1
|
Li E, Qin J, Feng H, Li J, Li X, Nyamwasa I, Cao Y, Ruan W, Li K, Yin J. Immune-related genes of the larval Holotrichia parallela in response to entomopathogenic nematodes Heterorhabditis beicherriana LF. BMC Genomics 2021; 22:192. [PMID: 33731017 PMCID: PMC7967997 DOI: 10.1186/s12864-021-07506-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/04/2021] [Indexed: 12/02/2022] Open
Abstract
Background Entomopathogenic nematodes (EPNs) emerge as compatible alternatives to conventional insecticides in controlling Holotrichia parallela larvae (Coleoptera: Scarabaeidae). However, the immune responses of H. parallela against EPNs infection remain unclear. Results In present research, RNA-Seq was firstly performed. A total of 89,427 and 85,741 unigenes were achieved from the midgut of H. parallela larvae treated with Heterorhabditis beicherriana LF for 24 and 72 h, respectively; 2545 and 3156 unigenes were differentially regulated, respectively. Among those differentially expressed genes (DEGs), 74 were identified potentially related to the immune response. Notably, some immune-related genes, such as peptidoglycan recognition protein SC1 (PGRP-SC1), pro-phenoloxidase activating enzyme-I (PPAE-I) and glutathione s-transferase (GST), were induced at both treatment points. Bioinformatics analysis showed that PGRP-SC1, PPAE-I and GST were all involved in anti-parasitic immune process. Quantitative real-time PCR (qRT-PCR) results showed that the three immune-related genes were expressed in all developmental stages; PGRP-SC1 and PPAE-I had higher expressions in midgut and fat body, respectively, while GST exhibited high expression in both of them. Moreover, in vivo silencing of them resulted in increased susceptibility of H. parallela larvae to H. beicherriana LF. Conclusion These results suggest that H. parallela PGRP-SC1, PPAE-I and GST are involved in the immune responses to resist H. beicherriana LF infection. This study provides the first comprehensive transcriptome resource of H. parallela exposure to nematode challenge that will help to support further comparative studies on host-EPN interactions. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07506-4.
Collapse
Affiliation(s)
- Ertao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China
| | - Jianhui Qin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China
| | - Honglin Feng
- Boyce Thompson Institute for Plant Research, Cornell University, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Jinqiao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China
| | - Xiaofeng Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China
| | - Innocent Nyamwasa
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China
| | - Yazhong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China
| | - Weibin Ruan
- College of Life Sciences, Nankai University, Tianjin, 300071, P.R. China
| | - Kebin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China.
| | - Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
2
|
Brivio MF, Mastore M. When Appearance Misleads: The Role of the Entomopathogen Surface in the Relationship with Its Host. INSECTS 2020; 11:E387. [PMID: 32585858 PMCID: PMC7348879 DOI: 10.3390/insects11060387] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/14/2022]
Abstract
Currently, potentially harmful insects are controlled mainly by chemical synthetic insecticides, but environmental emergencies strongly require less invasive control techniques. The use of biological insecticides in the form of entomopathogenic organisms is undoubtedly a fundamental resource for the biological control of insect pests in the future. These infectious agents and endogenous parasites generally act by profoundly altering the host's physiology to death, but their success is closely related to the neutralization of the target insect's immune response. In general, entomopathogen parasites, entomopathogenic bacteria, and fungi can counteract immune processes through the effects of secretion/excretion products that interfere with and damage the cells and molecules typical of innate immunity. However, these effects are observed in the later stages of infection, whereas the risk of being recognized and neutralized occurs very early after penetration and involves the pathogen surface components and molecular architecture; therefore, their role becomes crucial, particularly in the earliest pathogenesis. In this review, we analyze the evasion/interference strategies that entomopathogens such as the bacterium Bacillus thuringiensis, fungi, nematocomplexes, and wasps implement in the initial stages of infection, i.e., the phases during which body or cell surfaces play a key role in the interaction with the host receptors responsible for the immunological discrimination between self and non-self. In this regard, these organisms demonstrate evasive abilities ascribed to their body surface and cell wall; it appears that the key process of these mechanisms is the capability to modify the surface, converting it into an immunocompatible structure, or interaction that is more or less specific to host factors.
Collapse
Affiliation(s)
- Maurizio Francesco Brivio
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy;
| | | |
Collapse
|
3
|
Kenney E, Hawdon JM, O'Halloran D, Eleftherianos I. Heterorhabditis bacteriophora Excreted-Secreted Products Enable Infection by Photorhabdus luminescens Through Suppression of the Imd Pathway. Front Immunol 2019; 10:2372. [PMID: 31636642 PMCID: PMC6787769 DOI: 10.3389/fimmu.2019.02372] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Upon entering the hemocoel of its insect host, the entomopathogenic nematode Heterorhabditis bacteriophora releases its symbiotic bacteria Photorhabdus luminescens, which is also a strong insect pathogen. P. luminescens is known to suppress the insect immune response independently following its release, but the nematode appears to enact its own immunosuppressive mechanisms during the earliest phases of an infection. H. bacteriophora was found to produce a unique set of excreted-secreted proteins in response to host hemolymph, and while basal secretions are immunogenic with regard to Diptericin expression through the Imd pathway, host-induced secretions suppress this expression to a level below that of controls in Drosophila melanogaster. This effect is consistent in adults, larvae, and isolated larval fat bodies, and the magnitude of suppression is dose-dependent. By reducing the expression of Diptericin, an antimicrobial peptide active against Gram-negative bacteria, the activated excreted-secreted products enable a more rapid propagation of P. luminescens that corresponds to more rapid host mortality. The identification and isolation of the specific proteins responsible for this suppression represents an exciting field of study with potential for enhancing the biocontrol of insect pests and treatment of diseases associated with excessive inflammation.
Collapse
Affiliation(s)
- Eric Kenney
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - John M Hawdon
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, United States
| | - Damien O'Halloran
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, DC, United States.,Institute for Neuroscience, Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
4
|
Mbata GN, Shapiro-Ilan DI, Alborn HT, Strand MR. Preferential infectivity of entomopathogenic nematodes in an envenomed host. Int J Parasitol 2019; 49:737-745. [PMID: 31306662 DOI: 10.1016/j.ijpara.2019.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 01/11/2023]
Abstract
Entomopathogenic nematodes and parasitoid wasps are used as biological control agents for management of insect pests such as the Indian meal moth, Plodia interpunctella. The parasitoid wasp Habrobracon hebetor injects a paralytic venom into P. interpunctella larvae before laying eggs. A previous study reported that the entomopathogenic nematode Heterorhabditis indica preferentially infects P. interpunctella that have been envenomed by H. hebetor while results in this study showed a similar preference by the entomopathogenic nematode, Steinernema glaseri. We therefore tested four hypotheses for why nematode infection rates are higher in envenomed hosts: (1) elevated CO2 emission from envenomed hosts attracts nematodes, (2) paralysis prevents hosts from escaping nematodes, (3) volatile chemicals emitted from envenomed hosts attract nematodes and increase infection, and (4) reduced immune defenses in envenomed hosts increase nematode survival. Results showed that envenomed P. interpunctella larvae emitted lower amounts of CO2 than non-envenomed larvae. Physical immobilization of P. interpunctella larvae did not increase infection rates by S. glaseri but did increase infection rates by H. indica. Emissions from envenomed hosts were collected and analyzed by thermal desorption gas chromatography/mass spectrometry. The most abundant compound, 3-methyl-3-buten-1-ol, was found to be an effective cue for S. glaseri attraction and infection but was not an effective stimulus for H. indica. Envenomed P. interpunctella exhibited a stronger immune response toward nematodes than non-envenomed hosts. Altogether, we conclude that different mechanisms underlie preferential infection in the two nematode species: host immobilization for H. indica and chemical cues for S. glaseri.
Collapse
Affiliation(s)
- George N Mbata
- Agricultural Research Station, Fort Valley State University, 1005 University Drive, Fort Valley, GA 31030, USA
| | - David I Shapiro-Ilan
- USDA, Agricultural Research Service, Southeastern Fruit and Tree Nut Research Laboratory, 21 Dunbar Road, Byron, GA 31008, USA.
| | - Hans T Alborn
- USDA-ARS Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL 32608, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Gómez A, Sáenz-Aponte A. Susceptibility variation to different entomopathogenic nematodes in Strategus aloeus L (Coleoptera: Scarabaeidae). SPRINGERPLUS 2015; 4:620. [PMID: 26543755 PMCID: PMC4628039 DOI: 10.1186/s40064-015-1412-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/07/2015] [Indexed: 11/22/2022]
Abstract
Strategus aloeus L (Coleoptera: Scarabaeidae), known as “Little bull” or oil palm “chiza” is a limiting pest in palm plantation in Cesar Colombia. Its management is based on pesticide use or old palm removal in renewal lots. Therefore, other alternatives are being sought out. Entomopathogenic nematodes isolated from the Colombian Andean region were evaluated. Under laboratory conditions S. aloeus third instar larvae exposure to 160 infective juveniles (IJs) per/cm2Steinernema sp3 JCL027, S. feltiae SCT125, S. websteri JCL006, S. colombiense SNI0198, Heterorhabditis bacteriophora HNI0100, H. bacteriophora HASA702, H. indica SL0708 (n = 20) was evaluated under a completely randomized design. The experiment was repeated three times on different dates. Significant differences were observed (F = 11.127, df = 7. 24, p = 0.0054), registering mortality between 3 and 14 days. Steinernema sp3 JCL027 was the strain producing the highest mortality rate (19.3 ± 8 %), followed by H. bacteriophora HNI0100 (5.2 ± 9 %). Thus, we evaluated Steinernema sp3 JCL0270 using a randomized design at 0, 160, 290, 420, 550, 680, 810 IJs/cm2 (n = 12). The experiment was repeated three times on different dates. Significant differences were found among treatments (44 ± 5 %, F = 14.676; df = 6. 21, p = 0.001), with 680 IJs/cm2 producing the highest mortality followed by 810 IJs/cm2 (22 ± 5 %). In conclusion, this alternative must be further explored in search of pesticide use and cost reduction, in addition to young palm loss in a plantation.
Collapse
Affiliation(s)
- A Gómez
- Laboratory for Biological Control, Plant Biology and Productive System Group, Department of Biology, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - A Sáenz-Aponte
- Laboratory for Biological Control, Plant Biology and Productive System Group, Department of Biology, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
6
|
Alvandi J, Karimi J, Dunphy G. Cellular reactions of the white grub larvae, Polyphylla adspersa, against entomopathogenic nematodes. NEMATOLOGY 2014. [DOI: 10.1163/15685411-00002828] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The haemocyte reactions of the white grub larvae Polyphylla adspersa to entomopathogenic nematodes (EPN), together with the host haemocyte types, have been studied. Six types of identified haemocytes included the prohaemocytes, granulocytes, plasmatocytes, oenocytoids, coagulocytes and spherulocytes. The granulocytes were the dominant (65.2%) haemocyte type followed by the plasmatocytes (22.1%). Both haemocyte types encapsulate EPN. White grub larvae and last larval stage of Galleria mellonella were individually infected with monoxenic Heterorhabditis bacteriophora or Steinernema glaseri. The maximum total haemocyte counts (THC) level of the white grub larvae against the nematode S. glaseri occurred at 12 h post-injection. In addition, by 8 h post-injection, the granulocyte and plasmatocyte levels decreased. The cell reactions of the grubs against H. bacteriophora in terms of THC and differential haemocyte counts and the encapsulation rate started earlier and were more pronounced than those against S. glaseri. The maximum percentage of the encapsulation observed in the white grub larvae against S. glaseri (27.3 ± 0.7%) and H. bacteriophora (36.5 ± 3.5%) occurred at 12 and 8 h post-injection, respectively. EPN-triggered encapsulation in P. adspersa larvae was more extensive than in G. mellonella larvae.
Collapse
Affiliation(s)
- Jamileh Alvandi
- Biocontrol and Insect Pathology Lab., Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Javad Karimi
- Biocontrol and Insect Pathology Lab., Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gary B. Dunphy
- Department of Natural Resource Sciences, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Quebec, Canada
| |
Collapse
|