1
|
Jinesh S, Özüpek B, Aditi P. Premature aging and metabolic diseases: the impact of telomere attrition. FRONTIERS IN AGING 2025; 6:1541127. [PMID: 40231186 PMCID: PMC11995884 DOI: 10.3389/fragi.2025.1541127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/03/2025] [Indexed: 04/16/2025]
Abstract
Driven by genetic and environmental factors, aging is a physiological process responsible for age-related degenerative changes in the body, cognitive decline, and impaired overall wellbeing. Notably, premature aging as well as the emergence of progeroid syndromes have posed concerns regarding chronic health conditions and comorbidities in the aging population. Accelerated telomere attrition is also implicated in metabolic dysfunction and the development of metabolic disorders. Impaired metabolic homeostasis arises secondary to age-related increases in the synthesis of free radicals, decreased oxidative capacity, impaired antioxidant defense, and disrupted energy metabolism. In particular, several cellular and molecular mechanisms of aging have been identified to decipher the influence of premature aging on metabolic diseases. These include defective DNA repair, telomere attrition, epigenetic alterations, and dysregulation of nutrient-sensing pathways. The role of telomere attrition premature aging in the pathogenesis of metabolic diseases has been largely attributed to pro-inflammatory states that promote telomere shortening, genetic mutations in the telomerase reverse transcriptase, epigenetic alteration, oxidative stress, and mitochondrial dysfunctions. Nonetheless, the therapeutic interventions focus on restoring the length of telomeres and may include treatment approaches to restore telomerase enzyme activity, promote alternative lengthening of telomeres, counter oxidative stress, and decrease the concentration of pro-inflammatory cytokines. Given the significance and robust potential of delaying telomere attrition in age-related metabolic diseases, this review aimed to explore the molecular and cellular mechanisms of aging underlying premature telomere attrition and metabolic diseases, assimilating evidence from both human and animal studies.
Collapse
Affiliation(s)
| | | | - Prerana Aditi
- Department of Medical Biochemistry, Faculty of Allied Health Sciences, Mahayogi Gorakhnath University, Gorakhpur, Uttar Pradesh, India
| |
Collapse
|
2
|
Chen Y, Li J, Liu X, Geng Z, Xu K, Su J. Advances in biomarkers and diagnostic significance of organ aging. FUNDAMENTAL RESEARCH 2025; 5:683-696. [PMID: 40242549 PMCID: PMC11997494 DOI: 10.1016/j.fmre.2023.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 04/18/2025] Open
Abstract
A complete understanding of aging is a critical first step in treating age-related diseases and postponing aging dysfunction in the context of an aging global population. Aging in organisms is driven by related molecular alterations that gradually occur in many organs. There has previously been a wealth of knowledge of how cells behave as they age, but when aging is investigated as a disease, the discovery and selection of aging biomarkers and how to diagnose the aging of the organism are crucial. Here, we provide a summary of the state of the field and suggest future potential routes for research on organ senescence markers. We reviewed research on biomarkers of risk of aging from the perspective of organ aging and summarized the biomarkers currently used on three scales. We emphasize that the combination of traditional markers with emerging multifaceted biomarkers may be a better way to diagnose age-related diseases.
Collapse
Affiliation(s)
- Yulin Chen
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
- School of Medicine, Shanghai University, Shanghai 200444, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jiadong Li
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
- School of Medicine, Shanghai University, Shanghai 200444, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xinru Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Sung JY, Kim SG, Park SY, Kim JR, Choi HC. Telomere stabilization by metformin mitigates the progression of atherosclerosis via the AMPK-dependent p-PGC-1α pathway. Exp Mol Med 2024; 56:1967-1979. [PMID: 39223261 PMCID: PMC11446938 DOI: 10.1038/s12276-024-01297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 09/04/2024] Open
Abstract
Telomere dysfunction is a well-known molecular trigger of senescence and has been associated with various age-related diseases, including atherosclerosis. However, the mechanisms involved have not yet been elucidated, and the extent to which telomeres contribute to atherosclerosis is unknown. Therefore, we investigated the mechanism of metformin-induced telomere stabilization and the ability of metformin to inhibit vascular smooth muscle cell (VSMC) senescence caused by advanced atherosclerosis. The present study revealed that metformin inhibited the phenotypes of atherosclerosis and senescence in VSMCs. Metformin increased the phosphorylation of AMPK-dependent PGC-1α and thus increased telomerase activity and the protein level of TERT in OA-treated VSMCs. Mechanistically, the phosphorylation of AMPK and PGC-1α by metformin not only enhanced telomere function but also increased the protein level of TERT, whereas TERT knockdown accelerated the development of atherosclerosis and senescent phenotypes in OA-treated VSMCs regardless of metformin treatment. Furthermore, the in vivo results showed that metformin attenuated the formation of atherosclerotic plaque markers in the aortas of HFD-fed ApoE KO mice. Although metformin did not reduce plaque size, it inhibited the phosphorylation of the AMPK/PGC-1α/TERT signaling cascade, which is associated with the maintenance and progression of plaque formation, in HFD-fed ApoE KO mice. Accordingly, metformin inhibited atherosclerosis-associated phenotypes in vitro and in vivo. These observations show that the enhancement of telomere function by metformin is involved in specific signaling pathways during the progression of atherosclerosis. These findings suggest that telomere stabilization by metformin via the AMPK/p-PGC-1α pathway might provide a strategy for developing therapeutics against vascular diseases such as atherosclerosis.
Collapse
MESH Headings
- Animals
- Male
- Mice
- AMP-Activated Protein Kinases/metabolism
- Atherosclerosis/metabolism
- Atherosclerosis/drug therapy
- Atherosclerosis/pathology
- Atherosclerosis/etiology
- Cellular Senescence/drug effects
- Disease Models, Animal
- Disease Progression
- Metformin/pharmacology
- Metformin/therapeutic use
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
- Phosphorylation/drug effects
- Signal Transduction/drug effects
- Telomerase/metabolism
- Telomerase/genetics
- Telomere/metabolism
- Telomere/drug effects
- Telomere Homeostasis/drug effects
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Jin Young Sung
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu, 42415, Republic of Korea
- Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu, 42415, Republic of Korea
| | - Seul Gi Kim
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu, 42415, Republic of Korea
- Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu, 42415, Republic of Korea
| | - So-Young Park
- Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu, 42415, Republic of Korea
- Department of Physiology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu, 42415, Republic of Korea
| | - Jae-Ryong Kim
- Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu, 42415, Republic of Korea
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu, 42415, Republic of Korea
| | - Hyoung Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu, 42415, Republic of Korea.
- Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu, 42415, Republic of Korea.
| |
Collapse
|
4
|
Khalatyan AS, Shishparenok AN, Avetisov KS, Gladilina YA, Blinova VG, Zhdanov DD. Association of Telomere Length in T Lymphocytes, B Lymphocytes, NK Cells and Monocytes with Different Forms of Age-Related Macular Degeneration. Biomedicines 2024; 12:1893. [PMID: 39200358 PMCID: PMC11351114 DOI: 10.3390/biomedicines12081893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND Age plays a primary role in the development of age-related macular degeneration (AMD). Telomere length (TL) is one of the most relevant biomarkers of aging. In our study, we aimed to determine the association of TL with T lymphocytes, B lymphocytes, NK cells or monocytes with different forms of AMD. METHODS Our study included 62 patients with AMD: geographic atrophy (GA), neovascular AMD (NVAMD) with and without macular atrophy and 22 healthy controls. Each leukocyte subtype was isolated from peripheral blood by immunomagnetic separation, and the DNA was purified. The TL in the genomic DNA was determined using qPCR by amplifying the telomere region with specific oligonucleotide primers and normalizing to the control gene. Statistical analysis was performed using R version 4.5.1. RESULTS We observed a statistically significant increase in TL in the T cells between the control and NVAMD groups but not for the GA group. The B cells and monocytes showed a significant decrease in TL in all AMD groups. The TL in the NK cells did not decrease in any of the AMD groups. CONCLUSIONS The TL in the monocytes had the strongest association with AMD. It reflects a person's "telomeric status" and may become a diagnostic hallmark of these degenerative processes.
Collapse
Affiliation(s)
- Anait S. Khalatyan
- Krasnov Research Institute of Eye Diseases, 11A, B, Rossolimo Str., Moscow 119021, Russia;
| | - Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., Moscow 119121, Russia; (A.N.S.); (Y.A.G.); (V.G.B.); (D.D.Z.)
| | - Konstantin S. Avetisov
- Krasnov Research Institute of Eye Diseases, 11A, B, Rossolimo Str., Moscow 119021, Russia;
| | - Yulia A. Gladilina
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., Moscow 119121, Russia; (A.N.S.); (Y.A.G.); (V.G.B.); (D.D.Z.)
| | - Varvara G. Blinova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., Moscow 119121, Russia; (A.N.S.); (Y.A.G.); (V.G.B.); (D.D.Z.)
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., Moscow 119121, Russia; (A.N.S.); (Y.A.G.); (V.G.B.); (D.D.Z.)
| |
Collapse
|
5
|
Machiraju P, Srinivas R, Kannan R, George R, Heymans S, Mukhopadhyay R, Ghosh A. Paired Transcriptomic Analyses of Atheromatous and Control Vessels Reveal Novel Autophagy and Immunoregulatory Genes in Peripheral Artery Disease. Cells 2024; 13:1269. [PMID: 39120300 PMCID: PMC11312159 DOI: 10.3390/cells13151269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Peripheral artery disease (PAD), a significant health burden worldwide, affects lower extremities due to atherosclerosis in peripheral vessels. Although the mechanisms of PAD have been well studied, the molecular milieu of the plaques localized within peripheral arteries are not well understood. Thus, to identify PAD-lesion-specific gene expression profiles precluding genetic, environmental, and dietary biases, we studied the transcriptomic profile of nine plaque tissues normalized to non-plaque tissues from the same donors. A total of 296 upregulated genes, 274 downregulated genes, and 186 non-coding RNAs were identified. STAG1, SPCC3, FOXQ1, and E2F3 were key downregulated genes, and CD93 was the top upregulated gene. Autophagosome assembly, cellular response to UV, cytoskeletal organization, TCR signaling, and phosphatase activity were the key dysregulated pathways identified. Telomerase regulation and autophagy were identified as novel interacting pathways using network analysis. The plaque tissue was predominantly composed of immune cells and dedifferentiated cell populations indicated by cell-specific marker-imputed gene expression analysis. This study identifies novel genes, non-coding RNAs, associated regulatory pathways, and the cell composition of the plaque tissue in PAD patients. The autophagy and immunoregulatory genes may drive novel mechanisms, resulting in atheroma. These novel interacting networks and genes have potential for PAD-specific therapeutic applications.
Collapse
Affiliation(s)
- Praveen Machiraju
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, India; (P.M.); (R.K.)
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Rajesh Srinivas
- Department of Vascular and Endovascular Surgery, Narayana Health, Bangalore 560099, India; (R.S.); (R.G.)
| | - Ramaraj Kannan
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, India; (P.M.); (R.K.)
| | - Robbie George
- Department of Vascular and Endovascular Surgery, Narayana Health, Bangalore 560099, India; (R.S.); (R.G.)
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, bus911, 3000 Leuven, Belgium
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, India; (P.M.); (R.K.)
| |
Collapse
|
6
|
Wu Y, Jiang D, Liu Q, Yan S, Liu X, Wu T, Sun W, Li G. Cathepsin L induces cellular senescence by upregulating CUX1 and p16 INK4a. Aging (Albany NY) 2024; 16:10749-10764. [PMID: 38944813 PMCID: PMC11272106 DOI: 10.18632/aging.205955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/18/2024] [Indexed: 07/01/2024]
Abstract
Cathepsin L (CTSL) has been implicated in aging and age-related diseases, such as cardiovascular diseases, specifically atherosclerosis. However, the underlying mechanism(s) is not well documented. Recently, we demonstrated a role of CUT-like homeobox 1 (CUX1) in regulating the p16INK4a-dependent cellular senescence in human endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) via its binding to an atherosclerosis-associated functional SNP (fSNP) rs1537371 on the CDKN2A/B locus. In this study, to determine if CTSL, which was reported to proteolytically activate CUX1, regulates cellular senescence via CUX1, we measured the expression of CTSL, together with CUX1 and p16INK4a, in human ECs and VSMCs undergoing senescence. We discovered that CUX1 is not a substrate that is cleaved by CTSL. Instead, CTSL is an upstream regulator that activates CUX1 transcription indirectly in a process that requires the proteolytic activity of CTSL. Our findings suggest that there is a transcription factor in between CTSL and CUX1, and cleavage of this factor by CTSL can activate CUX1 transcription, inducing endothelial senescence. Thus, our findings provide new insights into the signal transduction pathway that leads to atherosclerosis-associated cellular senescence.
Collapse
Affiliation(s)
- Yuwei Wu
- Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha, China
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Danli Jiang
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
- International Center for Aging and Cancer Hainan Medical University, Hainan, China
| | - Qing Liu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Shaoyang Yan
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Tsinghua Medicine, Tsinghua University, Peking, China
| | - Xiuzhen Liu
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ting Wu
- Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha, China
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Wei Sun
- Department of Medicine, Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Gang Li
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Medicine, Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
7
|
Hassler EM, Almer G, Reishofer G, Deutschmann H, Mangge H, Herrmann M, Leber SL, Gunzer F, Langsenlehner T, Renner W. A sex-specific association of leukocyte telomere length with thigh muscle mass. Clin Chem Lab Med 2024; 62:150-156. [PMID: 37725415 DOI: 10.1515/cclm-2023-0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVES Telomeres are DNA-protein complexes at the ends of linear chromosomes that protect against DNA degradation. Telomeres shorten during normal cell divisions and therefore, telomere length is an indicator of mitotic-cell age. In humans, telomere shortening is a potential biomarker for disease risk, progression and premature death. Physical activity has been associated with longer leukocyte telomere length (LTL) in some studies. In the current study the relationship between LTL, thigh muscle mass and adipose tissue distribution was explored. METHODS We performed anthropometric measurements and magnetic resonance imaging (MRI) measurements of the thigh in 149 healthy subjects (77 male, 72 female). LTL was measured using qPCR. Additionally, the subjects answered a questionnaire concerning their training behaviour. RESULTS In male subjects, LTL was significantly associated with thigh muscle mass, independent of age and body mass index (p=0.006). In addition, a slight association of LTL with weekly endurance units in the male group was found. These relations could not be observed in females. CONCLUSIONS In conclusion, we observed a sex-specific association of LTL and thigh muscle mass in healthy males. The reason of this sex-specific association is currently unclear, but could be related to different training effects and/or hormonal pathways in men and women.
Collapse
Affiliation(s)
- Eva Maria Hassler
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Gunter Almer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Gernot Reishofer
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
- Department of Radiology, Medical University of Graz, Graz, Austria
| | - Hannes Deutschmann
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
- BiotechMed Graz, Graz, Austria
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Stefan L Leber
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Felix Gunzer
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Tanja Langsenlehner
- Department of Therapeutic Radiology and Oncology, Medical University of Graz, Graz, Austria
| | - Wilfried Renner
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
8
|
Silva P, Rodríguez-Pérez M, Burgos-Ramos E. Zebrafish Model Insights into Mediterranean Diet Liquids: Olive Oil and Wine. Antioxidants (Basel) 2023; 12:1843. [PMID: 37891921 PMCID: PMC10604723 DOI: 10.3390/antiox12101843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In this review, we explored the potential of a zebrafish model to investigate the antioxidant effects of key components of the Mediterranean diet, namely, olive oil and wine, in the context of preventing age-related diseases, particularly cardiovascular conditions. This paper explores the spectrum of observational studies to preclinical investigations and ultimately converges toward potential translational insights derived from animal experimentation. This review highlights the potential and underutilization of zebrafish as an experimental model in this domain. We highlighted the genetic proximity of zebrafish to humans, offering a unique opportunity for translational insights into the health benefits of olive oil and wine. Indeed, we wanted to focus on the potential of zebrafish to elucidate the health benefits of olive oil and wine while calling for continued exploration to unlock its full potential to advance our knowledge of age-related disease prevention within the Mediterranean diet framework.
Collapse
Affiliation(s)
- Paula Silva
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- iNOVA Media Lab, ICNOVA-NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061 Lisbon, Portugal
| | - María Rodríguez-Pérez
- Biochemistry Area, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenue Carlos III s/n, 45071 Toledo, Spain;
| | - Emma Burgos-Ramos
- Biochemistry Area, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenue Carlos III s/n, 45071 Toledo, Spain;
| |
Collapse
|
9
|
Borghini A, Mercuri A, Campolo J, Parolini M, Ndreu R, Turchi S, Andreassi MG. Influence of Chromosome 9p21.3 rs1333049 Variant on Telomere Length and Their Interactive Impact on the Prognosis of Coronary Artery Disease. J Cardiovasc Dev Dis 2023; 10:387. [PMID: 37754816 PMCID: PMC10531536 DOI: 10.3390/jcdd10090387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Both telomere shortening and the chromosome 9p21.3 (Chr9p21) rs1333049 (G/C) variant are involved in coronary artery disease (CAD) risk, likely affecting mechanisms related to cell cycle arrest and vascular senescence. The aim of the study was to examine the link between Chr9p21 rs1333049 variant and leucocyte telomere length (LTL), as well as their interactive effect on the risk of major adverse cardiovascular events (MACEs). METHODS A cohort of 472 patients with angiographically proven and clinically stable CAD were included in the study. At baseline, the LTL, biochemical parameters, and genotype analysis of Chr9p21 rs1333049 variant were measured in all patients. The primary endpoint of this study was the occurrence of MACE defined as a composite of coronary-related death, nonfatal MI, and coronary revascularization. RESULTS On multivariable linear regression analysis, age (p = 0.02) and Chr9p21 rs1333049 variant (p = 0.002) were the only independent predictors of LTL levels. Carriers of the CC genotype of this SNP had shorter telomeres than GC carriers (p = 0.02) and GG carriers (p = 0.0005). After a follow-up with a mean period of 62 ± 19 months, 90 patients (19.1%) had MACE. Short LTL was an independent prognostic factor of MACE incidence (HR:2.2; 95% CI: 1.3-3.7; p = 0.005) after adjustment for potential confounders. There was a significant interaction (p = 0.01) between the LTL and rs1333049 variant, with patients with risk-allele C and short LTL having a higher risk (HR:5.8; 95% CI: 1.8-19.2; p = 0.004). CONCLUSION A strong relationship between LTL and Chr9p21 rs1333049 variant was identified, and they interactively affect the risk of poor prognosis in CAD patients.
Collapse
Affiliation(s)
- Andrea Borghini
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (A.M.); (R.N.); (S.T.); (M.G.A.)
| | - Antonella Mercuri
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (A.M.); (R.N.); (S.T.); (M.G.A.)
| | - Jonica Campolo
- CNR Institute of Clinical Physiology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (J.C.); (M.P.)
| | - Marina Parolini
- CNR Institute of Clinical Physiology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (J.C.); (M.P.)
| | - Rudina Ndreu
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (A.M.); (R.N.); (S.T.); (M.G.A.)
| | - Stefano Turchi
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (A.M.); (R.N.); (S.T.); (M.G.A.)
| | - Maria Grazia Andreassi
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (A.M.); (R.N.); (S.T.); (M.G.A.)
| |
Collapse
|
10
|
Novau-Ferré N, Rojas M, Gutierrez-Tordera L, Arcelin P, Folch J, Papandreou C, Bulló M. Lipoprotein Particle Profiles Associated with Telomere Length and Telomerase Complex Components. Nutrients 2023; 15:nu15112624. [PMID: 37299586 DOI: 10.3390/nu15112624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Telomere length (TL) is a well-known marker of age-related diseases. Oxidative stress and inflammation increase the rate of telomere shortening, triggering cellular senescence. Although lipoproteins could have anti-inflammatory and proinflammatory functional properties, the relationship between lipoprotein particles with TL and telomerase activity-related genes has not been investigated much. In this study, we assessed the associations of lipoprotein subfractions with telomere length, TERT, and WRAP53 expression in a total of 54 pre-diabetic subjects from the EPIRDEM study. We regressed TL, TERT, and WRAP53 on 12 lipoprotein subclasses, employing a Gaussian linear regression method with Lasso penalty to determine a lipoprotein profile associated with telomere-related parameters. The covariates included age, sex, body mass index (BMI), dyslipidemia, statin consumption, and physical activity leisure time. We identified a lipoprotein profile composed of four lipoprotein subfractions associated with TL (Pearson r = 0.347, p-value = 0.010), two lipoprotein subfractions associated with TERT expression (Pearson r = 0.316, p-value = 0.020), and five lipoprotein subfractions associated with WRAP53 expression (Pearson r = 0.379, p-value =0.005). After adjusting for known confounding factors, most lipoprotein profiles maintained the association with TL, TERT, and WRAP53. Overall, medium and small-sized HDL particles were associated with shorter telomeres and lower expression of TERT and WRAP53. Large HDL particles were associated with longer telomere and lower expression of WRAP53, but not with TERT. Our results suggest that the lipoprotein profiles are associated with telomere length, TERT, and WRAP53 expression and should be considered when assessing the risk of chronic diseases.
Collapse
Affiliation(s)
- Nil Novau-Ferré
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology(TecnATox), Rovira i Virgili University, 43201 Reus, Spain
| | - Melina Rojas
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology(TecnATox), Rovira i Virgili University, 43201 Reus, Spain
| | - Laia Gutierrez-Tordera
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology(TecnATox), Rovira i Virgili University, 43201 Reus, Spain
| | - Pierre Arcelin
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Atención Básica de Salud (ABS) Reus V. Centro de Atención Primaria Marià Fortuny, SAGESSA, 43204 Reus, Spain
| | - Jaume Folch
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology(TecnATox), Rovira i Virgili University, 43201 Reus, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, 28031 Madrid, Spain
| | - Christopher Papandreou
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology(TecnATox), Rovira i Virgili University, 43201 Reus, Spain
- Department of Nutrition and Dietetics Sciences, School of Health Sciences, Hellenic Mediterranean University (HMU), 72300 Siteia, Greece
| | - Mònica Bulló
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology(TecnATox), Rovira i Virgili University, 43201 Reus, Spain
- Atención Básica de Salud (ABS) Reus V. Centro de Atención Primaria Marià Fortuny, SAGESSA, 43204 Reus, Spain
- CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
11
|
Campisi M, Mastrangelo G, Mielżyńska-Švach D, Hoxha M, Bollati V, Baccarelli AA, Carta A, Porru S, Pavanello S. The effect of high polycyclic aromatic hydrocarbon exposure on biological aging indicators. Environ Health 2023; 22:27. [PMID: 36927494 PMCID: PMC10022060 DOI: 10.1186/s12940-023-00975-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Aging represents a serious health and socioeconomic concern for our society. However, not all people age in the same way and air pollution has been shown to largely impact this process. We explored whether polycyclic aromatic hydrocarbons (PAHs), excellent fossil and wood burning tracers, accelerate biological aging detected by lymphocytes DNA methylation age (DNAmAge) and telomere length (TL), early nuclear DNA (nDNA) hallmarks of non-mitotic and mitotic cellular aging, and mitochondrial DNA copy number (mtDNAcn). METHODS The study population consisted of 49 male noncurrent-smoking coke-oven workers and 44 matched controls. Occupational and environmental sources of PAH exposures were evaluated by structured questionnaire and internal dose (urinary 1-pyrenol). We estimated Occup_PAHs, the product of 1-pyrenol and years of employment as coke-oven workers, and Environ_PAHs, from multiple items (diet, indoor and outdoor). Biological aging was determined by DNAmAge, via pyrosequencing, and by TL and mtDNAcn, via quantitative polymerase chain reaction. Genomic instability markers in lymphocytes as target dose [anti-benzo[a]pyrene diolepoxide (anti-BPDE)-DNA adduct], genetic instability (micronuclei), gene-specific (p53, IL6 and HIC1) and global (Alu and LINE-1 repeats) DNA methylation, and genetic polymorphisms (GSTM1) were also evaluated in the latent variable nDNA_changes. Structural equation modelling (SEM) analysis evaluated these multifaceted relationships. RESULTS In univariate analysis, biological aging was higher in coke-oven workers than controls as detected by higher percentage of subjects with biological age older than chronological age (AgeAcc ≥ 0, p = 0.007) and TL (p = 0.038), mtDNAcn was instead similar. Genomic instability, i.e., genotoxic and epigenetic alterations (LINE-1, p53 and Alu) and latent variable nDNA_changes were higher in workers (p < 0.001). In SEM analysis, DNAmAge and TL were positively correlated with Occup_PAHs (p < 0.0001). Instead, mtDNAcn is positively correlated with the latent variable nDNA_changes (p < 0.0001) which is in turn triggered by Occup_PAHs and Environ_PAHs. CONCLUSIONS Occupational PAHs exposure influences DNAmAge and TL, suggesting that PAHs target both non-mitotic and mitotic mechanisms and made coke-oven workers biologically older. Also, differences in mtDNAcn, which is modified through nDNA alterations, triggered by environmental and occupational PAH exposure, suggested a nuclear-mitochondrial core-axis of aging. By decreasing this risky gerontogenic exposure, biological aging and the consequent age-related diseases could be prevented.
Collapse
Affiliation(s)
- Manuela Campisi
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Giuseppe Mastrangelo
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | | | - Mirjam Hoxha
- Epidemiology, Epigenetics and Toxicology Lab, Dipartimento Di Scienze Cliniche E Di Comunità, Università Degli Studi Di Milano, Milan, Italia
| | - Valentina Bollati
- Epidemiology, Epigenetics and Toxicology Lab, Dipartimento Di Scienze Cliniche E Di Comunità, Università Degli Studi Di Milano, Milan, Italia
- UO Epidemiologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italia
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Angela Carta
- Department of Diagnostics and Public Health, University of Verona and Clinical Unit of Occupational Medicine, University Hospital of Verona, 37134, Verona, Italy
| | - Stefano Porru
- Department of Diagnostics and Public Health, University of Verona and Clinical Unit of Occupational Medicine, University Hospital of Verona, 37134, Verona, Italy
| | - Sofia Pavanello
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy.
- Padua Hospital, Occupational Medicine Unit, Padua, Italy.
- University Center for Space Studies and Activities "Giuseppe Colombo" - CISAS. University of Padua, Padua, Italy.
| |
Collapse
|
12
|
Niveta JPS, Kumar MA, Parvathi VD. Telomere attrition and inflammation: the chicken and the egg story. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00335-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AbstractThe challenge to improve human life span has progressed with the advent of health care services and technologies. This improvement poses a new challenge of an associated wave of diseases and pathologies that have not been observed or experienced. This has led to rise in geriatric population who are currently facing health challenges that needs to be addressed by the research community. This review focuses primarily on two mechanisms that have contributed to aging and associated pathologies: telomere attrition and inflammatory insults. A strong interplay appears to exist between telomere attrition and inflammation, and this could be the basis of many pathologies associated with increasing age. This creates a scientific dilemma as to what comes first: telomere attrition or inflammation. This review will enthuse the reader to the underlying molecules and mechanisms associated with telomere attrition and inflammation and their contribution to aging.
Collapse
|
13
|
Abstract
Telomeres are non-coding nucleoprotein structures consisting of a highly conserved tandem repeat DNA sequence that caps the ends of chromosomes in eukaryotes. Telomeres confer chromosomal stability, protect the genome from nucleolytic degradation, avoid aberrant recombination and improper repair, and prevent random fusion of chromosomes. The end-replication problem results in telomere shortening with every cell division, eventually leading to cellular senescence and aging. Telomere length (TL) is thereby an ideal candidate for "biological aging." Telomeres possess guanine-rich repeats, which are highly susceptible to oxidative stress. Epidemiological studies have indicated the association of telomere attrition with mortality and various age-related diseases. Micronutrients comprising vitamins and minerals act as potential modulators of stress and can influence TL. Research has indicated that vitamin B12 (B12) regulates oxidative stress and maintains genomic stability, thereby influencing telomere integrity and cellular aging. The deficiency of B12 leads to elevated levels of homocysteine, which reduces the methylation potential and increases oxidative stress, thereby compromising the TL. Telomere shortening and mitochondrial dysfunction are independently linked to aging. However, they are connected through telomerase reverse transcriptase activity, which regulates mitochondrial biogenesis. Further, experimental evidence indicated the positive association of B12 with relative TL and mitochondrial DNA copy number, an indirect index of mitochondrial biogenesis. The present chapter provides some insights into the role of B12 in influencing TL. Exploring their association might open new avenues to understand the pathophysiology of aging and age-related diseases.
Collapse
|
14
|
Ito T, Saeki H, Guo X, Sysa-Shah P, Tamashiro KL, Lee RS, Ishiyama S, Orita H, Sato K, Brock MV, Gabrielson KL. Prenatal stress enhances atherosclerosis and telomere shortening in ApoE knockout mouse offspring. Am J Physiol Regul Integr Comp Physiol 2022; 323:R68-R80. [PMID: 35411811 DOI: 10.1152/ajpregu.00201.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Children born to women who experience stress during pregnancy have an increased risk of atherosclerosis in later life, but few animal models have explored mechanisms. To study this phenomena, timed-bred ApoE knockout mice were determined pregnant with ultrasound and randomly assigned on gestation day 8.5 to either a control (no stress) or prenatal stress (PS) group using two hours of restraint for five consecutive days. PS significantly increased plasma corticosterone levels in pregnant mice. The litters from PS mice showed increased neonatal mortality within the first week of life. Body weights (at euthanasia) of adult offspring at 25 weeks from the PS group were significantly increased compared to weights of controls. Adult offspring from these pregnancies were serially imaged with ultrasound to measure plaque thickness and were compared with plaque macro- and microscopic pathology. PS groups had increased plaques thickness by ultrasound, gross, histological evaluation and increased aortic root and valve macrophage infiltration at 25 weeks. Five-week old mice from PS group had significant decrease in mean arterial pressure, yet blood pressure normalized by 10 weeks. Since prenatal stress induced increased atherosclerosis, and telomeres are susceptible to stress, aortas from 10 week old mice were compared for telomere lengths and were found to be significantly shorter in PS mice compared to control mice. These studies support future investigation of how stress impacts telomere shortening in animal models and human aortas. This model could be further utilized to investigate the role of prenatal stress, telomere biology and atherosclerosis pathogenesis in adults.
Collapse
Affiliation(s)
- Tomoaki Ito
- Sidney Kimmel Cancer Center. Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Shizuoka, Japan, United States
| | - Harumi Saeki
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan, United States
| | - Xin Guo
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Polina Sysa-Shah
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kellie L Tamashiro
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Richard S Lee
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Shun Ishiyama
- Sidney Kimmel Cancer Center. Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Coloproctological Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Hajime Orita
- Department of Gastroenterology and Minimally Invasive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Koichi Sato
- Department of Surgery, Juntendo University Shizuoka Hospital, Juntendo University School of Medicine, Shizuoka, Japan, United States
| | - Malcolm V Brock
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Sidney Kimmel Cancer Center, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Kathleen L Gabrielson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Sidney Kimmel Cancer Center, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
15
|
The Controversial Role of HCY and Vitamin B Deficiency in Cardiovascular Diseases. Nutrients 2022; 14:nu14071412. [PMID: 35406025 PMCID: PMC9003430 DOI: 10.3390/nu14071412] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Plasma homocysteine (HCY) is an established risk factor for cardiovascular disease CVD and stroke. However, more than two decades of intensive research activities has failed to demonstrate that Hcy lowering through B-vitamin supplementation results in a reduction in CVD risk. Therefore, doubts about a causal involvement of hyperhomocysteinemia (HHcy) and B-vitamin deficiencies in atherosclerosis persist. Existing evidence indicates that HHcy increases oxidative stress, causes endoplasmatic reticulum (ER) stress, alters DNA methylation and, thus, modulates the expression of numerous pathogenic and protective genes. Moreover, Hcy can bind directly to proteins, which can change protein function and impact the intracellular redox state. As most mechanistic evidence is derived from experimental studies with rather artificial settings, the relevance of these results in humans remains a matter of debate. Recently, it has also been proposed that HHcy and B-vitamin deficiencies may promote CVD through accelerated telomere shortening and telomere dysfunction. This review provides a critical overview of the existing literature regarding the role of HHcy and B-vitamin deficiencies in CVD. At present, the CVD risk associated with HHcy and B vitamins is not effectively actionable. Therefore, routine screening for HHcy in CVD patients is of limited value. However, B-vitamin depletion is rather common among the elderly, and in such cases existing deficiencies should be corrected. While Hcy-lowering with high doses of B vitamins has no beneficial effects in secondary CVD prevention, the role of Hcy in primary disease prevention is insufficiently studied. Therefore, more intervention and experimental studies are needed to address existing gaps in knowledge.
Collapse
|
16
|
Al-Thuwaini TM. Association of antidiabetic therapy with shortened telomere length in middle-aged Type 2 diabetic patients. J Diabetes Metab Disord 2021; 20:1161-1168. [PMID: 34900769 DOI: 10.1007/s40200-021-00835-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/13/2021] [Indexed: 11/26/2022]
Abstract
Introduction A wide range of antidiabetic therapies have been developed to manage diabetes and limit its lifespan but each of them have adverse long-term drug reactions. This study was performed for the investigation of the possible association of antidiabetic therapy with shortened telomere length in middle-aged Type 2 diabetic patients. Materials and methods The subjects in this case-control study included 100 non-diabetic patients and 300 patients with Type 2 diabetes with ages in the range of 30-50 years. The treated patients were further subdivided into diabetic patients using Doanil, those using insulin and those using both the therapies. The mean telomere length was determined using the southern-blotting technique. A logistic regression analysis was performed to predict the relationship between antidiabetic therapy and shortened telomere length. Results The results revealed a significant increase (P < 0.01) in the fasting blood glucose and lipid profile in non-treatment diabetic patients compared to diabetic patients with treatment, and also in diabetic patients with insulin therapy, compared to diabetic patients with Doanil or both therapies. The results showed that non-treatment diabetic patients had shorter telomere length, compared to the diabetic patients with treatment, and patients treated with insulin therapy had shorter telomere length, compared to the diabetic patients with Doanil or both therapies. The logistic regression analysis confirmed that insulin therapy was closely related to diabetic risk factors and shortened telomere length. Conclusions The results revealed that Doanil therapy was more effective in managing diabetic risk and limiting the shortening telomere length than insulin therapy.
Collapse
|
17
|
Teixeira MZ. Telomere and Telomerase: Biological Markers of Organic Vital Force State and Homeopathic Treatment Effectiveness. HOMEOPATHY 2021; 110:283-291. [PMID: 34000743 PMCID: PMC8575553 DOI: 10.1055/s-0041-1726008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/03/2020] [Indexed: 10/28/2022]
Abstract
BACKGROUND Philosophical-scientific correlations described in previous studies suggest that the genome can be the biological representation of the vital force, whilst the disease-promoting epigenetic alterations would be the biological representation of the chronic miasmas. In this study, we expand the functional correlation between vital force and chromosomes, describing the mechanism of action of the telomere-telomerase complex in the context of physiological balance. AIMS The aim of the work is to study the role of the telomere-telomerase complex in cell vitality, biological aging, and the health-disease process, with the goal of proposing the use of telomere length as a biomarker of the vital force state and the effectiveness of homeopathic treatment. RESULTS Similar to the vital force, telomere length and telomerase enzyme activity play an important role in maintaining cellular vitality, biological longevity, and physiological homeostasis. Telomere shortening functions as a biomarker of vital imbalance and is associated with numerous diseases and health disorders. On the other hand, health-promotion practices neutralize the pathological shortening of the telomeres, acting therapeutically in diseases or age-dependent health disorders. CONCLUSIONS As a hypothetical biomarker of the vital force state, an intra-individual analysis of the mean leukocyte telomere length before, during, and after homeopathic treatment can be used as a biomarker of therapeutic effectiveness.
Collapse
|
18
|
Mitochondrial Dysfunction Contributes to Aging-Related Atrial Fibrillation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5530293. [PMID: 34007402 PMCID: PMC8102104 DOI: 10.1155/2021/5530293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022]
Abstract
The incidence of atrial fibrillation (AF) increases with age, and telomere length gradually shortens with age. However, whether telomere length is related to AF is still inconclusive, and the exact mechanism by which aging causes the increased incidence of AF is still unclear. We hypothesize that telomere length is correlated with aging-related AF and that mitochondrial dysfunction plays a role in this. This research recruited 96 elderly male patients with AF who were admitted to the Second Medical Center of Chinese PLA General Hospital from April to October 2018. After matching by age and gender, 96 non-AF elderly male patients who were admitted to the hospital for physical examination during the same period were selected as controls. Anthropometric, clinical, and laboratory analyses were performed on all subjects. The mitochondrial membrane potential (MMP) of peripheral blood leukocytes was detected as the indicator of mitochondrial function. Compared with the control group, the leukocyte telomere length (LTL) was significantly shorter (P < 0.001), and the level of PGC-1α in serum was significantly lower in AF patients. Additionally, in subjects without any other diseases, the AF patients had lower MMP when compared with the control. Multivariate logistic regression confirmed that LTL (OR 0.365; 95% CI 0.235-0.568; P < 0.001) and serum PGC-1α (OR 0.993; 95% CI 0.988-0.997; P = 0.002) were inversely associated with the presence of AF. In addition, ROC analysis indicated the potential diagnostic value of LTL and serum PGC-1α with AUC values of 0.734 and 0.633, respectively. This research concludes that LTL and serum PGC-1α are inversely correlated with the occurrence of aging-related AF and that mitochondrial dysfunction plays a role in this.
Collapse
|
19
|
Potential Role of Melatonin as an Adjuvant for Atherosclerotic Carotid Arterial Stenosis. Molecules 2021; 26:molecules26040811. [PMID: 33557283 PMCID: PMC7914857 DOI: 10.3390/molecules26040811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/23/2022] Open
Abstract
Carotid artery stenosis (CAS) is an atherosclerotic disease characterized by a narrowing of the artery lumen and a high risk of ischemic stroke. Risk factors of atherosclerosis, including smoking, hypertension, hyperglycemia, hyperlipidemia, aging, and disrupted circadian rhythm, may potentiate atherosclerosis in the carotid artery and further reduce the arterial lumen. Ischemic stroke due to severe CAS and cerebral ischemic/reperfusion (I/R) injury after the revascularization of CAS also adversely affect clinical outcomes. Melatonin is a pluripotent agent with potent anti-inflammatory, anti-oxidative, and neuroprotective properties. Although there is a shortage of direct clinical evidence demonstrating the benefits of melatonin in CAS patients, previous studies have shown that melatonin may be beneficial for patients with CAS in terms of reducing endothelial damage, stabilizing arterial plaque, mitigating the harm from CAS-related ischemic stroke and cerebral I/R injury, and alleviating the adverse effects of the related risk factors. Additional pre-clinical and clinical are required to confirm this speculation.
Collapse
|
20
|
Vaiserman A, Krasnienkov D. Telomere Length as a Marker of Biological Age: State-of-the-Art, Open Issues, and Future Perspectives. Front Genet 2021; 11:630186. [PMID: 33552142 PMCID: PMC7859450 DOI: 10.3389/fgene.2020.630186] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
Telomere shortening is a well-known hallmark of both cellular senescence and organismal aging. An accelerated rate of telomere attrition is also a common feature of age-related diseases. Therefore, telomere length (TL) has been recognized for a long time as one of the best biomarkers of aging. Recent research findings, however, indicate that TL per se can only allow a rough estimate of aging rate and can hardly be regarded as a clinically important risk marker for age-related pathologies and mortality. Evidence is obtained that other indicators such as certain immune parameters, indices of epigenetic age, etc., could be stronger predictors of the health status and the risk of chronic disease. However, despite these issues and limitations, TL remains to be very informative marker in accessing the biological age when used along with other markers such as indices of homeostatic dysregulation, frailty index, epigenetic clock, etc. This review article is aimed at describing the current state of the art in the field and at discussing recent research findings and divergent viewpoints regarding the usefulness of leukocyte TL for estimating the human biological age.
Collapse
Affiliation(s)
- Alexander Vaiserman
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, Kyiv, Ukraine
| | - Dmytro Krasnienkov
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, Kyiv, Ukraine
| |
Collapse
|