1
|
Xiang D, Xu K, Chen M, Zhang Z, Sun N, Qi Y, Lu J, Wang C, Yang S. A rare homozygous mutation in the YARS2 gene presents with hypertrophic cardiomyopathy, lactic acidosis and anemia in a Chinese infant. Gene 2024; 914:148379. [PMID: 38490507 DOI: 10.1016/j.gene.2024.148379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Affiliation(s)
- Dandan Xiang
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Kangkang Xu
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Mei Chen
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Zhongman Zhang
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Ningning Sun
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yuying Qi
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Jie Lu
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Shiwei Yang
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| |
Collapse
|
2
|
Matveeva A, Watters O, Rukhadze A, Khemka N, Gentile D, Perez IF, Llorente-Folch I, Farrell C, Lo Cacciato E, Jackson J, Piazzesi A, Wischhof L, Woods I, Halang L, Hogg M, Muñoz AG, Dillon ET, Matallanas D, Arijs I, Lambrechts D, Bano D, Connolly NMC, Prehn JHM. Integrated analysis of transcriptomic and proteomic alterations in mouse models of ALS/FTD identify early metabolic adaptions with similarities to mitochondrial dysfunction disorders. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:135-149. [PMID: 37779364 DOI: 10.1080/21678421.2023.2261979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/10/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE Sporadic and familial amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disease that results in loss of motor neurons and, in some patients, associates with frontotemporal dementia (FTD). Apart from the accumulation of proteinaceous deposits, emerging literature indicates that aberrant mitochondrial bioenergetics may contribute to the onset and progression of ALS/FTD. Here we sought to investigate the pathophysiological signatures of mitochondrial dysfunction associated with ALS/FTD. METHODS By means of label-free mass spectrometry (MS) and mRNA sequencing (mRNA-seq), we report pre-symptomatic changes in the cortices of TDP-43 and FUS mutant mouse models. Using tissues from transgenic mouse models of mitochondrial diseases as a reference, we performed comparative analyses and extracted unique and common mitochondrial signatures that revealed neuroprotective compensatory mechanisms in response to early damage. RESULTS In this regard, upregulation of both Acyl-CoA Synthetase Long-Chain Family Member 3 (ACSL3) and mitochondrial tyrosyl-tRNA synthetase 2 (YARS2) were the most representative change in pre-symptomatic ALS/FTD tissues, suggesting that fatty acid beta-oxidation and mitochondrial protein translation are mechanisms of adaptation in response to ALS/FTD pathology. CONCLUSIONS Together, our unbiased integrative analyses unveil novel molecular components that may influence mitochondrial homeostasis in the earliest phase of ALS.
Collapse
Affiliation(s)
- Anna Matveeva
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Orla Watters
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- SFI FutureNeuro Research Centre, Dublin 2, Ireland
| | - Ani Rukhadze
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Niraj Khemka
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Debora Gentile
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ivan Fernandez Perez
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Irene Llorente-Folch
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Cliona Farrell
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | | - Joshua Jackson
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Antonia Piazzesi
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ina Woods
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Luise Halang
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Marion Hogg
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- SFI FutureNeuro Research Centre, Dublin 2, Ireland
- Department of Biosciences, Nottingham Trent University, Clifton Campus, Nottingham, UK
| | - Amaya Garcia Muñoz
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Belfield, Ireland
| | - Eugène T Dillon
- Mass Spectrometry Resource, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Belfield, Ireland
| | - Ingrid Arijs
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium, and
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium, and
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Niamh M C Connolly
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jochen H M Prehn
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- SFI FutureNeuro Research Centre, Dublin 2, Ireland
| |
Collapse
|
3
|
Fang Q, Lin J, Gao L, Pan R, Zheng X. Targeting mitochondrial tyrosyl-tRNA synthetase YARS2 suppresses colorectal cancer progression. Cancer Biol Ther 2022; 23:1-8. [PMID: 36154909 PMCID: PMC9518999 DOI: 10.1080/15384047.2022.2127603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Defects in tRNA expressions and modifications had been linked to various types of tumorigenesis and progression in recent studies, including colorectal cancer. In the present study, we evaluated transcript levels of mitochondrial tyrosyl-tRNA synthetase YARS2 in both colorectal cancer tissues and normal colorectal tissues using qRT-PCR. The results revealed that the mRNA expression level of YARS2 in colorectal cancer tissues was significantly higher than those in normal intestinal tissues. Knockdown of YARS2 in human colon cancer cell-line SW620 leads to significant inhibition of cell proliferation and migration. The steady-state level of tRNATyr, OCR, and ATP synthesis were decreased in the YARS2 knockdown cells. Moreover, our data indicated that inhibition of YARS2 is associated with increased reactive oxygen species levels which sensitize these cells to 5-FU treatment. In conclusion, our study revealed that targeting YARS2 could inhibit colorectal cancer progression. Thus, YARS2 might be a carcinogenesis candidate gene and can serve as a potential target for clinical therapy.
Collapse
Affiliation(s)
- Qingxia Fang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Jingyang Lin
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Liang Gao
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Institute for Cell-Based Drug Development of Zhejiang Province, Hangzhou, China
| | - Xiaochun Zheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| |
Collapse
|
4
|
Del Greco C, Antonellis A. The Role of Nuclear-Encoded Mitochondrial tRNA Charging Enzymes in Human Inherited Disease. Genes (Basel) 2022; 13:2319. [PMID: 36553587 PMCID: PMC9777667 DOI: 10.3390/genes13122319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are highly conserved essential enzymes that charge tRNA with cognate amino acids-the first step of protein synthesis. Of the 37 nuclear-encoded human ARS genes, 17 encode enzymes are exclusively targeted to the mitochondria (mt-ARSs). Mutations in nuclear mt-ARS genes are associated with rare, recessive human diseases with a broad range of clinical phenotypes. While the hypothesized disease mechanism is a loss-of-function effect, there is significant clinical heterogeneity among patients that have mutations in different mt-ARS genes and also among patients that have mutations in the same mt-ARS gene. This observation suggests that additional factors are involved in disease etiology. In this review, we present our current understanding of diseases caused by mutations in the genes encoding mt-ARSs and propose explanations for the observed clinical heterogeneity.
Collapse
Affiliation(s)
- Christina Del Greco
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|