1
|
Thümmel L, Tintner‐Olifiers J, Amendt J. A methodological approach to age estimation of the intra-puparial period of the forensically relevant blow fly Calliphora vicina via Fourier transform infrared spectroscopy. MEDICAL AND VETERINARY ENTOMOLOGY 2025; 39:22-32. [PMID: 39093723 PMCID: PMC11793135 DOI: 10.1111/mve.12748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
Estimating the age of immature blow flies is of great importance for forensic entomology. However, no gold-standard technique for an accurate determination of the intra-puparial age has yet been established. Fourier transform infrared (FTIR) spectroscopy is a method to (bio-)chemically characterise material based on the absorbance of electromagnetic energy by functional groups of molecules. In recent years, it also has become a powerful tool in forensic and life sciences, as it is a fast and cost-effective way to characterise all kinds of material and biological traces. This study is the first to collect developmental reference data on the changes in absorption spectra during the intra-puparial period of the forensically important blow fly Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae). Calliphora vicina was reared at constant 20°C and 25°C and specimens were killed every other day throughout their intra-puparial development. In order to investigate which part yields the highest detectable differences in absorption spectra throughout the intra-puparial development, each specimen was divided into two different subsamples: the pupal body and the former cuticle of the third instar, that is, the puparium. Absorption spectra were collected with a FTIR spectrometer coupled to an attenuated total reflection (ATR) unit. Classification accuracies of different wavenumber regions with two machine learning models, i.e., random forests (RF) and support vector machines (SVMs), were tested. The best age predictions for both temperature settings and machine learning models were obtained by using the full spectral range from 3700 to 600 cm-1. While SVMs resulted in better accuracies for C. vicina reared at 20°C, RFs performed almost as good as SVMs for data obtained from 25°C. In terms of sample type, the pupal body gave smoother spectra and usually better classification accuracies than the puparia. This study shows that FTIR spectroscopy is a promising technique in forensic entomology to support the estimation of the minimum post-mortem interval (PMImin), by estimating the age of a given insect specimen.
Collapse
Affiliation(s)
- Luise Thümmel
- Goethe‐University Frankfurt, University Hospital, Institute of Legal MedicineFrankfurt am MainGermany
- Department of Aquatic Ecotoxicology, Faculty of Biological SciencesGoethe UniversityFrankfurt am MainGermany
| | | | - Jens Amendt
- Goethe‐University Frankfurt, University Hospital, Institute of Legal MedicineFrankfurt am MainGermany
| |
Collapse
|
2
|
Stewart-Yates D, Maker GL, D’Errico S, Magni PA. Advances and Current Status in the Use of Cuticular Hydrocarbons for Forensic Entomology Applications. INSECTS 2025; 16:144. [PMID: 40003774 PMCID: PMC11855814 DOI: 10.3390/insects16020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
Cuticular hydrocarbons (CHCs) are long-chain lipids found on the exoskeletons of insects, serving primarily as a protective barrier against water loss and environmental factors. In the last few decades, the qualitative and quantitative analysis of CHCs, particularly in blow flies, has emerged as a valuable tool in forensic entomology, offering promising potential for species identification and age estimation of forensically important insects. This review examines the current application of CHC analysis in forensic investigations and highlights the significant advancements in the field over the past few years. Studies have demonstrated that CHC profiles vary with insect development, and while intra-species variability exists due to factors such as age, sex, geographical location, and environmental conditions, these variations can be harnessed to refine post-mortem interval (PMI) estimations and improve the accuracy of forensic entomological evidence. Notably, CHC analysis can also aid in distinguishing between multiple generations of insects on a body, providing insights into post-mortem body movement and aiding in the interpretation of PMI in complex cases. Furthermore, recent studies have investigated the variability and degradation of CHCs over time, revealing how environmental factors-such as temperature, humidity, UV light exposure, and toxicological substances-affect CHC composition, providing valuable insights for forensic investigations. Despite the promise of CHC profiling, several challenges remain, and this review also aims to highlight future research directions to enhance the reliability of this technique in forensic casework.
Collapse
Affiliation(s)
- David Stewart-Yates
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6150, Australia; (D.S.-Y.); (G.L.M.)
| | - Garth L. Maker
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6150, Australia; (D.S.-Y.); (G.L.M.)
| | - Stefano D’Errico
- Department of Medical Surgical and Health Sciences, University of Trieste, 24149 Trieste, Italy
| | - Paola A. Magni
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6150, Australia; (D.S.-Y.); (G.L.M.)
| |
Collapse
|
3
|
Jain S, Parrott JJ, Javan GT. Exploring the impact of xenobiotic drugs on forensic entomology for accurate post-mortem interval estimation. FRONTIERS IN INSECT SCIENCE 2025; 4:1411342. [PMID: 39935767 PMCID: PMC11810894 DOI: 10.3389/finsc.2024.1411342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 12/17/2024] [Indexed: 02/13/2025]
Abstract
Forensic entomotoxicology is an emerging field within forensic entomology that investigates the effects of chemicals, drugs, and toxins on insect development and their implications for postmortem interval (PMI) estimation. This systematic overview delves into the influence of drugs such as Morphine, heroin, Opiates, and cocaine on the variables affecting the use of forensically significant insects as evidence tools. Notably, it has been observed that the presence of drugs does not appear to alter the progression of the lifecycle from the first instar to the emergence of flies, indicating that PMI estimations based on fly emergence remain unaffected by drugs. However, larvae treated with drugs frequently show delayed pupation, suggesting the need for further research into the impact of different compounds on various insect species over more extended observation periods. Additionally, conflicting results have been noted regarding how toxins can influence the developmental process in larvae, underscoring the necessity to assess the effect of different classes of compounds on other insect species. The study also recommends exploring factors such as the samples' collection site and the drugs' pathological implications to inspire future research. Furthermore, the paper underscores the potential for varying drug effects across insect species, emphasizing the complexity of interpreting drug impacts on PMI estimations. This systematic review was conducted by the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines.
Collapse
Affiliation(s)
- Sapna Jain
- Department of Physical and Forensic Sciences, Alabama State University, Montgomery, AL, United States
| | - Jonathan J. Parrott
- School of Interdisciplinary Forensics, Arizona State University, Glendale, AZ, United States
| | - Gulnaz T. Javan
- Department of Physical and Forensic Sciences, Alabama State University, Montgomery, AL, United States
| |
Collapse
|
4
|
Zhang R, Gao Y, Hu G, Wang Y, Li L, Guo Y, Shao S, Liu S, Wang Y. Age estimation of Phormia regina pupae based on ATR-FTIR and chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125175. [PMID: 39306914 DOI: 10.1016/j.saa.2024.125175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 11/10/2024]
Abstract
Accurate postmortem interval estimation is vital in the investigation of homicides, suicides, and accidental deaths. It is key in narrowing suspect lists, improving crime-solving efficiency, and offering solace to bereaved families. The intra-puparial period, comprising about half of a fly's developmental cycle, presents challenges for morphological age estimation. External changes are limited to color shifts and the appearance of respiratory horns on the puparium only within several hours after pupariation, while detailed internal development analysis often requires invasive methods like removing the puparium, which can be damaging. Additionally, these techniques usually depend on a forensic entomologist's expertise, which lead to subjective biases. This study employed attenuated total reflection-fourier transform infrared spectroscopy, a rapid, non-destructive method for analyzing proteins, chitosan, and chitin in puparia. Data showed a consistent reduction in the concentration of the amide I band within the puparium during the intra-puparial development at five constant temperatures (19 °C, 22 °C, 25 °C, 28 °C and 31 °C). This trend in the spectral data effectively distinguishes pupae at various stages of intra-puparial development, facilitating precise age estimation, which is critical for the estimation of the minimum postmortem interval (PMImin). Finally, this work combined the total reflection-fourier transform infrared spectroscopy with chemometric analysis and successfully developed a partial least squares discriminant analysis model and a random forest model, with accuracies of 88 % and 81 %, respectively. These models enable the non-invasive age estimation of P. regina in its intra-puparial period, a stage traditionally difficult to assess morphologically, thus laying the groundwork for PMImin estimation using fly pupae.
Collapse
Affiliation(s)
- Ruonan Zhang
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou 215000, China
| | - Yundi Gao
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou 215000, China
| | - Gengwang Hu
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou 215000, China
| | - Yinghui Wang
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou 215000, China
| | - Liangliang Li
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou 215000, China
| | - Yi Guo
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou 215000, China
| | - Shipeng Shao
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou 215000, China
| | - Siqi Liu
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou 215000, China
| | - Yu Wang
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou 215000, China.
| |
Collapse
|
5
|
Qu H, Zhang X, Ye C, Ngando FJ, Shang Y, Yang F, Xiao J, Chen S, Guo Y. Combining spectrum and machine learning algorithms to predict the weathering time of empty puparia of Sarcophaga peregrine (Diptera: Sarcophagidae). Forensic Sci Int 2024; 361:112144. [PMID: 39018983 DOI: 10.1016/j.forsciint.2024.112144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024]
Abstract
The weathering time of empty puparia could be important in predicting the minimum postmortem interval (PMImin). As corpse decomposition progresses to the skeletal stage, empty puparia often remain the sole evidence of fly activity at the scene. In this study, we used empty puparia of Sarcophaga peregrina (Diptera: Sarcophagidae) collected at ten different time points between January 2019 and February 2023 as our samples. Initially, we used the scanning electron microscope (SEM) to observe the surface of the empty puparia, but it was challenging to identify significant markers to estimate weathering time. We then utilized attenuated total internal reflectance Fourier transform infrared spectroscopy (ATR-FTIR) to detect the puparia spectrogram. Absorption peaks were observed at 1064 cm-1, 1236 cm-1, 1381 cm-1, 1538 cm-1, 1636 cm-1, 2852 cm-1, 2920 cm-1. Three machine learning models were used to regress the spectral data after dimensionality reduction using principal component analysis (PCA). Among them, eXtreme Gradient Boosting regression (XGBR) showed the best performance in the wavenumber range of 1800-600 cm-1, with a mean absolute error (MAE) of 1.20. This study highlights the value of refining these techniques for forensic applications involving entomological specimens and underscores the considerable potential of combining FTIR and machine learning in forensic practice.
Collapse
Affiliation(s)
- Hongke Qu
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China; School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Chengxin Ye
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Fernand Jocelin Ngando
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Fengqin Yang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Jiao Xiao
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Sile Chen
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
6
|
Ferreira TN, Santos LMB, Valladares V, Flanley CM, McDowell MA, Garcia GA, Mello-Silva CC, Maciel-de-Freitas R, Genta FA. Age, sex, and mating status discrimination in the sand fly Lutzomyia longipalpis using near infra-red spectroscopy (NIRS). Parasit Vectors 2024; 17:19. [PMID: 38217054 PMCID: PMC10787389 DOI: 10.1186/s13071-023-06097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Understanding aspects related to the physiology and capacity of vectors is essential for effectively controlling vector-borne diseases. The sand fly Lutzomyia longipalpis has great importance in medical entomology for disseminating Leishmania parasites, the causative agent of Leishmaniasis, one of the main neglected diseases listed by the World Health Organization (WHO). In this respect, it is necessary to evaluate the transmission potential of this species and the success of vector control interventions. Near-infrared spectroscopy (NIRS) has been used to estimate the age of mosquitoes in different conditions (laboratory, semi-field, and conservation), taxonomic analysis, and infection detection. However, no studies are using NIRS for sand flies. METHODS In this study, we developed analytic models to estimate the age of L. longipalpis adults under laboratory conditions, identify their copulation state, and evaluate their gonotrophic cycle and diet. RESULTS Sand flies were classified with an accuracy of 58-82% in 3 age groups and 82-92% when separating them into young (<8 days) or old (>8 days) insects. The classification between mated and non-mated sandflies was 98-100% accurate, while the percentage of hits of females that had already passed the first gonotrophic cycle was only 59%. CONCLUSIONS We consider the age and copula estimation results very promising, as they provide essential aspects of vector capacity assessment, which can be obtained quickly and at a lower cost with NIRS.
Collapse
Affiliation(s)
- Tainá Neves Ferreira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Lilha M B Santos
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Vanessa Valladares
- Malacology Laboratory, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Catherine M Flanley
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Mary Ann McDowell
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Gabriela A Garcia
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | - Rafael Maciel-de-Freitas
- Laboratório de Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Fernando Ariel Genta
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Shao S, Yang L, Hu G, Li L, Wang Y, Tao L. Application of omics techniques in forensic entomology research. Acta Trop 2023; 246:106985. [PMID: 37473953 DOI: 10.1016/j.actatropica.2023.106985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
With the advent of the post-genome era, omics technologies have developed rapidly and are widely used, including in genomics, transcriptomics, proteomics, metabolomics, and microbiome research. These omics techniques are often based on comprehensive and systematic analysis of biological samples using high-throughput analysis methods and bioinformatics, to provide new insights into biological phenomena. Currently, omics techniques are gradually being applied to forensic entomology research and are useful in species identification, phylogenetics, screening for developmentally relevant differentially expressed genes, and the interpretation of behavioral characteristics of forensic-related species at the genetic level. These all provide valuable information for estimating the postmortem interval (PMI). This review mainly discusses the available omics techniques, summarizes the application of omics techniques in forensic entomology, and their future in the field.
Collapse
Affiliation(s)
- Shipeng Shao
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou, China
| | - Lijun Yang
- Criminal Police Branch, Suzhou Public Security Bureau, Renmin Road, Suzhou, China
| | - Gengwang Hu
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou, China
| | - Liangliang Li
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou, China
| | - Yu Wang
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou, China.
| | - Luyang Tao
- Department of Forensic Medicine, Soochow University, Ganjiang East Road, Suzhou, China
| |
Collapse
|