1
|
Maines E, Gugelmo G, Maiorana A, Martinelli D, Vitturi N, Lenzini L, Piccoli G, Soffiati M, Franceschi R. The role of the analysis of sialotransferrin isoforms in the management of hereditary fructose intolerance: a systematic review. J Diabetes Metab Disord 2025; 24:27. [PMID: 39735177 PMCID: PMC11680511 DOI: 10.1007/s40200-024-01527-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/19/2024] [Indexed: 12/31/2024]
Abstract
Background Untreated patients affected by hereditary fructose intolerance (HFI) present an abnormal transferrin (Tf) glycosylation pattern suggestive of N-hypoglycosylation. Analysis of defects in N-glycosylation is possible by analysis of serum sialotransferrin (sialoTf) pattern. The sialoTf profile is a valuable tool to facilitate the diagnosis of HFI. Its role in the monitoring of the diagnosed patients is less clear and debating. Objectives and methods We examined the literature for the role of profile of serum sialoTf isoforms in monitoring HFI patients aiming at (1) providing an up-to-date summary of the available evidences on the impact of sialoTf isoforms in the follow-up of HFI patients; 2) evaluating the multifactorial effect of genotype and age at diagnosis on sialoTf isoforms; 3) assessing the relation between sialoTf isoforms and long-term liver complications. We used the GRADE approach to rank the quality of evidence. Results Nine full papers were identified according to our search criteria. Elevated serum carbohydrate-deficient Tf (CDT) fraction, disialoTf and tetrasialoTf/disialoTf ratio, and the asialoTf, tetrasialoTf and pentasialoTf + hexasialoTf isoforms appeared as the most reliable indicators for a follow up. No clear statistical correlation links sialoTf isoforms and liver damage. Age at diagnosis, potentially related to fructose tolerance, does not overtly impact sialoTf isoforms. Strong genotype-phenotype correlation has not been found so far. Conclusions There is no consensus about which isoform of sialoTf is more valuable for monitoring HFI patients. No clear correlation links sialoTf isoforms and liver damage, fructose tolerance and genotype. More robust studies are needed to provide conclusive results.
Collapse
Affiliation(s)
- Evelina Maines
- Division of Pediatrics, Santa Chiara General Hospital, Azienda Provinciale per i Servizi Sanitari, Largo Medaglie d’oro, 9, 38122 Trento, Italy
| | - Giorgia Gugelmo
- Division of Metabolic Diseases, Department of Medicine, Padova University Hospital, Via Nicolò Giustiniani 2, 35121 Padua, Italy
| | - Arianna Maiorana
- Division of Metabolism and Research Unit of Metabolic Biochemistry, Bambino Gesù Children’s Hospital, IRCCS, Piazza Di Sant’Onofrio 4, 00165 Rome, Italy
| | - Diego Martinelli
- Division of Metabolism and Research Unit of Metabolic Biochemistry, Bambino Gesù Children’s Hospital, IRCCS, Piazza Di Sant’Onofrio 4, 00165 Rome, Italy
| | - Nicola Vitturi
- Division of Metabolic Diseases, Department of Medicine, Padova University Hospital, Via Nicolò Giustiniani 2, 35121 Padua, Italy
| | - Livia Lenzini
- Department of Medicine, Padova University Hospital, Via Nicolò Giustiniani 2, 35121 Padua, Italy
| | - Giovanni Piccoli
- CIBIO - Department of Cellular, Computational and Integrative Biology, Università Degli Studi Di Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Massimo Soffiati
- Division of Pediatrics, Santa Chiara General Hospital, Azienda Provinciale per i Servizi Sanitari, Largo Medaglie d’oro, 9, 38122 Trento, Italy
| | - Roberto Franceschi
- Division of Pediatrics, Santa Chiara General Hospital, Azienda Provinciale per i Servizi Sanitari, Largo Medaglie d’oro, 9, 38122 Trento, Italy
| |
Collapse
|
2
|
Buziau AM, Lefeber DJ, Cassiman D, Rubio‐Gozalbo ME, Kwast H, Tolan DR, Schalkwijk CG, Brouwers MCGJ. Aldolase B Deficient Mice Are Characterized by Hepatic Nucleotide Sugar Abnormalities. J Inherit Metab Dis 2025; 48:e12836. [PMID: 39727106 PMCID: PMC11672228 DOI: 10.1002/jimd.12836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Hereditary fructose intolerance (HFI) is characterized by liver damage and a secondary defect in N-linked glycosylation due to impairment of mannose phosphate isomerase (MPI). Mannose treatment has been shown to be an effective treatment in a primary defect in MPI (i.e., MPI-CDG), which is also characterized by liver damage. Therefore, the aims of this study were to determine: (1) hepatic nucleotide sugar levels, and (2), the effect of mannose supplementation on hepatic nucleotide sugar levels and liver fat, in a mouse model for HFI. Aldolase B deficient mice (Aldob-/-) were treated for four weeks with 5% mannose via the drinking water and compared to Aldob-/- mice and wildtype mice treated with regular drinking water. We found that hepatic GDP-mannose and hepatic GDP-fucose were lower in water-treated Aldob-/- mice when compared to water-treated wildtype mice (p = 0.002 and p = 0.002, respectively), consistent with impaired N-linked glycosylation. Of interest, multiple other hepatic nucleotide sugars not involved in N-linked glycosylation, such as hepatic UDP-glucuronic acid, UDP-xylose, CMP-N-acetyl-beta-neuraminic acid, and CDP-ribitol (p = 0.002, p = 0.003, p = 0.002, p = 0.002), were found to have altered levels as well. However, mannose treatment did not correct the reduction in hepatic GDP-mannose levels, nor was liver fat affected. Aldob-/- mice are characterized by hepatic nucleotide sugar abnormalities, but these were not abrogated by mannose treatment. Future studies are needed to identify the underlying mechanisms responsible for the abnormal hepatic nucleotide sugar pattern and intrahepatic lipid accumulation in HFI. Trial Registration: PCT ID: PCTE0000340, this animal experiment is registered at (https://preclinicaltrials.eu/).
Collapse
Affiliation(s)
- Amée M. Buziau
- Department of Internal Medicine, Division of Endocrinology and Metabolic DiseaseMaastricht University Medical Center+MaastrichtThe Netherlands
- Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
- Department of Internal Medicine, Division of General Internal Medicine, Laboratory for Metabolism and Vascular MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - Dirk J. Lefeber
- Translational Metabolic Laboratory, Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
| | - D. Cassiman
- Department of Gastroenterology‐Hepatology and Metabolic CenterUniversity Hospital LeuvenLeuvenBelgium
| | - M. Estela Rubio‐Gozalbo
- Department of Pediatrics and Clinical GeneticsMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Hanneke Kwast
- Translational Metabolic Laboratory, Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Dean R. Tolan
- Department of BiologyBoston UniversityBostonMassachusettsUSA
| | - Casper G. Schalkwijk
- Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
- Department of Internal Medicine, Division of General Internal Medicine, Laboratory for Metabolism and Vascular MedicineMaastricht UniversityMaastrichtThe Netherlands
| | - Martijn C. G. J. Brouwers
- Department of Internal Medicine, Division of Endocrinology and Metabolic DiseaseMaastricht University Medical Center+MaastrichtThe Netherlands
- Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
- Department of Internal MedicineMaastricht University Medical Center+MaastrichtThe Netherlands
- United for Metabolic DiseasesThe Netherlands
| |
Collapse
|
3
|
Panis B, Janssen LEF, Lefeber DJ, Simons N, Rubio‐Gozalbo ME, Brouwers MCGJ. Development of tools to facilitate the diagnosis of hereditary fructose intolerance. JIMD Rep 2023; 64:353-359. [PMID: 37701328 PMCID: PMC10494505 DOI: 10.1002/jmd2.12379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 09/14/2023] Open
Abstract
Although hereditary fructose intolerance (HFI) is an inborn error of fructose metabolism that classically presents at infancy, the diagnosis is often missed or delayed. In this study, we aimed to develop tools to facilitate the diagnosis of HFI. The intake of fructose-containing food products, that is, fruit, fruit juice and sugar-sweetened beverages, was assessed by a 3-day food diary in adult HFI patients (n = 15) and age, sex, and BMI-matched controls (n = 15). Furthermore, glycosylation of transferrin was examined using high-resolution mass spectrometry and abnormally glycosylated transferrin was expressed as ratio of normal glycosylated transferrin. We found that the sensitivity and specificity of the 3-day food diary for the intake of at least one fructose-containing food product were both 100%. Both mono-glyco:diglyco transferrin and a-glyco+mono-glyco:di-glyco transferrin were greater in HFI patients and had a high-discriminatory power (area under the receiver operating characteristic curve: 0.97 and 0.94, respectively). In this well-characterized cohort of adult HFI patients, the 3-day food questionnaire and the glycosylation pattern of transferrin are valuable tools to facilitate the recognition and diagnosis of HFI in adult patients.
Collapse
Affiliation(s)
- Bianca Panis
- Division of Genetic Metabolic Diseases, Department of PediatricsMaastricht University Medical CenterMaastrichtThe Netherlands
- Member of European Reference Network for Hereditary Metabolic Diseases (MetabERN)
- Member of United for Metabolic Diseases (UMD)
| | - Lise E. F. Janssen
- Division of Endocrinology and Metabolic Diseases, Department of Internal MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Dirk J. Lefeber
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
- Department of NeurologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Nynke Simons
- Division of Endocrinology and Metabolic Diseases, Department of Internal MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
- Laboratory for Metabolism and Vascular Medicine, Division of General Internal Medicine, department of Internal MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
- CARIM, School for Cardiovascular DiseasesMaastrichtThe Netherlands
| | - M. Estela Rubio‐Gozalbo
- Division of Genetic Metabolic Diseases, Department of PediatricsMaastricht University Medical CenterMaastrichtThe Netherlands
- Member of European Reference Network for Hereditary Metabolic Diseases (MetabERN)
- Member of United for Metabolic Diseases (UMD)
- Department of Clinical GeneticsMaastricht University Medical Center, Maastricht UniversityMaastrichtThe Netherlands
- GROW‐School for Oncology and Developmental Biology, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | - Martijn C. G. J. Brouwers
- Member of European Reference Network for Hereditary Metabolic Diseases (MetabERN)
- Member of United for Metabolic Diseases (UMD)
- Division of Endocrinology and Metabolic Diseases, Department of Internal MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
- Laboratory for Metabolism and Vascular Medicine, Division of General Internal Medicine, department of Internal MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
- CARIM, School for Cardiovascular DiseasesMaastrichtThe Netherlands
| |
Collapse
|
4
|
Tang M, Chen X, Ni Q, Lu Y, Wu B, Wang H, Yin Z, Zhou W, Dong X. Estimation of hereditary fructose intolerance prevalence in the Chinese population. Orphanet J Rare Dis 2022; 17:326. [PMID: 36028839 PMCID: PMC9419342 DOI: 10.1186/s13023-022-02487-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/15/2022] [Indexed: 11/15/2022] Open
Abstract
Background Hereditary fructose intolerance (HFI) caused by aldolase B reduction or deficiency that results in fructose metabolism disorder. The disease prevalence in the Chinese population is unknown, which impedes the formulation of HFI screening and diagnosis strategies. Materials and methods By searching a local cohort (Chinese Children’s Rare Disease Genetic Testing Clinical Collaboration System, CCGT) and public databases (ClinVar and Human Gene Mutation Database) and reviewing HFI-related literature, we manually curated ALDOB pathogenic or likely pathogenic (P/LP) variants according to ACMG guidelines. Allele frequency (AF) information from the local database CCGT and the public databases HuaBiao and gnomAD for ALDOB P/LP variants was used to estimate and the HFI prevalence in the Chinese population and other populations by the Bayesian framework. We collected the genotype and clinical characteristics of HFI patients from the CCGT database and published literature to study genotype–phenotype relationships. Result In total, 81 variants of ALDOB were curated as P/LP. The estimated Chinese HFI prevalence was approximately 1/504,678, which was much lower than that for non-Finland European (1/23,147), Finnish in Finland (1/55,539), admixed American (1/132,801) and Ashkenazi Jewish (1/263,150) populations. By analyzing the genetic characteristics of ALDOB in the Chinese population, two variants (A338V, A338G) had significantly higher AFs in the Chinese population than in the non-Finland European population from gnomAD (all P values < 0.05). Five variants (A150P, A175D, N335K, R60*, R304Q) had significantly lower AFs (all P values < 0.1). The genotype–phenotype association analyses were based on 68 reported HFI patients from a literature review and the CCGT database. The results showed that patients carrying homozygous variant sites (especially A150P) were more likely to present nausea, and patients carrying two missense variant sites were more likely to present aversion to sweets and fruit (all P values < 0.05). Our research reveals that some gastrointestinal symptoms seem to be associated with certain genotypes. Conclusion The prevalence of HFI in the Chinese population is extremely low, and there is no need to add HFI testing to the current newborn screening programs if medical costs are considered. A genetic testing strategy is suggested for early diagnosis of HFI. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02487-3.
Collapse
Affiliation(s)
- Meiling Tang
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Xiang Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Qi Ni
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Yulan Lu
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Huijun Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Zhaoqing Yin
- Department of Pediatrics, Dehong Hospital of Kunming Medical University, Dehong, 678400, China
| | - Wenhao Zhou
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Xinran Dong
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Singh SK, Sarma MS. Hereditary fructose intolerance: A comprehensive review. World J Clin Pediatr 2022; 11:321-329. [PMID: 36052111 PMCID: PMC9331401 DOI: 10.5409/wjcp.v11.i4.321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/08/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Hereditary fructose intolerance (HFI) is a rare autosomal recessive inherited disorder that occurs due to the mutation of enzyme aldolase B located on chromosome 9q22.3. A fructose load leads to the rapid accumulation of fructose 1-phosphate and manifests with its downstream effects. Most commonly children are affected with gastrointestinal symptoms, feeding issues, aversion to sweets and hypoglycemia. Liver manifestations include an asymptomatic increase of transaminases, steatohepatitis and rarely liver failure. Renal involvement usually occurs in the form of proximal renal tubular acidosis and may lead to chronic renal insufficiency. For confirmation, a genetic test is favored over the measurement of aldolase B activity in the liver biopsy specimen. The crux of HFI management lies in the absolute avoidance of foods containing fructose, sucrose, and sorbitol (FSS). There are many dilemmas regarding tolerance, dietary restriction and occurrence of steatohepatitis. Patients with HFI who adhere strictly to FSS free diet have an excellent prognosis with a normal lifespan. This review attempts to increase awareness and provide a comprehensive review of this rare but treatable disorder.
Collapse
Affiliation(s)
- Sumit Kumar Singh
- Department of Pediatrics, Sri Aurobindo Medical College and PGI, Indore 453555, Madhya Pradesh, India
| | - Moinak Sen Sarma
- Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|