1
|
Althaus K, Hoepner G, Zieger B, Prüller F, Pavlova A, Boeckelmann D, Birschmann I, Müller J, Rühl H, Sachs U, Kehrel B, Streif W, Bugert P, Zaninetti C, Cooper N, Schulze H, Knöfler R, Bakchoul T, Jurk K. The Diagnostic Assessment of Platelet Function Defects - Part 2: Update on Platelet Disorders. Hamostaseologie 2025. [PMID: 39870108 DOI: 10.1055/a-2404-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025] Open
Abstract
Congenital platelet disorders are rare and targeted treatment is usually not possible. Inherited platelet function disorders (iPFDs) can affect surface receptors and multiple platelet responses such as defects of platelet granules, signal transduction, and procoagulant activity. If iPFDs are also associated with a reduced platelet count (thrombocytopenia), it is not uncommon to be misdiagnosed as immune thrombocytopenia. Because the bleeding tendency of the different platelet disorders is variable, a correct diagnosis of the platelet defect based on phenotyping, function analysis, and genotyping is essential, especially in the perioperative setting. In the case of a platelet receptor deficiency, such as Bernard-Soulier syndrome or Glanzmann thrombasthenia, not only the bleeding tendency but also the risk of isoimmunization after platelet transfusions or pregnancy has to be considered. Platelet granule disorders are commonly associated with either intrinsically quantitative or qualitative granule defects due to impaired granulopoiesis, or granule release defects, which can also affect additional signaling pathways. Functional platelet defects require expertise in the clinical bleeding tendency in terms of the disorder when using antiplatelet agents or other medications that affect platelet function. Platelet defects associated with hematological-oncological diseases require comprehensive information about the patient including the clinical implication of the genetic testing. This review focuses on genetics, clinical presentation, and laboratory platelet function analysis of iPFDs with or without reduced platelet number. As platelet defects affecting the cytoskeleton usually show thrombocytopenia, but less impaired or normal platelet functional responses, they are not specifically addressed.
Collapse
Affiliation(s)
- Karina Althaus
- Medical Faculty of Tübingen, Institute for Clinical and Experimental Transfusion Medicine, Tübingen, Germany
- Center for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Gero Hoepner
- Center for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
- Department of Anaesthesiology and Intensive Care, University Hospital Tübingen, Tübingen, Germany
| | - Barbara Zieger
- Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Florian Prüller
- Klinisches Institut für Medizinische und Chemische Labordiagnostik, Medizinische Universität Graz, Graz, Austria
| | - Anna Pavlova
- Institute of Experimental Haematology and Transfusion Medicine (IHT), University Hospital Bonn, Bonn, Germany
| | - Doris Boeckelmann
- Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Ingvild Birschmann
- Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Institut für Laboratoriums- und Transfusionsmedizin, Bochum, Germany
| | - Jens Müller
- Institute of Experimental Haematology and Transfusion Medicine (IHT), University Hospital Bonn, Bonn, Germany
| | - Heiko Rühl
- Institute of Experimental Haematology and Transfusion Medicine (IHT), University Hospital Bonn, Bonn, Germany
| | - Ulrich Sachs
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany
| | - Beate Kehrel
- Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis, University-Hospital Munster, Münster, Germany
| | - Werner Streif
- Kinder- und Jugendheilkunde, Innsbruck Medical University, Innsbruck, Austria
| | - Peter Bugert
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany
| | - Carlo Zaninetti
- Institute of Immunology and Transfusion Medicine, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Nina Cooper
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Ralf Knöfler
- Department of Paediatric Haemostaseology, Dresden University Hospital, Dresden, Germany
| | - Tamam Bakchoul
- Medical Faculty of Tübingen, Institute for Clinical and Experimental Transfusion Medicine, Tübingen, Germany
- Center for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
2
|
Hoepner G, Althaus K, Müller J, Zieger B, Pavlova A, Boeckelmann D, Knöfler R, Bugert P, Kehrel B, Streif W, Birschmann I, Rühl H, Sachs U, Prüller F, Zaninetti C, Schulze H, Cooper N, Jurk K, Bakchoul T. The Diagnostic Assessment of Inherited Platelet Function Defects - Part 1: An Overview of the Diagnostic Approach and Laboratory Methods. Hamostaseologie 2025. [PMID: 39870109 DOI: 10.1055/a-2436-5318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025] Open
Abstract
In this article, our goal is to offer an introduction and overview of the diagnostic approach to inherited platelet function defects (iPFDs) for clinicians and laboratory personnel who are beginning to engage in the field. We describe the most commonly used laboratory methods and propose a diagnostic four-step approach, wherein each stage requires a higher level of expertise and more specialized methods. It should be noted that our proposed approach differs from the ISTH Guidance on this topic in some points. The first step in the diagnostic approach of iPFD should be a thorough medical history and clinical examination. We strongly advocate for the use of a validated bleeding score like the ISTH-BAT (International Society on Thrombosis and Haemostasis Bleeding Assessment Tool). External factors like diet and medication have to be considered. The second step should rule out plasmatic bleeding disorders and von Willebrand disease. Once this has been accomplished, the third step consists of a thorough platelet investigation of platelet phenotype and function. Established methods consist of blood smear analysis by light microscopy, light transmission aggregometry, and flow cytometry. Additional techniques such as lumiaggregometry, immune fluorescence microscopy, and platelet-dependent thrombin generation help confirm and specify the diagnosis of iPFD. In the fourth and last step, genetic testing can confirm a diagnosis, reveal novel mutations, and allow to compare unclear genetics with lab results. If diagnosis cannot be established through this process, experimental methods such as electron microscopy can give insight into the underlying disease.
Collapse
Affiliation(s)
- Gero Hoepner
- Center for Clinical Transfusion Medicine Tuebingen, Tuebingen, Germany
- Department of Anaesthesiology and Intensive Care, University Hospital Tuebingen, Tuebingen, Germany
| | - Karina Althaus
- Center for Clinical Transfusion Medicine Tuebingen, Tuebingen, Germany
- Medical Faculty of Tuebingen, Institute for Clinical and Experimental Transfusion Medicine, Tuebingen, Germany
| | - Jens Müller
- Institute of Experimental Haematology and Transfusion Medicine (IHT), University Hospital Bonn, Bonn, Germany
| | - Barbara Zieger
- Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Anna Pavlova
- Institute of Experimental Haematology and Transfusion Medicine (IHT), University Hospital Bonn, Bonn, Germany
| | - Doris Boeckelmann
- Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Ralf Knöfler
- Department of Paediatric Haemostaseology, Dresden University Hospital, Dresden, Germany
| | - Peter Bugert
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany
| | - Beate Kehrel
- Department of Anaesthesiology and Intensive Care, Experimental and Clinical Haemostasis, University-Hospital Munster, Münster, Germany
| | - Werner Streif
- Kinder- und Jugendheilkunde, Innsbruck Medical University, Innsbruck, Austria
| | - Ingvild Birschmann
- Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Institut für Laboratoriums- und Transfusionsmedizin, Bochum, Germany
| | - Heiko Rühl
- Institute of Experimental Haematology and Transfusion Medicine (IHT), University Hospital Bonn, Bonn, Germany
| | - Ulrich Sachs
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany
- Center for Transfusion Medicine and Haemotherapy, Department of Thrombosis and Haemostasis, European Comprehensive Care Center for Haemophilia at Giessen and Marburg University Hospital, Giessen, Germany
| | | | - Carlo Zaninetti
- Institute of Immunology and Transfusion Medicine, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Nina Cooper
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany
- Center for Transfusion Medicine and Haemotherapy, Department of Thrombosis and Haemostasis, European Comprehensive Care Center for Haemophilia at Giessen and Marburg University Hospital, Giessen, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Tamam Bakchoul
- Center for Clinical Transfusion Medicine Tuebingen, Tuebingen, Germany
- Medical Faculty of Tuebingen, Institute for Clinical and Experimental Transfusion Medicine, Tuebingen, Germany
| |
Collapse
|
3
|
Tsai HJ, Chang YF, Hsieh YJ, Wang JD, Wu CC, Ho MY, Cheng JC, Chen DP, Liao HR, Tseng CP. Human Disabled-2 regulates thromboxane A 2 signaling for efficient hemostasis in thrombocytopenia. Nat Commun 2024; 15:9816. [PMID: 39537612 PMCID: PMC11561248 DOI: 10.1038/s41467-024-54093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding platelet protein functions facilitates better assessment of platelet disorders. Megakaryocyte lineage-restricted human Disabled-2 knock-in (hDAB2-KI) mice are generated to delineate the functions of hDab2, a regulator of platelet function, in the control of bleeding associated with thrombocytopenia. Here we show that hDab2-KI mice with thrombocytopenia display decreased bleeding time when compared to the control mice. hDab2 augments thromboxane A2 (TxA2) mimetic U46619- but not other agonists-stimulated granule secretion, integrin activation, and aggregation at a lower platelet concentration in vitro. Binding of hDab2 to phosphatidic acid (PA) facilitates formation of the PA-hDab2-AKT complex leading to an increase in U46619-stimulated AKT-Ser473 phosphorylation and the first wave of ADP/ATP release. Consistent with these findings, hDab2 expression in platelets from patients with immune thrombocytopenic purpura is positively correlated with U46619-stimulated ATP release, which in turn inversely correlated with their bleeding tendency. hDab2 appears crucial in regulating bleeding severity associated with thrombocytopenia by a functional interplay with ADP/ATP release underlying TxA2 signaling.
Collapse
Affiliation(s)
- Hui-Ju Tsai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Ya-Fang Chang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Ya-Ju Hsieh
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Jiaan-Der Wang
- Children's Medical Center, Taichung Veterans General Hospital, Taichung, 407, Taiwan, Republic of China
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 402, Taiwan, Republic of China
| | - Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Meng-Ying Ho
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, North District, Taichung, 404, Taiwan, Republic of China
| | - Ding-Ping Chen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China
| | - Hsiang-Rui Liao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China
| | - Ching-Ping Tseng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China.
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China.
| |
Collapse
|
4
|
Kos M, Tomaka P, Mertowska P, Mertowski S, Wojnicka J, Błażewicz A, Grywalska E, Bojarski K. The Many Faces of Immune Thrombocytopenia: Mechanisms, Therapies, and Clinical Challenges in Oncological Patients. J Clin Med 2024; 13:6738. [PMID: 39597882 PMCID: PMC11594473 DOI: 10.3390/jcm13226738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
The pathogenesis of immune thrombocytopenia (ITP) is complex and involves the dysregulation of immune cells, such as T and B lymphocytes, and several cytokines that promote the production of autoantibodies. In the context of cancer patients, ITP can occur in both primary and secondary forms related to anticancer therapies or the disease itself. OBJECTIVE In light of these data, we decided to prepare a literature review that will explain the classification and immunological determinants of the pathogenesis of ITP and present the clinical implications of this condition, especially in patients with cancer. MATERIALS AND METHODS We reviewed the literature on immunological mechanisms, therapies, and challenges in treating ITP, particularly on cancer patients. RESULTS The results of the literature review show that ITP in cancer patients can be both primary and secondary, with secondary ITP being more often associated with anticancer therapies such as chemotherapy and immunotherapy. Innovative therapies such as TPO-RA, rituximab, Bruton's kinase inhibitors, and FcRn receptor inhibitors have shown promising results in treating refractory ITP, especially in patients with chronic disease. CONCLUSIONS ITP is a significant clinical challenge, especially in the context of oncology patients, where both the disease and treatment can worsen thrombocytopenia and increase the risk of bleeding complications. Treatment of oncology patients with ITP requires an individualized approach, and new therapies offer effective tools for managing this condition. Future research into immunological mechanisms may bring further advances in treating ITP and improve outcomes in cancer patients.
Collapse
Affiliation(s)
- Marek Kos
- Department of Public Health, Medical University of Lublin, 20-400 Lublin, Poland
| | - Piotr Tomaka
- Department of Anesthesiology and Intensive Care, SP ZOZ in Łęczna, 21-010 Łęczna, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Julia Wojnicka
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Medical University of Lublin, 20-093 Lublin, Poland
| | - Anna Błażewicz
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | | |
Collapse
|
5
|
Wu YF, Shen CL, Huang WH, Chu SC, Li CC, Liu CZ, Wang TF. Improving platelet function following prophylactic platelet transfusion in patients with hematological malignancies. Int J Lab Hematol 2024; 46:722-730. [PMID: 38682289 DOI: 10.1111/ijlh.14283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/01/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION Platelet transfusion is a standard treatment to prevent bleeding in patients with hematological malignancies. Although transfusions can improve platelet count, their impact on platelet function remains controversial. METHODS We conducted flow cytometry to assess platelet function before and after transfusion and performed subgroup analyses to examine differences based on blood type, corrected count increment (CCI), and platelet microparticles. RESULTS Overall, 50 patients who received prophylactic platelet transfusion were enrolled. CD42b expression increased, whereas CD41 expression decreased after transfusion. Apheresis platelets exhibited the lowest expression of PAC-1 and P-selectin when exposed to agonist stimulations. PAC-1 expression increased under high adenosine diphosphate (ADP) stimulation, while P-selectin expression increased under both high ADP and thrombin receptor-activating peptide stimulation. In the subgroup analysis, patients with a CCI >4500 and those with the same blood types exhibited a more significant increase in PAC-1 and P-selectin expression under agonist stimulation. When comparing apheresis platelets collected on different days, only the percentage of platelet-derived microparticles showed a significant increase. CONCLUSION Prophylactic transfusion improved platelet function. Platelet function significantly improved in patients with a CCI >4500, those with the same blood types as that of apheresis platelets, or those with platelet-derived microparticle levels <4.7%. No significant improvement in platelet function was noted after the transfusion of different blood types with acceptable compatibility or the transfusion of incompatible blood types. Our results suggest that transfusing platelets with the same blood type remains the optimal choice.
Collapse
Affiliation(s)
- Yi-Feng Wu
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- College of Medicine, Tzu-Chi University, Hualien, Taiwan
- Ph.D. Program in Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan
| | - Chih-Lung Shen
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Han Huang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Clinical Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Sung-Chao Chu
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- College of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - Chi-Cheng Li
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chao-Zong Liu
- Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- College of Medicine, Tzu-Chi University, Hualien, Taiwan
| |
Collapse
|
6
|
Gebetsberger J, Prüller F. Classic Light Transmission Platelet Aggregometry: Do We Still Need it? Hamostaseologie 2024; 44:304-315. [PMID: 38065556 DOI: 10.1055/a-2117-4614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024] Open
Abstract
For more than 50 years, light transmission aggregometry has been accepted as the gold standard test for diagnosing inherited platelet disorders in platelet-rich plasma, although there are other functional approaches performed in whole blood. In this article, several advantages and disadvantages of this technique over other laboratory approaches are discussed in the view of recent guidelines, and the necessity of functional assays, such as light transmission aggregometry in the era of molecular genetic testing, is highlighted.
Collapse
Affiliation(s)
| | - Florian Prüller
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
7
|
Honey U, Saleh SMAB, Salan MSA, Kabir MA, Ali A. Exploring the relationship between blood platelet and other components utilizing count regression: A cross-sectional study in Bangladesh. Health Sci Rep 2024; 7:e70007. [PMID: 39170887 PMCID: PMC11335575 DOI: 10.1002/hsr2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Background and Aims Blood, vital for transporting nutrients and maintaining balance, comprises red blood cells, white blood cells, and platelets, each pivotal. Imbalances lead to issues-low red cells cause fatigue (anemia), high white cells hint at infection, low counts raise infection risks. Using trendy statistical approaches, investigating the complex link between platelet counts and numerous blood components. Our investigation, leveraging count regression approaches, revealed deep insights into the interaction between platelet counts and other important hematological markers. Methods A cross-sectional study utilized data from 3120 individuals, including both male and female participants, who visited these hospitals between June 16, 2022 and December 17, 2022, to assess their blood samples through testing by using convenience non-parametric sampling framework. Platelet count was taken into account as a measure of outcome in this research. This specific study region was chosen for its easy accessibility, which helped the seamless execution of the data-gathering technique. Count regression, negative binomial regression, and quasi-Poisson regression techniques have been employed for examining relationship of the data sets. Results Three different count regression models were utilized to assess the proper association between the response and the relevant covariates and we found negative binomial count regression model (Akaike information criterion = 76.55, Bayesian information criterion = 76.59, and deviance = 3.14) was providing comparatively better performance than others. Based on the chosen model we found white blood cell, erythrocyte sedimentation rate, and eosinophils are significant but neutrophil, monocyte, and lymphocyte are not significant. We have also gone through proper model adequacy checking for our selected model and we found enough evidence to justify our model. Conclusion From the result, we found insightful remarks into the mechanisms involved in platelet production and regulation, which can aid in developing increased effective treatments and interventions to maintain optimal platelet levels and prevent health problems related to abnormal platelet counts.
Collapse
Affiliation(s)
- Umme Honey
- Department of Statistics and Data ScienceJahangirnagar UniversityDhakaSavarBangladesh
| | | | - Md. Sifat Ar Salan
- Department of Statistics and Data ScienceJahangirnagar UniversityDhakaSavarBangladesh
| | | | - Akher Ali
- Department of Statistics and Data ScienceJahangirnagar UniversityDhakaSavarBangladesh
| |
Collapse
|
8
|
Han JH, Yoon I, Jeon HJ. Microfluidic System-Based Quantitative Analysis of Platelet Function through Speckle Size Measurement. Biomolecules 2024; 14:612. [PMID: 38927016 PMCID: PMC11201690 DOI: 10.3390/biom14060612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
Platelets play essential roles in the formation of blood clots by clumping with coagulation factors at the site of vascular injury to stop bleeding; therefore, a reduction in the platelet number or disorder in their function causes bleeding risk. In our research, we developed a method to assess platelet aggregation using an optical approach within a microfluidic chip's channel by evaluating the size of laser speckles. These speckles, associated with slowed blood flow in the microfluidic channel, had a baseline size of 28.54 ± 0.72 µm in whole blood. Removing platelets from the sample led to a notable decrease in speckle size to 27.04 ± 1.23 µm. Moreover, the addition of an ADP-containing agonist, which activates platelets, resulted in an increased speckle size of 32.89 ± 1.69 µm. This finding may provide a simple optical method via microfluidics that could be utilized to assess platelet functionality in diagnosing bleeding disorders and potentially in monitoring therapies that target platelets.
Collapse
Affiliation(s)
- Jong Hyeok Han
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Inkwon Yoon
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hee-Jae Jeon
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
9
|
Chan MV, Chen MH, Thibord F, Nkambule BB, Lachapelle AR, Grech J, Schneider ZE, Wallace de Melendez C, Huffman JE, Hayman MA, Allan HE, Armstrong PC, Warner TD, Johnson AD. Factors that modulate platelet reactivity as measured by 5 assay platforms in 3429 individuals. Res Pract Thromb Haemost 2024; 8:102406. [PMID: 38813256 PMCID: PMC11135030 DOI: 10.1016/j.rpth.2024.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/05/2024] [Indexed: 05/31/2024] Open
Abstract
Background Assessment of platelet function is key in diagnosing bleeding disorders and evaluating antiplatelet drug efficacy. However, there is a prevailing "one-size-fits-all" approach in the interpretation of measures of platelet reactivity, with arbitrary cutoffs often derived from healthy volunteer responses. Objectives Our aim was to compare well-used platelet reactivity assays. Methods Blood and platelet-rich plasma obtained from the Framingham Heart Study (N = 3429) were assayed using a range of agonists in 5 platelet assays: light transmission aggregometry, Optimul aggregometry, Multiplate impedance aggregometry (Roche Diagnostics), Total Thrombus-Formation Analysis System, and flow cytometry. Using linear mixed-effect models, we determined the contribution of preanalytical and technical factors that modulated platelet reactivity traits. Results A strong intra-assay correlation of platelet traits was seen in all assays, particularly Multiplate velocity (r = 0.740; ristocetin vs arachidonic acid). In contrast, only moderate interassay correlations were observed (r = 0.375; adenosine diphosphate Optimul Emax vs light transmission aggregometry large area under the curve). As expected, antiplatelet drugs strongly reduced platelet responses, with aspirin use primarily targeting arachidonic acid-induced aggregation, and explained substantial variance (β = -1.735; P = 4.59 × 10-780; variance proportion = 46.2%) and P2Y12 antagonists blocking adenosine diphosphate responses (β = -1.612; P = 6.75 × 10-27; variance proportion = 2.1%). Notably, female sex and older age were associated with enhanced platelet reactivity. Fasting status and deviations from standard venipuncture practices did not alter platelet reactivity significantly. Finally, the agonist batch, phlebotomist, and assay technician (more so for assays that require additional sample manipulation) had a moderate to large effect on measured platelet reactivity. Conclusion Caution must be exercised when extrapolating findings between assays, and the use of standard ranges must be medication-specific and sex-specific at a minimum. Researchers should also consider preanalytical and technical variables when designing experiments and interpreting platelet reactivity measures.
Collapse
Affiliation(s)
- Melissa V. Chan
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
| | - Ming-Huei Chen
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
| | - Florian Thibord
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
| | - Bongani B. Nkambule
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
| | - Amber R. Lachapelle
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
| | - Joseph Grech
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
| | - Zoe E. Schneider
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
| | | | - Jennifer E. Huffman
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
| | - Melissa A. Hayman
- Centre for Immunobiology, the Blizard Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Harriet E. Allan
- Centre for Immunobiology, the Blizard Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Paul C. Armstrong
- Centre for Immunobiology, the Blizard Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Timothy D. Warner
- Centre for Immunobiology, the Blizard Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Andrew D. Johnson
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
| |
Collapse
|
10
|
Mariethoz C, Scala E, Matthey-Guirao E, Rossel JB, Gomez FJ, Grandoni F, Marcucci C, Alberio L. Identification of High Platelet Reactivity Despite ADP P2Y 12 Inhibitor Treatment: Two Populations in the Vasodilator-Stimulated Phosphoprotein Assay and Variable PFA-P2Y Shapes of Curve. TH OPEN 2023; 7:e143-e154. [PMID: 37292433 PMCID: PMC10247305 DOI: 10.1055/a-2075-7979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/03/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Response to ADP P2Y 12 receptor inhibition by clopidogrel can be evaluated by various techniques. Here, we compared a functional rapid point-of-care technique (PFA-P2Y) with the degree of biochemical inhibition assessed by the VASP/P2Y 12 assay. Methods Platelet response to clopidogrel was investigated in 173 patients undergoing elective intracerebral stenting (derivation cohort n = 117; validation cohort n = 56). High platelet reactivity (HPR) was defined as PFA-P2Y occlusion time <106 seconds or VASP/P2Y 12 platelet reactivity index (PRI) >50%. Results In the derivation cohort, receiver operator characteristics analysis for the ability of PFA-P2Y to detect biochemical HPR showed high specificity (98.4%) but poor sensitivity (20.0%) and a very low area under the curve (0.59). The VASP/P2Y 12 assay revealed two coexisting platelet populations with different levels of vasodilator-stimulated phosphoprotein (VASP) phosphorylation: a fraction of highly phosphorylated, inhibited platelets and another of poorly phosphorylated, reactive platelets. Analysis of the PFA-P2Y curve shape revealed different types, categorized by time of occlusion (<106 seconds, 106 to 300 seconds, >300 seconds), and pattern (regular, irregular, and atypical). Noteworthy, curves with late occlusion and permeable curves with an irregular or atypical pattern correlated with VASP-PRI >50% and smaller sizes of the inhibited platelet subpopulation. Considering the PFA-P2Y shape of the curve for the detection of HPR improved sensitivity (72.7%) and preserved specificity (91.9%), with a rather high AUC (0.823). The validation cohort confirmed the VASP/P2Y 12 assay data and the usefulness of considering the PFA-P2Y curve shape. Conclusion In patients treated with acetylsalicylic acid and clopidogrel for 7-10 days, the VASP/P2Y 12 assay reveals two coexisting subpopulations of differentially inhibited platelets, whose relative sizes predict global PRI and distinct PFA-P2Y curve patterns, indicating incomplete clopidogrel efficacy. The detailed analysis of both VASP/P2Y 12 and PFA-P2Y is necessary for optimal detection of HPR.
Collapse
Affiliation(s)
- Cyril Mariethoz
- Faculty of Biology and Medicine, UNIL, University of Lausanne, Lausanne, Switzerland
| | - Emmanuelle Scala
- Dept. of Anaesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Elena Matthey-Guirao
- Division of Haematology and Central Haematology Laboratory, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Jean-Benoît Rossel
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Francisco Javier Gomez
- Division of Haematology and Central Haematology Laboratory, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Francesco Grandoni
- Division of Haematology and Central Haematology Laboratory, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Carlo Marcucci
- Faculty of Biology and Medicine, UNIL, University of Lausanne, Lausanne, Switzerland
- Dept. of Anaesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Lorenzo Alberio
- Faculty of Biology and Medicine, UNIL, University of Lausanne, Lausanne, Switzerland
- Division of Haematology and Central Haematology Laboratory, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
11
|
Shen CL, Wu YF. Flow cytometry for evaluating platelet immunophenotyping and function in patients with thrombocytopenia. Tzu Chi Med J 2022; 34:381-387. [PMID: 36578648 PMCID: PMC9791859 DOI: 10.4103/tcmj.tcmj_117_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/10/2022] [Accepted: 06/08/2022] [Indexed: 01/19/2023] Open
Abstract
Platelets play an essential role in primary hemostasis through bleeding and thromboembolism. Thus, the diagnosis or evaluation of impaired hereditary, acquired, and drug-related platelet dysfunction has become imperative. The assessment of the platelet function is too complex for routine platelet function study. The major methods involved in platelet function study include platelet function analyzer testing, thromboelastography, thromboelastometry, light transmission aggregometry, and flow cytometry. The current review article focuses on the methods with flow cytometry for immunophenotyping of platelet and evaluating platelet function for platelet disorders, especially in patients with thrombocytopenia. According to the consensus published by the International Society on Thrombosis and Haemostasis, for inherited and acquired platelet disorders, the two major measures by which flow cytometry determines platelet function are glycoprotein IIb/IIIa/P-selectin (CD62p) expression and percentage of leukocyte-platelet aggregates. Using flow cytometry to determine platelet function has several advantages, including good sensitivity to low platelet counts, small blood volume required, and the nonnecessity of centrifugation. However, flow cytometry has still many limitations and challenges, with standardization for routine laboratory testing also proving difficult. Although flow cytometry is available for multipurpose and sensitive study of platelet functions at the same time, the challenging analysis gradually increases and needs to be addressed before reality.
Collapse
Affiliation(s)
- Chih-Lung Shen
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yi-Feng Wu
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,School of Medicine, Tzu Chi University, Hualien, Taiwan,Address for correspondence: Dr. Yi-Feng Wu, Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 707, Section 3, Chung-Yang Road, Hualien, Taiwan. E-mail:
| |
Collapse
|
12
|
Ogweno G. Challenges in Platelet Functions in HIV/AIDS Management. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The interest in platelet functions in HIV/AIDS is due to the high incidence of microvascular thrombosis in these individuals. A lot of laboratory data have been generated regarding platelet functions in this population. The tests demonstrate platelet hyperactivity but decreased aggregation, though results are inconsistent depending on the study design. Antiretroviral treatments currently in use display complex interactions. Many studies on platelet functions in these patients have been for research purposes, but none have found utility in guiding drug treatment of thrombosis.
Collapse
|
13
|
Szanto T, Zetterberg E, Ramström S, Leinøe EB, Holme PA, Antovic JP, Holmström M, Onundarson PT, Pikta M, Vaide I, Olsson A, Magnusson M, Kärkkäinen S, Bitar M, Poulsen LH, Lassila R. Platelet function testing: Current practice among clinical centres in Northern Europe. Haemophilia 2022; 28:642-648. [PMID: 35510959 PMCID: PMC9540416 DOI: 10.1111/hae.14578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
Abstract
Introduction Platelet function tests are used to screen and diagnose patients with possible inherited platelet function defects (IPFD). Some acquired platelet dysfunction may be caused by certain drugs or comorbidities, which need to be excluded before testing. Aims To identify current practice among centres performing platelet function tests in Northern Europe. Methods A total of 14 clinical centres from Sweden (six), Finland (two), Denmark (two), Norway (one), Estonia (two) and Iceland (one) completed the survey questionnaire, the population capture area of about 29.5 million. Results Six of the 14 (42.8%) centres providing platelet function assessment represent comprehensive treatment centres (EUHANET status). A Bleeding score (BS) or ISTH bleeding assessment tool (ISTH BAT score) is evaluated in 11/14 (78.6%) centres and family history in all. Five/14 centres (35.7%) use structured preanalytical patient instructions, and 10/14 (71.4%) recorded questionnaire on the preassessment of avoidance of any drugs or natural products affecting platelet functions. Preliminary investigations of screening tests of coagulation are performed in 10/14 (71.4%), while in 4/14 (28.6%), the diagnostic work‐up of IPFD and von Willebrand disease (VWD) is performed simultaneously. The work‐up of IPFD includes peripheral blood smear in 10/14 (71.4%), platelet aggregometry in all, flow cytometry in 10/14 (71.4%) and Platelet Function Analysis (PFA) in 3/11 (28.6%). Molecular genetic diagnosis is available in 7/14 (50%) centres. Conclusions The considerable variability in the current practice illustrates the need for harmonization between the Northern European centres according to the international registers (i.e. EUHASS) and IPFD guidelines (ISTH, EHA).
Collapse
Affiliation(s)
- Timea Szanto
- Coagulation Disorders Unit, Department of Hematology, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland.,Research Program in Systems Oncology, Helsinki University, Helsinki, Finland
| | - Eva Zetterberg
- Department of Translational Medicine & Centre for Thrombosis and Haemostasis, Lund University, Malmö, Sweden
| | - Sofia Ramström
- Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Eva B Leinøe
- Department of Haematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Pål A Holme
- Department of Haematology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jovan P Antovic
- Coagulation Research, Institute for Molecular Medicine and Surgery, Karolinska Institute & Department of Clinical Chemistry, Karolinska University Hospital, Stockholm, Sweden
| | - Margareta Holmström
- Department of Health and Department of Acute Internal Medicine and Geriatrics, Medicine and Caring Sciences Linköping University, Linköping, Sweden
| | | | - Marika Pikta
- Laboratory, North Estonia Medical Centre, Tallinn, Estonia
| | - Ines Vaide
- Department of Hemato-Oncology, University of Tartu, Institute of Clinical Medicine, Tartu, Estonia
| | - Anna Olsson
- Region Västra Götaland, Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria Magnusson
- Department of Haematology and Coagulation Disorders, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Satu Kärkkäinen
- Hemostasis and Platelet Laboratory, Fimlab Laboratoriot, Tampere, Finland
| | - Manar Bitar
- Department of Laboratory Medicine, Clinical Chemistry, Faculty of Medicine and Health, Örebro University Hospital, Örebro, Sweden
| | | | - Riitta Lassila
- Coagulation Disorders Unit, Department of Hematology, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland.,Research Program in Systems Oncology, Helsinki University, Helsinki, Finland
| | -
- Coagulation Disorders Unit, Department of Hematology, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
14
|
Bourguignon A, Tasneem S, Hayward CP. Screening and diagnosis of inherited platelet disorders. Crit Rev Clin Lab Sci 2022; 59:405-444. [PMID: 35341454 DOI: 10.1080/10408363.2022.2049199] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inherited platelet disorders are important conditions that often manifest with bleeding. These disorders have heterogeneous underlying pathologies. Some are syndromic disorders with non-blood phenotypic features, and others are associated with an increased predisposition to developing myelodysplasia and leukemia. Platelet disorders can present with thrombocytopenia, defects in platelet function, or both. As the underlying pathogenesis of inherited thrombocytopenias and platelet function disorders are quite diverse, their evaluation requires a thorough clinical assessment and specialized diagnostic tests, that often challenge diagnostic laboratories. At present, many of the commonly encountered, non-syndromic platelet disorders do not have a defined molecular cause. Nonetheless, significant progress has been made over the past few decades to improve the diagnostic evaluation of inherited platelet disorders, from the assessment of the bleeding history to improved standardization of light transmission aggregometry, which remains a "gold standard" test of platelet function. Some platelet disorder test findings are highly predictive of a bleeding disorder and some show association to symptoms of prolonged bleeding, surgical bleeding, and wound healing problems. Multiple assays can be required to diagnose common and rare platelet disorders, each requiring control of preanalytical, analytical, and post-analytical variables. The laboratory investigations of platelet disorders include evaluations of platelet counts, size, and morphology by light microscopy; assessments for aggregation defects; tests for dense granule deficiency; analyses of granule constituents and their release; platelet protein analysis by immunofluorescent staining or flow cytometry; tests of platelet procoagulant function; evaluations of platelet ultrastructure; high-throughput sequencing and other molecular diagnostic tests. The focus of this article is to review current methods for the diagnostic assessment of platelet function, with a focus on contemporary, best diagnostic laboratory practices, and relationships between clinical and laboratory findings.
Collapse
Affiliation(s)
- Alex Bourguignon
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Subia Tasneem
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Catherine P Hayward
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.,Department of Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
15
|
Neonatal Sepsis and Hemostasis. Diagnostics (Basel) 2022; 12:diagnostics12020261. [PMID: 35204352 PMCID: PMC8871162 DOI: 10.3390/diagnostics12020261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/17/2022] Open
Abstract
Neonatal sepsis is considered critical for a significant increase in neonatal morbidity and mortality among hospitalized neonates. Neonatal sepsis, in most cases, coexists with coagulopathy, which can prove to be life-threatening. Complex molecular and cellular systems are involved in the cross-talk between inflammation and hemostasis during sepsis. Disturbances in the regulating systems of the vascular endothelium, and platelet–endothelial and platelet–neutrophil interactions play a pivotal role in both inflammation and coagulation. This complex process is poorly understood in neonates. In addition to the developmental maturation of hemostasis and the immune response in neonatal sepsis, a cellular model of hemostasis during sepsis should be taken into account. This review focused on the molecular and cellular mechanisms underlying inflammation and hemostasis during neonatal sepsis, taking the developmental immune response and developmental hemostasis into account in order to provide future diagnostic approaches to be applied in everyday clinical settings. Regarding the diagnostic modalities, we briefly provide the limitations of the currently used conventional coagulation assays, focusing on viscoelastic tests and platelet flow cytometry.
Collapse
|
16
|
Hinsenkamp A, Kun K, Gajnut F, Majer A, Lacza Z, Hornyák I. Cell Attachment Capacity and Compounds of Fibrin Membranes Isolated from Fresh Frozen Plasma and Cryoprecipitate. MEMBRANES 2021; 11:membranes11100783. [PMID: 34677549 PMCID: PMC8541203 DOI: 10.3390/membranes11100783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023]
Abstract
Fibrin membranes are widely used in regenerative medicine because they are biocompatible, biodegradable, contain growth factors, and support cell attachment. Most commonly they are produced from serum, but they can also be isolated from activated plasma. To increase the fibrinogen concentration of plasma, cryoprecipitate isolation is a possible solution. In this work, cryoprecipitate was prepared from fresh frozen plasma, isolated by plasmapheresis. The concentration of cellular elements, fibrinogen, total protein, and immunoglobulins among others was measured in different concentrations of cryoprecipitates. After activation with Ca-gluconate, fibrin membranes were produced in different thicknesses, and human mesenchymal stem cells were seeded onto the membranes. They were visualized by live-dead staining and their viability was determined by XTT. The platelet-derived growth factor AB content was quantified by ELISA. Our results showed that fibrinogen and platelet concentration can be multiplied in plasma by cryoprecipitate isolation, which affects the thickness and slightly the growth factor content of the membranes. According to live-dead staining, the thickness of the membranes does not influence cell attachment, and XTT measurement did not reveal a significant difference in cell attachment capacity either; however, a growing trend could be observed in the case of some membranes.
Collapse
Affiliation(s)
- Adél Hinsenkamp
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (K.K.); (F.G.); (A.M.); (I.H.)
- Correspondence:
| | - Kiara Kun
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (K.K.); (F.G.); (A.M.); (I.H.)
| | - Fatime Gajnut
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (K.K.); (F.G.); (A.M.); (I.H.)
| | - Aliz Majer
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (K.K.); (F.G.); (A.M.); (I.H.)
| | - Zsombor Lacza
- Orthosera GmbH, 3500 Krems an der Donau, Austria;
- Institute for Sports and Health Sciences, University of Physical Education, 1123 Budapest, Hungary
| | - István Hornyák
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (K.K.); (F.G.); (A.M.); (I.H.)
| |
Collapse
|
17
|
ten Cate H, Lämmle B. Special Issue: "The Latest Clinical Advances in Thrombocytopenia". J Clin Med 2021; 10:jcm10163463. [PMID: 34441759 PMCID: PMC8397007 DOI: 10.3390/jcm10163463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
- Hugo ten Cate
- Thrombosis Expertise Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, NL-P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Departments of Internal medicine and Biochemistry, Maastricht University Medical Center, NL-P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany;
- Correspondence:
| | - Bernhard Lämmle
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany;
- Central Hematology Laboratory, Department of Hematology, Inselspital, Bern University Hospital, University of Bern, CH 3010 Bern, Switzerland
- Haemostasis Research Unit, University College London, London WC1E 6BT, UK
- Schützenweg 3, CH 3065 Bolligen, Switzerland
| |
Collapse
|
18
|
Age-Dependent Control of Collagen-Dependent Platelet Responses by Thrombospondin-1-Comparative Analysis of Platelets from Neonates, Children, Adolescents, and Adults. Int J Mol Sci 2021; 22:ijms22094883. [PMID: 34063076 PMCID: PMC8124951 DOI: 10.3390/ijms22094883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023] Open
Abstract
Platelet function is developmentally regulated. Healthy neonates do not spontaneously bleed, but their platelets are hypo-reactive to several agonists. The mechanisms underlying immature platelet function in neonates are incompletely understood. This critical issue remains challenging for the establishment of age-specific reference ranges. In this study, we evaluated platelet reactivity of five pediatric age categories, ranging from healthy full-term neonates up to adolescents (11–18 years) in comparison to healthy adults (>18 years) by flow cytometry. We confirmed that platelet hypo-reactivity detected by fibrinogen binding, P-selectin, and CD63 surface expression was most pronounced in neonates compared to other pediatric age groups. However, maturation of platelet responsiveness varied with age, agonist, and activation marker. In contrast to TRAP and ADP, collagen-induced platelet activation was nearly absent in neonates. Granule secretion markedly remained impaired at least up to 10 years of age compared to adults. We show for the first time that neonatal platelets are deficient in thrombospondin-1, and exogenous platelet-derived thrombospondin-1 allows platelet responsiveness to collagen. Platelets from all pediatric age groups normally responded to the C-terminal thrombospondin-1 peptide RFYVVMWK. Thus, thrombospondin-1 deficiency of neonatal platelets might contribute to the relatively impaired response to collagen, and platelet-derived thrombospondin-1 may control distinct collagen-induced platelet responses.
Collapse
|