1
|
Tăluță C, Ștefănescu H, Crișan D. Seeing and Sensing the Hepatorenal Syndrome (HRS): The Growing Role of Ultrasound-Based Techniques as Non-Invasive Tools for the Diagnosis of HRS. Diagnostics (Basel) 2024; 14:938. [PMID: 38732353 PMCID: PMC11083774 DOI: 10.3390/diagnostics14090938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
More than half of patients hospitalized with liver cirrhosis are dealing with an episode of acute kidney injury; the most severe pattern is hepatorenal syndrome due to its negative prognosis. The main physiopathology mechanisms involve renal vasoconstriction and systemic inflammation. During the last decade, the definition of hepatorenal syndrome changed, but the validated criteria of diagnosis are still based on the serum creatinine level, which is a biomarker with multiple limitations. This is the reason why novel serum and urinary biomarkers have been intensively studied in recent years. Meanwhile, the imaging studies that use shear wave elastography are using renal stiffness as a surrogate for an early diagnosis. In this article, we focus on the physiopathology definition and highlight the novel tools used in the diagnosis of hepatorenal syndrome.
Collapse
Affiliation(s)
- Cornelia Tăluță
- Liver Unit, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Horia Ștefănescu
- Liver Unit, Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Dana Crișan
- 5th Medical Clinic, Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400139 Cluj-Napoca, Romania;
| |
Collapse
|
2
|
Yeom KM, Chang JI, Yoo JJ, Moon JE, Sinn DH, Kim YS, Kim SG. Addition of Kidney Dysfunction Type to MELD-Na for the Prediction of Survival in Cirrhotic Patients Awaiting Liver Transplantation in Comparison with MELD 3.0 with Albumin. Diagnostics (Basel) 2023; 14:39. [PMID: 38201348 PMCID: PMC10804312 DOI: 10.3390/diagnostics14010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
It is well known that renal dysfunction has a devastating effect on the prognosis of liver cirrhosis. In this study, the aim was to assess whether the incorporation of the kidney dysfunction type into the MELD-Na score enhances its predictive capacity for outcomes in patients awaiting liver transplantation (LT), compared to utilizing the MELD 3.0 score with albumin. In total, 2080 patients awaiting the LT were enrolled at two tertiary care institutions in Korea. Discrimination abilities were analyzed by using Harrell's c-index and iAUC values between MELD-Na-kidney dysfunction type (MELD-Na-KT) and MELD 3.0 with albumin. Clinical endpoints encompassed 3-month survival, 3-month transplant-free survival (TFS), overall survival (OS), and total TFS. Out of the total of 2080 individuals, 669 (32.16%) were male. Regarding the types of renal function impairment, 1614 (77.6%) were in the normal group, 112 (5.38%) in the AKD group, 320 (15.35%) in the CKD group, and 34 (1.63%) were in the AKD on CKD group. MELD 3.0 with albumin showed better discrimination (c-index = 0.714) compared to MELD-Na-KT (c-index = 0.708) in predicting 3-month survival. Similar results were observed for OS, 3-month TFS, and total TFS as well. When divided by sex, MELD 3.0 with albumin showed the comparable prediction of 3-month survival to MELD-Na-KT (c-index 0.675 vs. 0.671, p-value 0.221) in males. However, in the female group, MELD 3.0 with albumin demonstrated better results compared to MELD-Na-KT (c-index 0.733 vs. 0.723, p-value 0.001). The integration of kidney dysfunction types into the MELD-Na did not yield superior prognostic results compared to the MELD 3.0 score with albumin. Rather, in the female group, the MELD 3.0 score with albumin was better able to predict survival. These findings suggest that laboratory values pertaining to liver dysfunction or creatinine levels may be more significant than the type of kidney dysfunction when predicting the short-term prognosis of LT candidates.
Collapse
Affiliation(s)
- Kyeong-Min Yeom
- Department of Internal Medicine, SoonChunHyang University School of Medicine, Bucheon 14584, Republic of Korea; (K.-M.Y.); (Y.S.K.)
| | - Jong-In Chang
- Department of Medicine, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong 06973, Republic of Korea;
| | - Jeong-Ju Yoo
- Department of Internal Medicine, SoonChunHyang University School of Medicine, Bucheon 14584, Republic of Korea; (K.-M.Y.); (Y.S.K.)
| | - Ji Eun Moon
- Department of Statistics, SoonChunHyang University School of Medicine, Bucheon 31538, Republic of Korea;
| | - Dong Hyun Sinn
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| | - Young Seok Kim
- Department of Internal Medicine, SoonChunHyang University School of Medicine, Bucheon 14584, Republic of Korea; (K.-M.Y.); (Y.S.K.)
| | - Sang Gyune Kim
- Department of Internal Medicine, SoonChunHyang University School of Medicine, Bucheon 14584, Republic of Korea; (K.-M.Y.); (Y.S.K.)
| |
Collapse
|
3
|
Yoo JJ, Park MY, Kim SG. Acute kidney injury in patients with acute-on-chronic liver failure: clinical significance and management. Kidney Res Clin Pract 2023; 42:286-297. [PMID: 37313610 DOI: 10.23876/j.krcp.22.264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 06/15/2023] Open
Abstract
Acute-on-chronic-liver failure (ACLF) refers to a phenomenon in which patients with chronic liver disease develop multiple organ failure due to acute exacerbation of underlying liver disease. More than 10 definitions of ACLF are extant around the world, and there is lack of consensus on whether extrahepatic organ failure is a main component or a consequence of ACLF. Asian and European consortiums have their own definitions of ACLF. The Asian Pacific Association for the Study of the Liver ACLF Research Consortium does not consider kidney failure as a diagnostic criterion for ACLF. Meanwhile, the European Association for the Study of the Liver Chronic Liver Failure and the North American Consortium for the Study of End-stage Liver Disease do consider kidney failure as an important factor in diagnosing and assessing the severity of ACLF. When kidney failure occurs in ACLF patients, treatment varies depending on the presence and stage of acute kidney injury (AKI). In general, the diagnosis of AKI in cirrhotic patients is based on the International Club of Ascites criteria: an increase of 0.3 mg/dL or more within 48 hours or a serum creatinine increase of 50% or more within one week. This study underscores the importance of kidney failure or AKI in patients with ACLF by reviewing its pathophysiology, prevention methods, and treatment approaches.
Collapse
Affiliation(s)
- Jeong-Ju Yoo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University School of Medicine, Bucheon, Republic of Korea
| | - Moo Yong Park
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University School of Medicine, Bucheon, Republic of Korea
| | - Sang Gyune Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University School of Medicine, Bucheon, Republic of Korea
| |
Collapse
|
4
|
Liu Y, Guan X, Shao Y, Zhou J, Huang Y. The Molecular Mechanism and Therapeutic Strategy of Cardiorenal Syndrome Type 3. Rev Cardiovasc Med 2023; 24:52. [PMID: 39077418 PMCID: PMC11273121 DOI: 10.31083/j.rcm2402052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 07/31/2024] Open
Abstract
Cardiorenal syndrome type 3 (CRS3) is defined as acute kidney injury (AKI)-induced acute cardiac dysfunction, characterized by high morbidity and mortality. CRS3 often occurs in elderly patients with AKI who need intensive care. Approximately 70% of AKI patients develop into CRS3. CRS3 may also progress towards chronic kidney disease (CKD) and chronic cardiovascular disease (CVD). However, there is currently no effective treatment. Although the major intermediate factors that can mediate cardiac dysfunction remain elusive, recent studies have summarized the AKI biomarkers, identified direct mechanisms, including mitochondrial dysfunction, inflammation, oxidative stress, apoptosis and activation of the sympathetic nervous system (SNS) and renin-angiotensin-aldosterone system (RAAS), inflammasome, as well as indirect mechanisms such as fluid overload, electrolyte imbalances, acidemia and uremic toxins, which are involved in the pathophysiological changes of CRS3. This study reviews the main pathological characteristics, underlying molecular mechanisms, and potential therapeutic strategies of CRS3. Mitochondrial dysfunction and inflammatory factors have been identified as the key initiators and abnormal links between the impaired heart and kidney, which contribute to the formation of a vicious circle, ultimately accelerating the progression of CRS3. Therefore, targeting mitochondrial dysfunction, antioxidants, Klotho, melatonin, gene therapy, stem cells, exosomes, nanodrugs, intestinal microbiota and Traditional Chinese Medicine may serve as promising therapeutic approaches against CRS3.
Collapse
Affiliation(s)
- Yong Liu
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037 Chongqing, China
| | - Xu Guan
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037 Chongqing, China
| | - Yuming Shao
- Medical Division, Xinqiao Hospital, Army Medical University, 400037 Chongqing, China
| | - Jie Zhou
- Department of Oncology, Southwest Cancer Center, Southwest Hospital, Army Medical University, 400038 Chongqing, China
| | - Yinghui Huang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037 Chongqing, China
| |
Collapse
|
5
|
Yewale RV, Ramakrishna BS. Novel biomarkers of acute kidney injury in chronic liver disease: Where do we stand after a decade of research? Hepatol Res 2023; 53:3-17. [PMID: 36262036 DOI: 10.1111/hepr.13847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 01/03/2023]
Abstract
Acute kidney injury (AKI) is a frequently encountered complication in decompensated chronic liver disease (CLD) with an estimated prevalence of 20%-50% among hospitalized patients. AKI often heralds the onset of a downhill course in the natural history of CLD. Serum creatinine has several limitations as a stand-alone marker of AKI in patients with decompensated CLD. The concept of hepatorenal syndrome, the prototype of AKI in decompensated CLD, has evolved tremendously over recent years. There is emerging evidence of an additional "structural" component in the pathophysiology of hepatorenal syndrome-AKI, which was previously identified as a purely "functional" form of renal impairment. Lacunae in the existent biochemical arsenal for diagnosis and prognosis of AKI have fueled enthusiastic research in the field of novel biomarkers of kidney injury in patients with cirrhosis. The advent of these biomarkers provides a crucial window of opportunity to improve the diagnosis and clinical outcomes of this vulnerable cohort of patients. This review summarizes the dynamic concept of renal dysfunction in CLD and the available literature on the role of novel biomarkers of AKI in assessing renal function, identifying AKI subtypes, and predicting prognosis. There is special emphasis on the renal tubular injury marker, neutrophil gelatinase-associated lipocalin, the most exhaustively studied biomarker of AKI in the CLD population.
Collapse
Affiliation(s)
- Rohan Vijay Yewale
- Institute of Gastroenterology, Hepatobiliary Sciences and Transplantation, SRM Institutes for Medical Science, Chennai, India
| | | |
Collapse
|
6
|
Fortea JI, Crespo J, Puente Á. Cirrhosis, a Global and Challenging Disease. J Clin Med 2022; 11:6512. [PMID: 36362738 PMCID: PMC9653565 DOI: 10.3390/jcm11216512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 08/10/2023] Open
Abstract
Cirrhosis is the result of sustained liver damage leading to the diffusion of hepatic fibrosis, wherein the normal hepatic architecture is replaced by abnormally organized nodules separated by fibrous septa that connect the different vascular structures of the hepatic lobule [...].
Collapse
Affiliation(s)
- José Ignacio Fortea
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | | | | |
Collapse
|
7
|
High Glycated Hemoglobin Instead of High Body Mass Index Might Increase the Urine N-Acetyl-β-D-glucosaminidase Con-Centration in Children and Adolescents with Diabetes Mellitus. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060879. [PMID: 35743910 PMCID: PMC9225163 DOI: 10.3390/life12060879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022]
Abstract
Children with diabetes, and particularly those with obesity, have poor glycemic control. They are thus at higher risk of early microvascular complications. Renal tubulointerstitial markers are integral to evaluating diabetic nephropathy. Various biomarkers have been proposed, but their role in the obese pediatric population is uncertain. We investigated renal injury markers in children with diabetes, according to obesity, and determined their role as early predictors of diabetic nephropathy. Fifty-three children and adolescents, diagnosed with either type 1 or 2 diabetes mellitus, and 43 control children, aged 7-18 years, were included. Clinical and laboratory characteristics, including six renal injury markers, were compared among subjects according to body mass index and presence of diabetes mellitus. Urine neutrophil gelatinase-associated lipocalin, kidney injury molecule-1, and N-acetyl-β-D-glucosaminidase (NAG) showed significant difference between controls and diabetic children, whereas urine NAG was the only biomarker that was significantly lower either in non-obese or obese controls as compared to diabetic children. Urine NGAL, KIM-1, and NAG showed significant correlations with both HbA1c and urine ACR, whereas only urine NAG was significantly correlated with HbA1c even when groups were subdivided based on the presence of either obesity or diabetes. After adjusting for age, sex, body mass index, duration of known diabetes, and urine albumin-to-creatinine ratio, HbA1c remained a significant risk factor for elevated urine NAG. Urine NAG could be a useful indicator of tubulointerstitial damage in children with diabetes in the pre-albuminuric state. Tighter glycemic control appears to be crucial for avoiding early progression to diabetic nephropathy.
Collapse
|
8
|
Liang S, Luo D, Hu L, Fang M, Li J, Deng J, Fang H, Zhang H, He L, Xu J, Liang Y, Chen C. Variations of urinary N-acetyl-β-D-glucosaminidase levels and its performance in detecting acute kidney injury under different thyroid hormones levels: a prospectively recruited, observational study. BMJ Open 2022; 12:e055787. [PMID: 35241468 PMCID: PMC8896032 DOI: 10.1136/bmjopen-2021-055787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Changes in thyroid function will be accompanied by changes in urinary N-acetyl-β-D-glucosaminidase (uNAG) levels. Therefore, whether thyroid hormones interfere the ability of uNAG in detecting acute kidney injury (AKI) has raised concern in patients with critical illness. DESIGN A prospectively recruited, observational study was performed. SETTING Adults admitted to the intensive care unit of a grade A tertiary hospital in China. PARTICIPANTS A total of 1919 critically ill patients were enrolled in the study. MAIN OUTCOME MEASURES To investigate the variations of the ability of uNAG to detect AKI in patients with critical illness under different thyroid hormones levels (differences in area under the curve (AUC) for uNAG diagnosis and prediction of AKI with different thyroid hormones levels). RESULTS The bivariate correlation analysis revealed that FT3 and TT3 levels were independently associated with uNAG levels (p<0.001). FT3 and uNAG also showed correlation in multivariable linear regression analysis (p<0.001). After stratification according to the levels of FT3 or TT3, significant variation was observed in the uNAG levels with different quartiles (p<0.05). However, in patients with varying FT3 and TT3 levels, no significant difference was found in the AUCs of uNAG to detect AKI (p>0.05). CONCLUSIONS Even if uNAG levels varied with FT3 and TT3 levels, these hormones did not interfere with uNAG's ability to detect AKI in patients with critical illness.
Collapse
Affiliation(s)
- Silin Liang
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 Dongchuan Road, Guangzhou 510080, Guangdong Province, People's Republic of China
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, People's Republic of China
| | - Dandong Luo
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 Dongchuan Road, Guangzhou 510080, Guangdong Province, People's Republic of China
| | - Linhui Hu
- Department of Critical Care Medicine, Maoming People's Hospital, 101 Weimin Road, Maoming 525000, Guangdong Province, People's Republic of China
- Center of Scientific Research, Maoming People's Hospital, 101 Weimin Road, Maoming 525000, Guangdong Province, People's Republic of China
| | - Miaoxian Fang
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 Dongchuan Road, Guangzhou 510080, Guangdong Province, People's Republic of China
| | - Jiaxin Li
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 Dongchuan Road, Guangzhou 510080, Guangdong Province, People's Republic of China
| | - Jia Deng
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 Dongchuan Road, Guangzhou 510080, Guangdong Province, People's Republic of China
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, People's Republic of China
| | - Heng Fang
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 Dongchuan Road, Guangzhou 510080, Guangdong Province, People's Republic of China
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, People's Republic of China
| | - Huidan Zhang
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 Dongchuan Road, Guangzhou 510080, Guangdong Province, People's Republic of China
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, People's Republic of China
| | - Linling He
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 Dongchuan Road, Guangzhou 510080, Guangdong Province, People's Republic of China
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, People's Republic of China
| | - Jing Xu
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 Dongchuan Road, Guangzhou 510080, Guangdong Province, People's Republic of China
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, People's Republic of China
| | - Yufan Liang
- Department of Critical Care Medicine, Maoming People's Hospital, 101 Weimin Road, Maoming 525000, Guangdong Province, People's Republic of China
- Center of Scientific Research, Maoming People's Hospital, 101 Weimin Road, Maoming 525000, Guangdong Province, People's Republic of China
| | - Chunbo Chen
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 Dongchuan Road, Guangzhou 510080, Guangdong Province, People's Republic of China
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, People's Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|