1
|
Sanei ZS, Shahrahmani F, Khaleghi Manesh B, Hamidi-Alamdari D, Mehrad-Majd H, Mavaji Darban B, Mirdoosti SM, Seddigh-Shamsi M. Methylene blue for COVID-19 ARDS: insights from a randomized Clinical Trial. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1915-1924. [PMID: 39207597 DOI: 10.1007/s00210-024-03371-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Around the world, the COVID-19 pandemic has presented many difficulties, and acute respiratory distress syndrome (ARDS) has become a major worry. The antiviral and anti-inflammatory characteristics of methylene blue (MB) have garnered interest for potential medicinal applications. The object of the current study is to assess the effect of orally administered MB on the treatment of ARDS associated with COVID-19. METHOD A randomized clinical study was carried out on 122 hospitalized patients who had ARDS related to COVID-19. Patients who met the eligibility requirements were randomized at random to either the control group (CG) (n = 60) or the intervention group (IG) (n = 62). Standard treatments were administered to both groups, with the addition of oral MB to the IG. Clinical outcomes, including SpO2 levels, CRP levels were assessed on the third and fifth days. Additionally, at the time of discharge, patients' assessments were made in terms of APACHE II scores, SOFA scores, LDH and CRP levels, SpO2, and respiratory rate in comparison to the day prior to the intervention. Patients were followed for mortality outcomes at one month and three months after the intervention. RESULTS Significant changes were observed in SpO2 levels over time (P < 0.001) and between groups (P = 0.022), with higher levels in the MB-treated group. The interaction between time and group (P = 0.019) indicated a stronger increase in SpO2 in the IG, with the IG's SpO2 level increasing by 6.42%. Furthermore, CRP levels showed significant changes over time (P < 0.001), but not between groups (P = 0.092). However, the interaction between group and CRP change over time (P = 0.019) suggested a distinct pattern of CRP decrease in the IG. Significant improvement in RR, SpO2, CRP, and APACHE II score were found according to discharge results. However, in terms of SpO2 and the APACHE II score, this improvement was noteworthy for IG. The length of hospitalization and mortality rates at one- and three-month follow-ups did not differ significantly. CONCLUSION Oral administration of MB demonstrated positive effects on improving SpO2 levels and reducing inflammatory markers in COVID-19-related ARDS patients. Despite no significant impact on survival rates or hospitalization length, the study supports the potential efficacy of MB as an alternative treatment for COVID-19 ARDS. TRIAL REGISTRATION This study was registered with the Iranian Registry of Clinical Trials ( http://www.irct.ir ) under the registration code IRCT20200409047007N2 on 11/29/2021.
Collapse
Affiliation(s)
- Zahra Sadat Sanei
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Shahrahmani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behrooz Khaleghi Manesh
- Department of Hematology-Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hassan Mehrad-Majd
- Clinical Research Development Unit, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behzad Mavaji Darban
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohsen Seddigh-Shamsi
- Department of Hematology-Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Gracia-Pinilla MÁ, Ramos-Delgado NA, Rosero-Arias C, Sanders R, Bartling S, Winczewski J, Gardeniers H, Susarrey-Arce A. Additive manufacturing of hollow connected networks for solar photo-Fenton-like catalysis. RSC SUSTAINABILITY 2024; 2:3897-3908. [PMID: 39445226 PMCID: PMC11492987 DOI: 10.1039/d4su00312h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
A 3D-printing approach is used to fabricate green bodies/precursor microarchitectures that, upon annealing, allow the fabrication of hierarchical 3D hollow microarchitectures (3DHMs). The 3DHMs are composed mainly of TiO2 and inorganic stabilizers that enable the production of inorganic cellular units upon thermal annealing at 650 °C. Morphological inspection reveals that the 3D architecture beams comprise TiO2 nanoparticles (NPs). The inner and outer diameters of the hollow beams are ∼80 μm and ∼150 μm, retained throughout the 3D hollow network. A proof-of-concept photo-Fenton reaction is assessed. The 3DHMs are impregnated with α-Fe2O3 NPs to evaluate solar photo-Fenton degradation of organic compounds, such as MB used as control and acetaminophen, an organic pollutant. The optical, structural, and chemical environment characteristics, alongside scavenger analysis, generate insights into the proposed solar photo-Fenton degradation reaction over TiO2 3DHMs loaded with α-Fe2O3. Our work demonstrates newly hollow printed microarchitecture with interconnected networks, which can help direct catalytic reactions.
Collapse
Affiliation(s)
- Miguel Ángel Gracia-Pinilla
- Department of Chemical Engineering, MESA+ Institute, University of Twente P. O. Box 217 Enschede 7500AE The Netherlands
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO Box 217 Enschede 7500 AE The Netherlands
- Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León San Nicolás de los Garza Nuevo León 66455 Mexico
| | - Norma Alicia Ramos-Delgado
- Department of Chemical Engineering, MESA+ Institute, University of Twente P. O. Box 217 Enschede 7500AE The Netherlands
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO Box 217 Enschede 7500 AE The Netherlands
- Centro de Investigación e Innovación Tecnológica, IxM CONAHCyT-Tecnológico Nacional de México/I.T. Nuevo León Apodaca Nuevo León Mexico
| | - Cristian Rosero-Arias
- Department of Chemical Engineering, MESA+ Institute, University of Twente P. O. Box 217 Enschede 7500AE The Netherlands
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO Box 217 Enschede 7500 AE The Netherlands
- School of Engineering and Sciences, Tecnologico de Monterrey Eugenio Garza Sada 2501 Monterrey 64849 NL Mexico
| | - Remco Sanders
- Department of Chemical Engineering, MESA+ Institute, University of Twente P. O. Box 217 Enschede 7500AE The Netherlands
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO Box 217 Enschede 7500 AE The Netherlands
| | - Stephan Bartling
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Strasse 29a D-18059 Rostock Germany
| | - Jędrzej Winczewski
- Department of Chemical Engineering, MESA+ Institute, University of Twente P. O. Box 217 Enschede 7500AE The Netherlands
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO Box 217 Enschede 7500 AE The Netherlands
| | - Han Gardeniers
- Department of Chemical Engineering, MESA+ Institute, University of Twente P. O. Box 217 Enschede 7500AE The Netherlands
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO Box 217 Enschede 7500 AE The Netherlands
| | - Arturo Susarrey-Arce
- Department of Chemical Engineering, MESA+ Institute, University of Twente P. O. Box 217 Enschede 7500AE The Netherlands
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO Box 217 Enschede 7500 AE The Netherlands
| |
Collapse
|
3
|
Wei L, Ma Y, Ren Y, Lu S, Xiao X, Luo S, An X, Li E, Fan H, Song L. Methylene Blue Has Strong Extracellular Virucidal Activity Against a SARS-CoV-2-Related Pangolin Coronavirus with No Intracellular or In Vivo Efficacy. Pathogens 2024; 13:958. [PMID: 39599511 PMCID: PMC11597880 DOI: 10.3390/pathogens13110958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Studies have demonstrated that methylene blue exhibits significant antiviral activity against SARS-CoV-2 or related coronaviruses at the cellular level, suggesting its potential as an anti-SARS-CoV-2 drug. Herein, we report that methylene blue does not exhibit noticeable antiviral activity in a lethal model involving SARS-CoV-2-related pangolin coronavirus GX_P2V (short_3UTR) infection in CAG-hACE2 transgenic mice. We employed plaque reduction assays and cell infection experiments to compare the extracellular virucidal activity of the compound and its ability to inhibit viral replication in cells to those of nirmatrelvir. Methylene blue demonstrated strong virucidal activity but did not inhibit viral replication in cells. The control compound nirmatrelvir lacked virucidal activity but exhibited strong abilities to inhibit viral replication. The virucidal activity of methylene blue was further tested in mouse plasma. Incubation in mouse plasma increased the virucidal EC50 value of methylene blue, indicating that mouse plasma can affect the stability of the compound, although mouse plasma has some extent of natural virucidal activity. These findings elucidate why methylene blue lacks antiviral efficacy in vivo and provide insights for the development of antiviral drugs.
Collapse
Affiliation(s)
- Lai Wei
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100089, China; (L.W.); (Y.M.); (S.L.); (X.A.)
| | - Yuezhen Ma
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100089, China; (L.W.); (Y.M.); (S.L.); (X.A.)
| | - Yuhao Ren
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences (AMMS), Beijing 100071, China;
| | - Shanshan Lu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100089, China; (L.W.); (Y.M.); (S.L.); (X.A.)
| | - Xiumei Xiao
- The Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China;
| | - Shengdong Luo
- Institute of Infectious Diseases Medicine, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China;
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100089, China; (L.W.); (Y.M.); (S.L.); (X.A.)
| | - Erguang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100089, China; (L.W.); (Y.M.); (S.L.); (X.A.)
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100089, China; (L.W.); (Y.M.); (S.L.); (X.A.)
| |
Collapse
|
4
|
Emadi E, Hamidi Alamdari D, Attaran D, Attaran S. Application of methylene blue for the prevention and treatment of COVID-19: A narrative review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:780-792. [PMID: 38800024 PMCID: PMC11127079 DOI: 10.22038/ijbms.2024.71871.15617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/06/2024] [Indexed: 05/29/2024]
Abstract
The newest virus from the SARS family of viruses called acute syndrome-coronavirus-2 (SARS-CoV-2), which causes COVID-19 disease, was identified in China at the end of 2019. In March 2020, after it spread to 29 additional countries, it was declared a pandemic by the World Health Organization (WHO). SARS-CoV-2 infection mainly starts through the respiratory tract and causes a wide spectrum of symptoms from asymptomatic infections to acute respiratory distress syndrome with multi-organ failure and vasoplegic shock. Among the many immunomodulatory and antiviral drugs that have been studied for the treatment of COVID-19, methylene blue (MB) may play an influential role. This article reviews the history of MB applications, the antiviral effects of MB against SARS-CoV-2, and the results of in vivo and in vitro studies of the use of MB in COVID-19. Based on studies, MB can simultaneously affect most of the host's harmful responses caused by SARS-CoV-2 infection due to its multiple properties, including anti-hypoxemia, anti-oxidant, immune system modulator, and antiviral. The use of MB is associated with a reduction in the possibility of getting infection, and mortality, and can be used as a safe, effective, cheap, and available treatment option with minimal side effects for the clinical management of COVID-19.
Collapse
Affiliation(s)
- Elaheh Emadi
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Daryoush Hamidi Alamdari
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Davood Attaran
- Lung Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soroush Attaran
- Lung Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Kovalenko I, Kholina E, Fedorov V, Khruschev S, Vasyuchenko E, Meerovich G, Strakhovskaya M. Interaction of Methylene Blue with Severe Acute Respiratory Syndrome Coronavirus 2 Envelope Revealed by Molecular Modeling. Int J Mol Sci 2023; 24:15909. [PMID: 37958892 PMCID: PMC10650479 DOI: 10.3390/ijms242115909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Methylene blue has multiple antiviral properties against Severe Acute Respiratory Syndrome-related Coronavirus 2 (SARS-CoV-2). The ability of methylene blue to inhibit different stages of the virus life cycle, both in light-independent and photodynamic processes, is used in clinical practice. At the same time, the molecular aspects of the interactions of methylene blue with molecular components of coronaviruses are not fully understood. Here, we use Brownian dynamics to identify methylene blue binding sites on the SARS-CoV-2 envelope. The local lipid and protein composition of the coronavirus envelope plays a crucial role in the binding of this cationic dye. Viral structures targeted by methylene blue include the S and E proteins and negatively charged lipids. We compare the obtained results with known experimental data on the antiviral effects of methylene blue to elucidate the molecular basis of its activity against coronaviruses.
Collapse
Affiliation(s)
- Ilya Kovalenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (I.K.); (E.K.); (V.F.); (S.K.); (E.V.)
- Scientific and Educational Mathematical Center «Sofia Kovalevskaya Northwestern Center for Mathematical Research», Pskov State University, Pskov 180000, Russia
| | - Ekaterina Kholina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (I.K.); (E.K.); (V.F.); (S.K.); (E.V.)
| | - Vladimir Fedorov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (I.K.); (E.K.); (V.F.); (S.K.); (E.V.)
| | - Sergei Khruschev
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (I.K.); (E.K.); (V.F.); (S.K.); (E.V.)
| | - Ekaterina Vasyuchenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (I.K.); (E.K.); (V.F.); (S.K.); (E.V.)
| | - Gennady Meerovich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia
- Institute for Physics and Engineering in Biomedicine, National Research Nuclear University “MEPHI”, Moscow 115409, Russia
| | - Marina Strakhovskaya
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (I.K.); (E.K.); (V.F.); (S.K.); (E.V.)
| |
Collapse
|
6
|
Broad-Spectrum Small-Molecule Inhibitors of the SARS-CoV-2 Spike-ACE2 Protein-Protein Interaction from a Chemical Space of Privileged Protein Binders. Pharmaceuticals (Basel) 2022; 15:ph15091084. [PMID: 36145305 PMCID: PMC9504289 DOI: 10.3390/ph15091084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Therapeutically useful small-molecule inhibitors (SMIs) of protein−protein interactions (PPIs) initiating the cell attachment and entry of viruses could provide novel alternative antivirals that act via mechanisms similar to that of neutralizing antibodies but retain the advantages of small-molecule drugs such as oral bioavailability and low likelihood of immunogenicity. From screening our library, which is focused around the chemical space of organic dyes to provide good protein binders, we have identified several promising SMIs of the SARS-CoV-2 spike—ACE2 interaction, which is needed for the attachment and cell entry of this coronavirus behind the COVID-19 pandemic. They included organic dyes, such as Congo red, direct violet 1, and Evans blue, which seem to be promiscuous PPI inhibitors, as well as novel drug-like compounds (e.g., DRI-C23041). Here, we show that in addition to the original SARS-CoV-2 strain, these SMIs also inhibit this PPI for variants of concern including delta (B.1.617.2) and omicron (B.1.1.529) as well as HCoV-NL63 with low- or even sub-micromolar activity. They also concentration-dependently inhibited SARS-CoV-2-S expressing pseudovirus entry into hACE2-expressing cells with low micromolar activity (IC50 < 10 μM) both for the original strain and the delta variant. DRI-C23041 showed good therapeutic (selectivity) index, i.e., separation between activity and cytotoxicity (TI > 100). Specificities and activities require further optimization; nevertheless, these results provide a promising starting point toward novel broad-spectrum small-molecule antivirals that act via blocking the interaction between the spike proteins of coronaviruses and their ACE2 receptor initiating cellular entry.
Collapse
|
7
|
Calvo-Alvarez E, Dolci M, Perego F, Signorini L, Parapini S, D’Alessandro S, Denti L, Basilico N, Taramelli D, Ferrante P, Delbue S. Antiparasitic Drugs against SARS-CoV-2: A Comprehensive Literature Survey. Microorganisms 2022; 10:1284. [PMID: 35889004 PMCID: PMC9320270 DOI: 10.3390/microorganisms10071284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/09/2023] Open
Abstract
More than two years have passed since the viral outbreak that led to the novel infectious respiratory disease COVID-19, caused by the SARS-CoV-2 coronavirus. Since then, the urgency for effective treatments resulted in unprecedented efforts to develop new vaccines and to accelerate the drug discovery pipeline, mainly through the repurposing of well-known compounds with broad antiviral effects. In particular, antiparasitic drugs historically used against human infections due to protozoa or helminth parasites have entered the main stage as a miracle cure in the fight against SARS-CoV-2. Despite having demonstrated promising anti-SARS-CoV-2 activities in vitro, conflicting results have made their translation into clinical practice more difficult than expected. Since many studies involving antiparasitic drugs are currently under investigation, the window of opportunity might be not closed yet. Here, we will review the (controversial) journey of these old antiparasitic drugs to combat the human infection caused by the novel coronavirus SARS-CoV-2.
Collapse
Affiliation(s)
- Estefanía Calvo-Alvarez
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Maria Dolci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Federica Perego
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Silvia Parapini
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Sarah D’Alessandro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (S.D.); (D.T.)
| | - Luca Denti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Donatella Taramelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (S.D.); (D.T.)
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (M.D.); (F.P.); (L.S.); (L.D.); (N.B.); (P.F.); (S.D.)
| |
Collapse
|
8
|
Chuang ST, Papp H, Kuczmog A, Eells R, Condor Capcha JM, Shehadeh LA, Jakab F, Buchwald P. Methylene Blue Is a Nonspecific Protein-Protein Interaction Inhibitor with Potential for Repurposing as an Antiviral for COVID-19. Pharmaceuticals (Basel) 2022; 15:621. [PMID: 35631447 PMCID: PMC9144480 DOI: 10.3390/ph15050621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/07/2023] Open
Abstract
We have previously identified methylene blue, a tricyclic phenothiazine dye approved for clinical use for the treatment of methemoglobinemia and for other medical applications as a small-molecule inhibitor of the protein-protein interaction (PPI) between the spike protein of the SARS-CoV-2 coronavirus and ACE2, the first critical step of the attachment and entry of this coronavirus responsible for the COVID-19 pandemic. Here, we show that methylene blue concentration dependently inhibits this PPI for the spike protein of the original strain as well as for those of variants of concern such as the D614G mutant and delta (B.1.617.2) with IC50 in the low micromolar range (1-5 μM). Methylene blue also showed promiscuous activity and inhibited several other PPIs of viral proteins (e.g., HCoV-NL63-ACE2, hepatitis C virus E-CD81) as well as others (e.g., IL-2-IL-2Rα) with similar potency. This nonspecificity notwithstanding, methylene blue inhibited the entry of pseudoviruses bearing the spike protein of SARS-CoV-2 in hACE2-expressing host cells, both for the original strain and the delta variant. It also blocked SARS-CoV-2 (B.1.5) virus replication in Vero E6 cells with an IC50 in the low micromolar range (1.7 μM) when assayed using quantitative PCR of the viral RNA. Thus, while it seems to be a promiscuous PPI inhibitor with low micromolar activity and has a relatively narrow therapeutic index, methylene blue inhibits entry and replication of SARS-CoV-2, including several of its mutant variants, and has potential as a possible inexpensive, broad-spectrum, orally bioactive small-molecule antiviral for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Sung-Ting Chuang
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Henrietta Papp
- National Laboratory of Virology, University of Pécs, 7622 Pécs, Hungary; (H.P.); (A.K.); (F.J.)
- Institute of Biology, Faculty of Sciences, University of Pécs, 7622 Pécs, Hungary
| | - Anett Kuczmog
- National Laboratory of Virology, University of Pécs, 7622 Pécs, Hungary; (H.P.); (A.K.); (F.J.)
- Institute of Biology, Faculty of Sciences, University of Pécs, 7622 Pécs, Hungary
| | | | - Jose M. Condor Capcha
- Division of Cardiology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.M.C.C.); (L.A.S.)
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Lina A. Shehadeh
- Division of Cardiology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.M.C.C.); (L.A.S.)
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ferenc Jakab
- National Laboratory of Virology, University of Pécs, 7622 Pécs, Hungary; (H.P.); (A.K.); (F.J.)
- Institute of Biology, Faculty of Sciences, University of Pécs, 7622 Pécs, Hungary
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
9
|
Delandre O, Gendrot M, Jardot P, Le Bideau M, Boxberger M, Boschi C, Fonta I, Mosnier J, Hutter S, Levasseur A, La Scola B, Pradines B. Antiviral Activity of Repurposing Ivermectin against a Panel of 30 Clinical SARS-CoV-2 Strains Belonging to 14 Variants. Pharmaceuticals (Basel) 2022; 15:445. [PMID: 35455442 PMCID: PMC9024598 DOI: 10.3390/ph15040445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Over the past two years, several variants of SARS-CoV-2 have emerged and spread all over the world. However, infectivity, clinical severity, re-infection, virulence, transmissibility, vaccine responses and escape, and epidemiological aspects have differed between SARS-CoV-2 variants. Currently, very few treatments are recommended against SARS-CoV-2. Identification of effective drugs among repurposing FDA-approved drugs is a rapid, efficient and low-cost strategy against SARS-CoV-2. One of those drugs is ivermectin. Ivermectin is an antihelminthic agent that previously showed in vitro effects against a SARS-CoV-2 isolate (Australia/VI01/2020 isolate) with an IC50 of around 2 µM. We evaluated the in vitro activity of ivermectin on Vero E6 cells infected with 30 clinically isolated SARS-CoV-2 strains belonging to 14 different variants, and particularly 17 strains belonging to six variants of concern (VOC) (variants related to Wuhan, alpha, beta, gamma, delta and omicron). The in vitro activity of ivermectin was compared to those of chloroquine and remdesivir. Unlike chloroquine (EC50 from 4.3 ± 2.5 to 29.3 ± 5.2 µM) or remdesivir (EC50 from 0.4 ± 0.3 to 25.2 ± 9.4 µM), ivermectin showed a relatively homogeneous in vitro activity against SARS-CoV-2 regardless of the strains or variants (EC50 from 5.1 ± 0.5 to 6.7 ± 0.4 µM), except for one omicron strain (EC50 = 1.3 ± 0.5 µM). Ivermectin (No. EC50 = 219, mean EC50 = 5.7 ± 1.0 µM) was, overall, more potent in vitro than chloroquine (No. EC50 = 214, mean EC50 = 16.1 ± 9.0 µM) (p = 1.3 × 10-34) and remdesivir (No. EC50 = 201, mean EC50 = 11.9 ± 10.0 µM) (p = 1.6 × 10-13). These results should be interpreted with caution regarding the potential use of ivermectin in SARS-CoV-2-infected patients: it is difficult to translate in vitro study results into actual clinical treatment in patients.
Collapse
Affiliation(s)
- Océane Delandre
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
| | - Mathieu Gendrot
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
| | - Priscilla Jardot
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Marion Le Bideau
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Manon Boxberger
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Céline Boschi
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Isabelle Fonta
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Centre National de Référence du Paludisme, 13005 Marseille, France
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Centre National de Référence du Paludisme, 13005 Marseille, France
| | - Sébastien Hutter
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
| | - Anthony Levasseur
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Centre National de Référence du Paludisme, 13005 Marseille, France
| |
Collapse
|