1
|
Forouzan EJ, Rashid MY, Nasr NF, Abd-Elsayed A, Knezevic NN. The Potential of Spinal Cord Stimulation in Treating Spinal Cord Injury. Curr Pain Headache Rep 2025; 29:35. [PMID: 39869234 DOI: 10.1007/s11916-024-01311-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/28/2025]
Abstract
PURPOSE OF THE REVIEW In the United States, spinal cord injuries affect approximately 18,000 individuals annually, most commonly resulting from mechanical trauma. The consequent paraplegia severely impairs motor functions, creating an urgent need for innovative therapeutic strategies that extend beyond traditional rehabilitation and pharmacotherapy. This review assesses the effectiveness of Spinal Cord Stimulation (SCS) in improving motor function in patients with spinal cord injuries, with a particular focus on paraplegia. SCS, an emerging intervention, has gained attention for its ability to activate paralyzed muscles and enhance the effects of physical therapy. RECENT FINDINGS Our review demonstrates that SCS can lead to significant functional improvements when optimally combined with rehabilitation strategies. The success of SCS depends largely on the precise placement of electrodes with individualized parameters and the integration of stimulation with intensive physical training. This review underscores the considerable potential of SCS to improve motor outcomes in individuals with paraplegia caused by spinal cord injury, emphasizing the need for further research to optimize SCS parameters, electrode placement, and its integration with rehabilitation protocols. This review highlights the potential of SCS as a therapeutic intervention for improving motor function in individuals with paraplegia caused by spinal cord injuries.
Collapse
Affiliation(s)
- Eli Justin Forouzan
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, 60657, USA
| | - Mohammed Yousif Rashid
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, 60657, USA
| | - Ned F Nasr
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, 60657, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, 60657, USA.
- Department of Anesthesiology, University of Illinois, Chicago, IL, 60612, USA.
- Department of Surgery, University of Illinois, Chicago, IL, 60612, USA.
| |
Collapse
|
2
|
León F, Rojas C, Aliseda MJ, Del Río G, Monzalvo E, Pliego-Carrillo A, Figueroa J, Ibarra A, Lavrov I, Cuellar CA. Case report: Combined transcutaneous spinal cord stimulation and physical therapy on recovery of neurological function after spinal cord infarction. Front Med (Lausanne) 2024; 11:1459835. [PMID: 39568740 PMCID: PMC11576297 DOI: 10.3389/fmed.2024.1459835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024] Open
Abstract
The case of a 37-year-old woman who suffered from spinal cord infarction (SI), resulting in a complete spinal cord injury (AIS A, neurological level T10), and autonomic dysfunction is presented. This study aimed to assess the effect of transcutaneous Spinal Cord Electrical Stimulation (tSCS) on improving motor, sensory, and autonomic function after SI. During the first 8 months, tSCS was applied alone, then, physical therapy (PT) was included in the sessions (tSCS+PT), until completion of 20 months. Compared to baseline, at 20 months, an increase in ISNCSCI motor (50 vs. 57) and sensory scores (light touch, 72 vs. 82; pinprick, 71 vs. 92) were observed. Neurogenic Bladder Symptoms Score (NBSS) changed from 27 at baseline to 17 at 20 months. ISAFSCI scores in sacral autonomic function improved from 0 pts (absent function) to 1 pt. (altered function) indicating better sphincter control. EMG recordings during volitional movements, including overground stepping with 80% of body weight support showed activity in gluteus medialis, tensor fascia latae, sartorius, rectus femoris, biceps femoris, tibialis anterior, and gastrocnemius medialis, indicating a partial reversion of paralysis. RMS analysis indicated higher activity during "tSCS on" compared to "tSCS off" during overground stepping in bilateral rectus femoris (p < 0.001) and gastrocnemius medialis (p < 0.01); and unilateral biceps femoris, and tibialis anterior (p < 0.001). As this is the first report on the use of tSCS in the case of SI, future studies in a case series are warranted.
Collapse
Affiliation(s)
- Felix León
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Huixquilucan, Edo. de México, Mexico
| | - Carlos Rojas
- Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, Edo. de México, Mexico
| | - María José Aliseda
- Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, Edo. de México, Mexico
| | - Gerardo Del Río
- Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, Edo. de México, Mexico
| | - Eduardo Monzalvo
- Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, Edo. de México, Mexico
| | - Adriana Pliego-Carrillo
- Faculty of Medicine, Autonomous University of the State of Mexico, Toluca, State of Mexico, Mexico
| | - Jimena Figueroa
- Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, Edo. de México, Mexico
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México, Huixquilucan, Edo. de México, Mexico
- Secretaría de la Defensa Nacional, Escuela Militar de Graduados de Sanidad, Mexico City, Mexico
| | - Igor Lavrov
- Neurology Department, Mayo Clinic, Rochester, MN, United States
- Kazan State Medical University, Kazan, Russia
| | - Carlos A Cuellar
- School of Sport Sciences, Universidad Anáhuac México, Huixquilucan, Edo de México, Mexico
| |
Collapse
|
3
|
Scheffler MS, Martin CA, Dietz V, Faraji AH, Sayenko DG. Synergistic implications of combinatorial rehabilitation approaches using spinal stimulation on therapeutic outcomes in spinal cord injury. Clin Neurophysiol 2024; 165:166-179. [PMID: 39033698 PMCID: PMC11325878 DOI: 10.1016/j.clinph.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE The objective of this narrative review was to locate and assess recent articles employing a combinatorial approach of transcutaneous spinal cord stimulation or epidural spinal cord stimulation with additional modalities. We sought to provide relevant knowledge of recent literature and advance understanding on outcomes reported, to better equip those working in neurorehabilitation and neuromodulation. METHODS Articles were selected and analyzed based on study approach, stimulation parameters, outcome measures, and presence of neurophysiological data to support findings. RESULTS This narrative review analyzed 44 recent articles employing a combinatorial approach of transcutaneous spinal cord stimulation or epidural spinal cord stimulation with additional modalities. Our findings showed that limited research exists regarding such combinatorial approaches, particularly when considering modalities beyond activity-based training. There is also limited consistency in neurophysiological and quality of life outcomes. CONCLUSION Articles involving transcutaneous spinal cord stimulation or epidural spinal cord stimulation with other modalities are limited in the current body of literature. Authors noted variety in approach, sample size, and use of participant perspective. Opportunities are present to add high quality research to this body of literature. SIGNIFICANCE Transcutaneous spinal cord stimulation and epidural spinal cord stimulation are emerging in research as viable avenues for targeting improvement of function after traumatic spinal cord injury, particularly when combined with activity-based training. This body of literature demonstrates viable areas for growth from both neurophysiological and functional perspectives. Further, exploration of novel combinatorial approaches holds potential to offer enhanced contributions to clinical and neurophysiological rehabilitation and research.
Collapse
Affiliation(s)
- Michelle S Scheffler
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Catherine A Martin
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Valerie Dietz
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Amir H Faraji
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Dimitry G Sayenko
- Department of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Gorman BT, Gill C, Etzelmueller M, O'Keeffe C, Reilly RB, Fleming N. The Influence of Body Position on the Resting Motor Threshold of Posterior Root-Muscle Reflexes Evoked via Transcutaneous Spinal Cord Stimulation. J Clin Med 2024; 13:5008. [PMID: 39274221 PMCID: PMC11396462 DOI: 10.3390/jcm13175008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Thoracolumbar transcutaneous spinal cord stimulation (tSCS) non-invasively evokes posterior root-muscle reflexes (PRMR) with the aim of neuromodulating sensorimotor function following spinal cord injury. Research is still in its infancy regarding the effect of body position on the nature of these spinally evoked responses. Therefore, the aim of this study was to investigate the influence of body position on the nature of PRMR responses during tSCS. Methods: A total of 11 (6M, 5F) participants completed a full PRMR recruitment curve from 10 ma up to 120 ma (10 ma increments) at the T11/12 intervertebral space using a singular 3.2 cm diameter cathode. At each intensity, three paired pulses (50 ms inter-pulse interval), followed by three singular pulses with a six-second delay were applied in each body position (supine, supine 90-90, sitting and standing) in a randomised order. The PRMR responses in lower limb muscles were recorded using wireless electromyographic sensors placed on the Soleus, Tibialis Anterior, Rectus Femoris and Bicep Femoris long head. A two-way (body position × muscle) repeated measures analysis of variance was used to investigate the effect of body position on PRMR-evoked responses. Results: There was a significant main effect of body position on PRMR resting motor threshold (RMT) (p < 0.001), first response peak-to-peak amplitude (p = 0.003) and percentage post-activation depression (%PAD) (p = 0.012). Sitting had significantly higher RMT and significantly lower first response peak-to-peak amplitudes compared to all other positions, but significant differences in %PAD were only detectible between supine and standing. Conclusions: Body position influences the nature of PRMR-evoked responses during tSCS.
Collapse
Affiliation(s)
- Barry T Gorman
- Discipline of Anatomy, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Conor Gill
- School of Engineering, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Mark Etzelmueller
- School of Engineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Discipline of Gerontology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Clodagh O'Keeffe
- School of Engineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Discipline of Gerontology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Richard B Reilly
- School of Engineering, Trinity College Dublin, D02 R590 Dublin, Ireland
- Discipline of Gerontology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Neil Fleming
- Discipline of Anatomy, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| |
Collapse
|
5
|
Chalif JI, Chavarro VS, Mensah E, Johnston B, Fields DP, Chalif EJ, Chiang M, Sutton O, Yong R, Trumbower R, Lu Y. Epidural Spinal Cord Stimulation for Spinal Cord Injury in Humans: A Systematic Review. J Clin Med 2024; 13:1090. [PMID: 38398403 PMCID: PMC10889415 DOI: 10.3390/jcm13041090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Background: Spinal cord injury (SCI) represents a major health challenge, often leading to significant and permanent sensorimotor and autonomic dysfunctions. This study reviews the evolving role of epidural spinal cord stimulation (eSCS) in treating chronic SCI, focusing on its efficacy and safety. The objective was to analyze how eSCS contributes to the recovery of neurological functions in SCI patients. (2) Methods: We utilized the PRISMA guidelines and performed a comprehensive search across MEDLINE/PubMed, Embase, Web of Science, and IEEE Xplore databases up until September 2023. We identified studies relevant to eSCS in SCI and extracted assessments of locomotor, cardiovascular, pulmonary, and genitourinary functions. (3) Results: A total of 64 studies encompassing 306 patients were identified. Studies investigated various stimulation devices, parameters, and rehabilitation methods. Results indicated significant improvements in motor function: 44% of patients achieved assisted or independent stepping or standing; 87% showed enhanced muscle activity; 65% experienced faster walking speeds; and 80% improved in overground walking. Additionally, eSCS led to better autonomic function, evidenced by improvements in bladder and sexual functions, airway pressures, and bowel movements. Notable adverse effects included device migration, infections, and post-implant autonomic dysreflexia, although these were infrequent. (4) Conclusion: Epidural spinal cord stimulation is emerging as an effective and generally safe treatment for chronic SCI, particularly when combined with intensive physical rehabilitation. Future research on standardized stimulation parameters and well-defined therapy regimens will optimize benefits for specific patient populations.
Collapse
Affiliation(s)
- J. I. Chalif
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.I.C.); (V.S.C.); (B.J.)
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
| | - V. S. Chavarro
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.I.C.); (V.S.C.); (B.J.)
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
- Department of Physical Medicine and Rehabilitation, Spaulding Hospital Cambridge, Cambridge, MA 02115, USA
| | - E. Mensah
- Chan School of Public Health, Harvard University, Boston, MA 02115, USA;
| | - B. Johnston
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.I.C.); (V.S.C.); (B.J.)
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
| | - D. P. Fields
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - E. J. Chalif
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.I.C.); (V.S.C.); (B.J.)
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
| | - M. Chiang
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
- Department of Physical Medicine and Rehabilitation, Spaulding Hospital Cambridge, Cambridge, MA 02115, USA
- Department of Anesthesiology Perioperative and Pain Management, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - O. Sutton
- Department of Anesthesiology Perioperative and Pain Management, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - R. Yong
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
- Department of Anesthesiology Perioperative and Pain Management, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - R. Trumbower
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
- Department of Physical Medicine and Rehabilitation, Spaulding Hospital Cambridge, Cambridge, MA 02115, USA
| | - Y. Lu
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.I.C.); (V.S.C.); (B.J.)
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
| |
Collapse
|
6
|
Sharma P, Panta T, Ugiliweneza B, Bert RJ, Gerasimenko Y, Forrest G, Harkema S. Multi-Site Spinal Cord Transcutaneous Stimulation Facilitates Upper Limb Sensory and Motor Recovery in Severe Cervical Spinal Cord Injury: A Case Study. J Clin Med 2023; 12:4416. [PMID: 37445450 DOI: 10.3390/jcm12134416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Individuals with cervical spinal cord injury (SCI) rank regaining arm and hand function as their top rehabilitation priority post-injury. Cervical spinal cord transcutaneous stimulation (scTS) combined with activity-based recovery training (ABRT) is known to effectively facilitate upper extremity sensorimotor recovery in individuals with residual arm and hand function post SCI. However, scTS effectiveness in facilitating upper extremity recovery in individuals with severe SCI with minimal to no sensory and motor preservation below injury level remains largely unknown. We herein introduced a multimodal neuro-rehabilitative approach involving scTS targeting systematically identified various spinal segments combined with ABRT. We hypothesized that multi-site scTS combined with ABRT will effectively neuromodulate the spinal networks, resulting in improved integration of ascending and descending neural information required for sensory and motor recovery in individuals with severe cervical SCI. To test the hypothesis, a 53-year-old male (C2, AIS A, 8 years post-injury) received 60 ABRT sessions combined with continuous multi-site scTS. Post-training assessments revealed improved activation of previously paralyzed upper extremity muscles and sensory improvements over the dorsal and volar aspects of the hand. Most likely, altered spinal cord excitability and improved muscle activation and sensations resulted in observed sensorimotor recovery. However, despite promising neurophysiological evidence pertaining to motor re-activation, we did not observe visually appreciable functional recovery on obtained upper extremity motor assessments.
Collapse
Affiliation(s)
- Pawan Sharma
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Tudor Panta
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
- Frazier Rehabilitation Institute, University of Louisville Health, Louisville, KY 40202, USA
| | - Beatrice Ugiliweneza
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
- Department of Health Management and Systems Science, University of Louisville, Louisville, KY 40202, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Robert J Bert
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Yury Gerasimenko
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
- Department of Physiology, University of Louisville, Louisville, KY 40292, USA
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| | - Gail Forrest
- Department of Physical Medicine & Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ 07052, USA
- Kessler Foundation, Newark, NJ 07052, USA
| | - Susan Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40202, USA
- Frazier Rehabilitation Institute, University of Louisville Health, Louisville, KY 40202, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA
- Department of Bioengineering, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
7
|
Preservation of functional descending input to paralyzed upper extremity muscles in motor complete cervical spinal cord injury. Clin Neurophysiol 2023; 150:56-68. [PMID: 37004296 DOI: 10.1016/j.clinph.2023.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/13/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVE Spinal cord injury (SCI) is classified as complete or incomplete depending on the extent of sensorimotor preservation below the injury level. However, individuals with complete SCIs can voluntarily activate paralyzed lower limb muscles alone or by engaging non-paralyzed muscles during neurophysiological assessments, indicating presence of residual pathways across the injury. However, similar phenomena have not been explored for the upper extremity (UE) muscles following cervical SCIs. METHODS Eighteen individuals with motor complete cervical SCI (AIS A or B) and five age-matched non-injured (NI) individuals performed various UE events against manual resistance during functional neurophysiological assessment (FNPA), and electromyographic (EMG) activity was recorded from UE muscles. RESULTS Our findings demonstrated i) voluntary activation of clinically paralyzed muscles as evident from EMG readouts, ii) increased activity in these muscles during events engaging muscles above the injury level, iii) reduced spectral properties of paralyzed muscles in SCI compared to NI participants. CONCLUSIONS Functional EMG activity in clinically paralyzed muscles indicate presence of residual pathways across the injury establishing supralesional control over the sublesional neural circuitry. SIGNIFICANCE The findings may help explain the neurophysiological basis for UE recovery and can be exploited in designing rehabilitation techniques to facilitate UE recovery following cervical SCIs.
Collapse
|
8
|
Angeli CA, Gerasimenko Y. Combined cervical transcutaneous with lumbosacral epidural stimulation improves voluntary control of stepping movements in spinal cord injured individuals. Front Bioeng Biotechnol 2023; 11:1073716. [PMID: 36815892 PMCID: PMC9932494 DOI: 10.3389/fbioe.2023.1073716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: Lumbosacral spinal cord neuromodulation has shown the ability to restore voluntary control and stepping in individuals with chronic spinal cord injury. Methods: We combined cervical transcutaneous and lumbar epidural stimulation to explore the brain-spinal connectomes and their influence in spinal excitability and interlimb coupling. Four individuals with a prior implanted lumbosacral spinal cord epidural stimulator participated in the study. We assessed lower extremity muscle activity and kinematics during intentional stepping in both non-weight bearing and weight-bearing environments. Results: Our results showed an inhibition of motor evoked potentials generated by spinal cord epidural stimulation when cervical transcutaneous stimulation is applied. In contrast, when intentional stepping is performed in a non-weight bearing setting, range of motion, motor output amplitude, and coordination are improved when cervical transcutaneous and lumbar epidural stimulations are combined. Similarly, with both stimulations applied, coordination is improved and motor output variability is decreased when intentional stepping is performed on a treadmill with body weight support. Discussion: Combined transcutaneous cervical and epidural lumbar stimulation demonstrated an improvement of voluntary control of stepping in individuals with chronic motor complete paralysis. The immediate functional improvement promoted by the combination of cervical and lumbar stimulation adds to the body of evidence for increasing spinal excitability and improvement of function that is possible in individuals with chronic paralysis.
Collapse
Affiliation(s)
- Claudia A. Angeli
- Bioengineering Department, J. B. Speed School of Engineering, University of Louisville, Louisville, KY, United States
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
- Frazier Rehabilitation Institute, University of Louisville Health, Louisville, KY, United States
| | - Yury Gerasimenko
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
- Department of Physiology, University of Louisville, Louisville, KY, United States
- Pavlov Institute of Physiology, St. Petersburg, Russia
| |
Collapse
|
9
|
Govindarajan LN, Calvert JS, Parker SR, Jung M, Darie R, Miranda P, Shaaya E, Borton DA, Serre T. Fast inference of spinal neuromodulation for motor control using amortized neural networks. J Neural Eng 2022; 19:10.1088/1741-2552/ac9646. [PMID: 36174534 PMCID: PMC9668352 DOI: 10.1088/1741-2552/ac9646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/29/2022] [Indexed: 11/12/2022]
Abstract
Objective.Epidural electrical stimulation (EES) has emerged as an approach to restore motor function following spinal cord injury (SCI). However, identifying optimal EES parameters presents a significant challenge due to the complex and stochastic nature of muscle control and the combinatorial explosion of possible parameter configurations. Here, we describe a machine-learning approach that leverages modern deep neural networks to learn bidirectional mappings between the space of permissible EES parameters and target motor outputs.Approach.We collected data from four sheep implanted with two 24-contact EES electrode arrays on the lumbosacral spinal cord. Muscle activity was recorded from four bilateral hindlimb electromyography (EMG) sensors. We introduce a general learning framework to identify EES parameters capable of generating desired patterns of EMG activity. Specifically, we first amortize spinal sensorimotor computations in a forward neural network model that learns to predict motor outputs based on EES parameters. Then, we employ a second neural network as an inverse model, which reuses the amortized knowledge learned by the forward model to guide the selection of EES parameters.Main results.We found that neural networks can functionally approximate spinal sensorimotor computations by accurately predicting EMG outputs based on EES parameters. The generalization capability of the forward model critically benefited our inverse model. We successfully identified novel EES parameters, in under 20 min, capable of producing desired target EMG recruitment duringin vivotesting. Furthermore, we discovered potential functional redundancies within the spinal sensorimotor networks by identifying unique EES parameters that result in similar motor outcomes. Together, these results suggest that our framework is well-suited to probe spinal circuitry and control muscle recruitment in a completely data-driven manner.Significance.We successfully identify novel EES parameters within minutes, capable of producing desired EMG recruitment. Our approach is data-driven, subject-agnostic, automated, and orders of magnitude faster than manual approaches.
Collapse
Affiliation(s)
- Lakshmi Narasimhan Govindarajan
- Cognitive, Linguistic & Psychological Sciences, Brown University, Providence RI USA
- Carney Institute for Brain Science, Brown University, Providence RI USA
| | | | | | - Minju Jung
- Cognitive, Linguistic & Psychological Sciences, Brown University, Providence RI USA
- Carney Institute for Brain Science, Brown University, Providence RI USA
| | - Radu Darie
- School of Engineering, Brown University, Providence RI USA
| | | | - Elias Shaaya
- Department of Neurosurgery, Brown University and Rhode Island Hospital, Providence RI USA
| | - David A. Borton
- Carney Institute for Brain Science, Brown University, Providence RI USA
- School of Engineering, Brown University, Providence RI USA
- Center for Neurorestoration and Neurotechnology, Department of Veterans Affairs, Providence RI USA
| | - Thomas Serre
- Cognitive, Linguistic & Psychological Sciences, Brown University, Providence RI USA
- Carney Institute for Brain Science, Brown University, Providence RI USA
| |
Collapse
|
10
|
Lin A, Shaaya E, Calvert JS, Parker SR, Borton DA, Fridley JS. A Review of Functional Restoration From Spinal Cord Stimulation in Patients With Spinal Cord Injury. Neurospine 2022; 19:703-734. [PMID: 36203296 PMCID: PMC9537842 DOI: 10.14245/ns.2244652.326] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022] Open
Abstract
Traumatic spinal cord injury often leads to loss of sensory, motor, and autonomic function below the level of injury. Recent advancements in spinal cord electrical stimulation (SCS) for spinal cord injury have provided potential avenues for restoration of neurologic function in affected patients. This review aims to assess the efficacy of spinal cord stimulation, both epidural (eSCS) and transcutaneous (tSCS), on the return of function in individuals with chronic spinal cord injury. The current literature on human clinical eSCS and tSCS for spinal cord injury was reviewed. Seventy-one relevant studies were included for review, specifically examining changes in volitional movement, changes in muscle activity or spasticity, or return of cardiovascular pulmonary, or genitourinary autonomic function. The total participant sample comprised of 327 patients with spinal cord injury, each evaluated using different stimulation protocols, some for sensorimotor function and others for various autonomic functions. One hundred eight of 127 patients saw improvement in sensorimotor function, 51 of 70 patients saw improvement in autonomic genitourinary function, 32 of 32 patients saw improvement in autonomic pulmonary function, and 32 of 36 patients saw improvement in autonomic cardiovascular function. Although this review highlights SCS as a promising therapeutic neuromodulatory technique to improve rehabilitation in patients with SCI, further mechanistic studies and stimulus parameter optimization are necessary before clinical translation.
Collapse
Affiliation(s)
- Alice Lin
- Warren Alpert Medical School, Providence, RI, USA
| | - Elias Shaaya
- Department of Neurosurgery, Brown University, Rhode Island Hospital, Providence, RI, USA
| | | | | | - David A. Borton
- School of Engineering, Brown University, Providence, RI, USA,Center for Neurorestoration and Neurotechnology, Department of Veterans Affairs, Providence, RI, USA,Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Jared S. Fridley
- Department of Neurosurgery, Brown University, Rhode Island Hospital, Providence, RI, USA,Corresponding Author Jared S. Fridley Department of Neurosurgery, Brown University, Rhode Island Hospital, 593 Eddy St # 1, Providence, RI 02903, USA
| |
Collapse
|
11
|
Gorgey AS, Gouda JJ. Single Lead Epidural Spinal Cord Stimulation Targeted Trunk Control and Standing in Complete Paraplegia. J Clin Med 2022; 11:jcm11175120. [PMID: 36079048 PMCID: PMC9457264 DOI: 10.3390/jcm11175120] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
A 25-year-old male with T3 complete AIS A was implanted with percutaneous spinal cord epidural stimulation (scES; eight contacts each) leads and a Medtronic Prime advance internal pulse generator. The two leads were placed at the midline level to cover the region of the T11–T12 vertebrae. Five days after implantation, X-ray showed complete migration of the left lead outside the epidural space. Two weeks after implantation, reprogramming of the single right lead (20 Hz and 240 µs) after setting the cathode at 0 and the anode at 3 resulted in target activation of the abdominal muscles and allowed for the immediate restoration of trunk control during a seated position, even with upper extremity perturbation. This was followed by achieving immediate standing after setting the single lead at −3 for the cathode and +6 for the anode using stimulation configurations of 20 Hz and 240 µs. The results were confirmed with electromyography (EMG) of the rectus abdominus and lower extremity muscles. Targeted stimulation of the lumbosacral segment using a single lead with a midline approach immediately restored the trunk control and standing in a person with complete paraplegia.
Collapse
Affiliation(s)
- Ashraf S. Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, 1201 Broad Rock Boulevard, Richmond, VA 23249, USA
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence: ; Tel.: +1-804-675-5000 (ext. 3386)
| | - Jan J. Gouda
- Neurosurgery Department, Louran Hospital, Alexandria 5451110, Egypt
- Department of Surgery, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
12
|
Mansour NM, Peña Pino I, Freeman D, Carrabre K, Venkatesh S, Darrow D, Samadani U, Parr AM. Advances in Epidural Spinal Cord Stimulation to Restore Function after Spinal Cord Injury: History and Systematic Review. J Neurotrauma 2022; 39:1015-1029. [PMID: 35403432 DOI: 10.1089/neu.2022.0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epidural spinal cord stimulation (eSCS) has been recently recognized as a potential therapy for chronic spinal cord injury (SCI). eSCS has been shown to uncover residual pathways within the damaged spinal cord. The purpose of this review is to summarize the key findings to date regarding the use of eSCS in SCI. Searches were carried out using MEDLINE, EMBASE, and Web of Science database and reference lists of the included articles. A combination of medical subject heading terms and keywords was used to find studies investigating the use of eSCS in SCI patients to facilitate volitional movement and to restore autonomic function. The risk of bias was assessed using Risk Of Bias In Non-Randomized Studies of Interventions tool for nonrandomized studies. We were able to include 40 articles that met our eligibility criteria. The studies included a total of 184 patient experiences with incomplete or complete SCI. The majority of the studies used the Medtronic 16 paddle lead. Around half of the studies reported lead placement between T11- L1. We included studies that assessed motor (n = 28), autonomic (n = 13), and other outcomes (n = 10). The majority of the studies reported improvement in outcomes assessed. The wide range of included outcomes demonstrates the effectiveness of eSCS in treating a diverse SCI population. However, the current studies cannot definitively conclude which patients benefit the most from this intervention. Further study in this area is needed to allow improvement of the eSCS technology and allow it to be more widely available for chronic SCI patients.
Collapse
Affiliation(s)
- Nadine M Mansour
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Isabela Peña Pino
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - David Freeman
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kailey Carrabre
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shivani Venkatesh
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - David Darrow
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Neurosurgery, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Uzma Samadani
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Neurosurgery, VA Healthcare System, Minneapolis, Minnesota, USA
| | - Ann M Parr
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Neurosurgery, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| |
Collapse
|
13
|
Hofstoetter US, Minassian K. Transcutaneous Spinal Cord Stimulation: Advances in an Emerging Non-Invasive Strategy for Neuromodulation. J Clin Med 2022; 11:jcm11133836. [PMID: 35807121 PMCID: PMC9267622 DOI: 10.3390/jcm11133836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/04/2022] Open
|
14
|
Novel Noninvasive Spinal Neuromodulation Strategy Facilitates Recovery of Stepping after Motor Complete Paraplegia. J Clin Med 2022; 11:jcm11133670. [PMID: 35806954 PMCID: PMC9267673 DOI: 10.3390/jcm11133670] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
It has been suggested that neuroplasticity-promoting neuromodulation can restore sensory-motor pathways after spinal cord injury (SCI), reactivating the dormant locomotor neuronal circuitry. We introduce a neuro-rehabilitative approach that leverages locomotor training with multi-segmental spinal cord transcutaneous electrical stimulation (scTS). We hypothesized that scTS neuromodulates spinal networks, complementing the neuroplastic effects of locomotor training, result in a functional progression toward recovery of locomotion. We conducted a case-study to test this approach on a 27-year-old male classified as AIS A with chronic SCI. The training regimen included task-driven non-weight-bearing training (1 month) followed by weight-bearing training (2 months). Training was paired with multi-level continuous and phase-dependent scTS targeting function-specific motor pools. Results suggest a convergence of cross-lesional networks, improving kinematics during voluntary non-weight-bearing locomotor-like stepping. After weight-bearing training, coordination during stepping improved, suggesting an important role of afferent feedback in further improvement of voluntary control and reorganization of the sensory-motor brain-spinal connectome.
Collapse
|
15
|
Transcutaneous spinal stimulation alters cortical and subcortical activation patterns during mimicked-standing: A proof-of-concept fMRI study. NEUROIMAGE: REPORTS 2022; 2. [DOI: 10.1016/j.ynirp.2022.100090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Influence of Spine Curvature on the Efficacy of Transcutaneous Lumbar Spinal Cord Stimulation. J Clin Med 2021; 10:jcm10235543. [PMID: 34884249 PMCID: PMC8658162 DOI: 10.3390/jcm10235543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Transcutaneous spinal cord stimulation is a non-invasive method for neuromodulation of sensorimotor function. Its main mechanism of action results from the activation of afferent fibers in the posterior roots-the same structures as targeted by epidural stimulation. Here, we investigated the influence of sagittal spine alignment on the capacity of the surface-electrode-based stimulation to activate these neural structures. We evaluated electromyographic responses evoked in the lower limbs of ten healthy individuals during extension, flexion, and neutral alignment of the thoracolumbar spine. To control for position-specific effects, stimulation in these spine alignment conditions was performed in four different body positions. In comparison to neutral and extended spine alignment, flexion of the spine resulted in a strong reduction of the response amplitudes. There was no such effect on tibial-nerve evoked H reflexes. Further, there was a reduction of post-activation depression of the responses to transcutaneous spinal cord stimulation evoked in spinal flexion. Thus, afferent fibers were reliably activated with neutral and extended spine alignment. Spinal flexion, however, reduced the capacity of the stimulation to activate afferent fibers and led to the co-activation of motor fibers in the anterior roots. This change of action was due to biophysical rather than neurophysiological influences. We recommend applying transcutaneous spinal cord stimulation in body positions that allow individuals to maintain a neutral or extended spine.
Collapse
|