatment was lowest. The fact that grass strips promoted higher predator abundance and stronger aphid suppression in comparison to the flower strips suggests that providing alternative prey for predators has great biocontrol service potential. The selection of cover crops and necessary management for conserving natural enemies in orchards are discussed in this paper.
Collapse
|