1
|
Xu Z, Zhan H, Zhang J, Li Z, Cheng L, Chen Q, Guo Y, Li Y. New biomarkers in IgA nephropathy. Clin Immunol 2025; 274:110468. [PMID: 40023304 DOI: 10.1016/j.clim.2025.110468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/15/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Currently, IgA nephropathy (IgAN) is the most common cause of chronic renal failure in patients with primary glomerulonephritis. However, IgAN diagnosis is usually performed by collecting a renal biopsy as gold standard to visualize pathological changes in the glomeruli. The randomized nature of this invasive procedure in clinical practice, together with the need to exclude patients with contraindications, often results in a limited number of eligible people. Therefore, over the past two decades, researchers have explored new biomarkers for IgAN to meet the urgent clinical need for rapid diagnosis and prognosis, as well as realistic prediction of IgAN progression. In addition to traditional common markers with low specificity to detect renal diseases, the classical antibody targeting galactose-deficient IgA1 has been progressively discovered. In addition, new types of diagnostic or prognostic biomarkers are emerging, including microRNA, complement factors, proteases, inflammatory molecules and serum or urinary metabolite profiles.
Collapse
Affiliation(s)
- Zhixin Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haoting Zhan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jingdi Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhan Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linlin Cheng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qian Chen
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ye Guo
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Nurmi MS, Pérez-Alós L, Garred P, Fellström B, Gabrysch K, Lundberg S. Urine complement-related proteins in IgA nephropathy and IgA vasculitis nephritis, possible biomarkers of disease activity. Clin Kidney J 2025; 18:sfae395. [PMID: 40008348 PMCID: PMC11852328 DOI: 10.1093/ckj/sfae395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Indexed: 02/27/2025] Open
Abstract
Introduction The activation of the complement system plays an important role in the pathogenesis of IgA nephropathy (IgAN). Our primary aim was to evaluate a range of complement-related proteins, including pentraxin-3 (PTX-3), in blood and urine at diagnosis and their association with disease activity in the kidney biopsy, eGFR, albuminuria, and outcome. Our secondary aim was to compare the same biomarkers between patients with IgAN and IgA vasculitis with renal involvement (IgAVN). Methods In a longitudinal Swedish cohort of 96 patients with IgAN (n = 65) or IgAVN (n = 31), with a median follow-up time of 10.8 years, we analysed mainly lectin-pathway-related proteins and PTX-3 in plasma and urine (u) samples stored at the time of kidney biopsy. Outcome was defined by the GFR slope or by the combined outcome of 50% loss of eGFR or end-stage kidney disease (ESKD). Results Patients with detectable vs undetectable u-PTX-3 and u-mannose-binding lectin (MBL) more frequently had mesangial hypercellularity, endocapillary proliferation, and crescents in their kidney biopsy. u-C4c levels were higher in patients with advanced tubulointerstitial fibrosis, and u-C4c was also an independent predictor of a more severe eGFR slope. There were no differences in the levels of biomarkers between patients with IgAN and IgAVN. Conclusion u-PTX-3 and u-MBL might be biomarkers of an active proliferative stage of the disease, while higher u-C4c levels indicate more chronic lesions in both IgAN and IgAVN. These results must, however, be confirmed in larger and multiethnic cohorts.
Collapse
Affiliation(s)
- Mazdak Sanaei Nurmi
- Department of Medical Specialist Care, Nephrology Clinic, Danderyd University Hospital, Stockholm, Sweden
- Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden
| | - Laura Pérez-Alós
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Bengt Fellström
- Department of Medical Sciences, Renal Medicine, Uppsala University Hospital, Uppsala, Sweden
| | - Katja Gabrysch
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Sigrid Lundberg
- Department of Medical Specialist Care, Nephrology Clinic, Danderyd University Hospital, Stockholm, Sweden
- Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden
- MedTechLabs, BioClinicum, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
3
|
Kamal F, Kim J, Lafayette R. Current Biomarkers of IgA Nephropathy. Semin Nephrol 2024; 44:151572. [PMID: 40087126 DOI: 10.1016/j.semnephrol.2025.151572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
IgA nephropathy (IgAN) is the most prevalent primary glomerular disease and has been recognized to carry a poor prognosis. It is therefore critical to identify the patients that will progress to ESKD and start treatments early. The current gold standard for diagnosis remains kidney biopsy. Histopathologic findings along with proteinuria, glomerular filtration rate, and hypertension remain the best-validated biomarkers for prognosis but do not provide enough granularity to guide treatment decisions. The current understanding of the pathophysiology of IgAN with the four-hit hypothesis has helped identify potential additional biomarkers that could become available in the foreseeable future. In this review we detail the existing data for the most promising biomarkers including galactose-deficient IgA1 and its corresponding autoantibody, markers of complement activation, as well as more nascent assays such as MicroRNAs, genomic, and microbiome biomarkers.
Collapse
Affiliation(s)
- Fahmeedah Kamal
- Department of Medicine, Division of Nephrology, Stanford University, Stanford, CA, USA
| | - Jackson Kim
- Department of Medicine, Division of Nephrology, Stanford University, Stanford, CA, USA
| | - Richard Lafayette
- Department of Medicine, Division of Nephrology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Alkaff FF, Lammerts RGM, Daha MR, Berger SP, van den Born J. Apical tubular complement activation and the loss of kidney function in proteinuric kidney diseases. Clin Kidney J 2024; 17:sfae215. [PMID: 39135935 PMCID: PMC11318052 DOI: 10.1093/ckj/sfae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Indexed: 08/15/2024] Open
Abstract
Many kidney diseases are associated with proteinuria. Since proteinuria is independently associated with kidney function loss, anti-proteinuric medication, often in combination with dietary salt restriction, comprises a major cornerstone in the prevention of progressive kidney failure. Nevertheless, complete remission of proteinuria is very difficult to achieve, and most patients with persistent proteinuria slowly progress toward kidney failure. It is well-recognized that proteinuria leads to kidney inflammation and fibrosis via various mechanisms. Among others, complement activation at the apical side of the proximal tubular epithelial cells is suggested to play a crucial role as a cause of progressive loss of kidney function. However, hitherto limited attention is given to the pathophysiological role of tubular complement activation relative to glomerular complement activation. This review aims to summarize the evidence for tubular epithelial complement activation in proteinuric kidney diseases in relation to loss of kidney function.
Collapse
Affiliation(s)
- Firas F Alkaff
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Division of Pharmacology and Therapy, Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Rosa G M Lammerts
- Transplantation Immunology, Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mohamed R Daha
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefan P Berger
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jacob van den Born
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Zhang H, Rizk DV, Perkovic V, Maes B, Kashihara N, Rovin B, Trimarchi H, Sprangers B, Meier M, Kollins D, Papachristofi O, Milojevic J, Junge G, Nidamarthy PK, Charney A, Barratt J. Results of a randomized double-blind placebo-controlled Phase 2 study propose iptacopan as an alternative complement pathway inhibitor for IgA nephropathy. Kidney Int 2024; 105:189-199. [PMID: 37914086 DOI: 10.1016/j.kint.2023.09.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/30/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Abstract
Targeting the alternative complement pathway is an attractive therapeutic strategy given its role in the pathogenesis of immunoglobulin A nephropathy (IgAN). Iptacopan (LNP023) is an oral, proximal alternative complement inhibitor that specifically binds to Factor B. Our randomized, double-blind, parallel-group adaptive Phase 2 study (NCT03373461) enrolled patients with biopsy-confirmed IgAN (within previous three years) with estimated glomerular filtration rates of 30 mL/min/1.73 m2 and over and urine protein 0.75 g/24 hours and over on stable doses of renin angiotensin system inhibitors. Patients were randomized to four iptacopan doses (10, 50, 100, or 200 mg bid) or placebo for either a three-month (Part 1; 46 patients) or a six-month (Part 2; 66 patients) treatment period. The primary analysis evaluated the dose-response relationship of iptacopan versus placebo on 24-hour urine protein-to-creatinine ratio (UPCR) at three months. Other efficacy, safety and biomarker parameters were assessed. Baseline characteristics were generally well-balanced across treatment arms. There was a statistically significant dose-response effect, with 23% reduction in UPCR achieved with iptacopan 200 mg bid (80% confidence interval 8-34%) at three months. UPCR decreased further through six months in iptacopan 100 and 200 mg arms (from a mean of 1.3 g/g at baseline to 0.8 g/g at six months in the 200 mg arm). A sustained reduction in complement biomarker levels including plasma Bb, serum Wieslab, and urinary C5b-9 was observed. Iptacopan was well-tolerated, with no reports of deaths, treatment-related serious adverse events or bacterial infections, and led to strong inhibition of alternative complement pathway activity and persistent proteinuria reduction in patients with IgAN. Thus, our findings support further evaluation of iptacopan in the ongoing Phase 3 trial (APPLAUSE-IgAN; NCT04578834).
Collapse
Affiliation(s)
- Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People's Republic of China.
| | - Dana V Rizk
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Vlado Perkovic
- University of New South Wales, Sydney, New South Wales, Australia
| | - Bart Maes
- Department of Nephrology, AZ Delta, Roeselare, Belgium
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Brad Rovin
- Division of Nephrology, the Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Hernán Trimarchi
- Nephrology Service and Kidney Transplantation Unit, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Ben Sprangers
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium; Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | - Julie Milojevic
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Guido Junge
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Alan Charney
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; The John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
6
|
Duval A, Caillard S, Frémeaux-Bacchi V. The complement system in IgAN: mechanistic context for therapeutic opportunities. Nephrol Dial Transplant 2023; 38:2685-2693. [PMID: 37385820 DOI: 10.1093/ndt/gfad140] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 07/01/2023] Open
Abstract
The complement system plays a crucial role in innate immunity, providing essential defense against pathogens. However, uncontrolled or prolonged activation of the complement cascade can significantly contribute to kidney damage, especially in cases of glomerulonephritis. Immunoglobulin A nephropathy (IgAN), the most prevalent form of primary glomerulonephritis, has growing evidence supporting the involvement of complement alternative and lectin pathways. In fact, patients with IgAN experience complement activation within their kidney tissue, which may be involved in the development of glomerular damage and the progression of IgAN. Complement activation has emerged as a significant area of interest in IgAN, with numerous complement-targeting agents currently being explored within this field. Nevertheless, the exact mechanisms of complement activation and their role in IgAN progression require comprehensive elucidation. This review seeks to contextualize the proposed mechanisms of complement activation within the various stages ("hits") of IgAN pathogenesis, while also addressing the clinical implications and anticipated outcomes of complement inhibition in IgAN.
Collapse
Affiliation(s)
- Anna Duval
- Centre de Recherche des Cordeliers, Inserm UMR S1138, Paris, France
- Department of Nephrology, Dialysis and Transplantation, University Hospital of Strasbourg, Strasbourg, France
| | - Sophie Caillard
- Department of Nephrology, Dialysis and Transplantation, University Hospital of Strasbourg, Strasbourg, France
| | - Véronique Frémeaux-Bacchi
- Centre de Recherche des Cordeliers, Inserm UMR S1138, Paris, France
- Service d'Immunologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
7
|
Tesař V, Radhakrishnan J, Charu V, Barratt J. Challenges in IgA Nephropathy Management: An Era of Complement Inhibition. Kidney Int Rep 2023; 8:1730-1740. [PMID: 37705895 PMCID: PMC10496078 DOI: 10.1016/j.ekir.2023.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 09/15/2023] Open
Abstract
IgA nephropathy (IgAN) is the most common glomerular disease worldwide, with an estimated annual incidence of 25 per million adults. Despite optimized supportive care, some patients fail to achieve disease control and suffer progressive deterioration of kidney function. In this subpopulation of patients, the Kidney Disease: Improving Global Outcomes 2021 guidelines recommend consideration of corticosteroids; however, their use is associated with significant side effects. Ongoing clinical trials are expected to identify corticosteroid-sparing therapies to help improve treatment and prognosis for patients with IgAN. It has been well-documented that the complement system plays a significant role in IgAN pathogenesis, and several complement inhibitors are now entering late-stage clinical development. This review evaluates what we know about the role of complement in the pathophysiology of IgAN and considers how the availability of targeted complement inhibitors may impact future clinical practice. Key knowledge gaps are evaluated, and research opportunities are recommended to help guide clinical decision-making and optimize patient outcomes. Such gaps include evaluating the relative contribution of the alternative and lectin pathways to disease pathogenesis, and the importance of determining the dominant pathway driving IgAN progression. Continued research into the staining of complement proteins in kidney biopsies and identifying targeted biomarkers to assess disease progression and treatment responses will also be needed to support the implementation of newer therapies in clinical practice. Considering the future horizons for enhancing the care of patients with IgAN, tackling the outstanding challenges now will help prepare for the best possible future outcomes.
Collapse
Affiliation(s)
- Vladimir Tesař
- Department of Nephrology, Charles University, Prague, Czech Republic
| | | | - Vivek Charu
- Department of Pathology, Stanford University, Palo Alto, California, USA
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
8
|
Barratt J, Lafayette RA, Zhang H, Tesar V, Rovin BH, Tumlin JA, Reich HN, Floege J. IgA Nephropathy: the Lectin Pathway and Implications for Targeted Therapy. Kidney Int 2023:S0085-2538(23)00395-2. [PMID: 37263354 DOI: 10.1016/j.kint.2023.04.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 06/03/2023]
Abstract
Many patients with IgA nephropathy (IgAN) progress to end-stage kidney disease even with optimal supportive care. An improved understanding of the pathophysiology of IgAN in recent years has led to the investigation of targeted therapies with acceptable tolerability that may address the underlying causes of IgAN or the pathogenesis of kidney injury. The complement system - particularly the lectin and alternative pathways of complement - have emerged as key mediators of kidney injury in IgAN and possible targets for investigational therapy. This review will focus on the lectin pathway. Examination of kidney biopsies has consistently shown glomerular deposition of mannan-binding lectin (one of six pattern-recognition molecules that activate the lectin pathway) together with IgA1 in up to 50% of patients with IgAN. Glomerular deposition of pattern-recognition molecules for the lectin pathway is associated with more severe glomerular damage and more severe proteinuria and hematuria. Emerging research suggests that the lectin pathway may also contribute to tubulointerstitial fibrosis in IgAN, and that collectin-11 is a key mediator of this association. This review summarizes the growing scientific and clinical evidence supporting the role of the lectin pathway in IgAN and examines the possible therapeutic role of lectin pathway inhibition for these patients.
Collapse
Affiliation(s)
| | | | - Hong Zhang
- Peking University Institute of Nephrology, Beijing, China
| | - Vladimir Tesar
- Charles University and General University Hospital, Prague, Czech Republic
| | - Brad H Rovin
- The Ohio State University Wexner Medical Center, Columbus OH, USA
| | | | - Heather N Reich
- University of Toronto and University Health Network, Toronto ON, Canada
| | | |
Collapse
|
9
|
Abstract
Uncontrolled alternative pathway activation is the primary driver of several diseases, and it contributes to the pathogenesis of many others. Consequently, diagnostic tests to monitor this arm of the complement system are increasingly important. Defects in alternative pathway regulation are strong risk factors for disease, and drugs that specifically block the alternative pathway are entering clinical use. A range of diagnostic tests have been developed to evaluate and monitor the alternative pathway, including assays to measure its function, expression of alternative pathway constituents, and activation fragments. Genetic studies have also revealed many disease-associated variants in alternative pathway genes that predict the risk of disease and prognosis. Newer imaging modalities offer the promise of non-invasively detecting and localizing pathologic complement activation. Together, these various tests help in the diagnosis of disease, provide important prognostic information, and can help guide therapy with complement inhibitory drugs.
Collapse
Affiliation(s)
- Joshua M. Thurman
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Veronique Fremeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, European Hospital Georges Pompidou, Department of Immunology Biology and INSERM UMRS1138, Centre de Recherche des Cordeliers, Team "Inflammation, Complement and Cancer", Paris, France
| |
Collapse
|
10
|
Niu X, Zhang S, Shao C, Guo Z, Wu J, Tao J, Zheng K, Ye W, Cai G, Sun W, Li M. Urinary complement proteins in IgA nephropathy progression from a relative quantitative proteomic analysis. PeerJ 2023; 11:e15125. [PMID: 37065697 PMCID: PMC10103701 DOI: 10.7717/peerj.15125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/03/2023] [Indexed: 04/18/2023] Open
Abstract
Aim IgA nephropathy (IgAN) is one of the leading causes of end-stage renal disease (ESRD). Urine testing is a non-invasive way to track the biomarkers used for measuring renal injury. This study aimed to analyse urinary complement proteins during IgAN progression using quantitative proteomics. Methods In the discovery phase, we analysed 22 IgAN patients who were divided into three groups (IgAN 1-3) according to their estimated glomerular filtration rate (eGFR). Eight patients with primary membranous nephropathy (pMN) were used as controls. Isobaric tags for relative and absolute quantitation (iTRAQ) labelling, coupled with liquid chromatography-tandem mass spectrometry, was used to analyse global urinary protein expression. In the validation phase, western blotting and parallel reaction monitoring (PRM) were used to verify the iTRAQ results in an independent cohort (N = 64). Results In the discovery phase, 747 proteins were identified in the urine of IgAN and pMN patients. There were different urine protein profiles in IgAN and pMN patients, and the bioinformatics analysis revealed that the complement and coagulation pathways were most activated. We identified a total of 27 urinary complement proteins related to IgAN. The relative abundance of C3, the membrane attack complex (MAC), the complement regulatory proteins of the alternative pathway (AP), and MBL (mannose-binding lectin) and MASP1 (MBL associated serine protease 2) in the lectin pathway (LP) increased during IgAN progression. This was especially true for MAC, which was found to be involved prominently in disease progression. Alpha-N-acetylglucosaminidase (NAGLU) and α-galactosidase A (GLA) were validated by western blot and the results were consistent with the iTRAQ results. Ten proteins were validated in a PRM analysis, and these results were also consistent with the iTRAQ results. Complement factor B (CFB) and complement component C8 alpha chain (C8A) both increased with the progression of IgAN. The combination of CFB and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) also showed potential as a urinary biomarker for monitoring IgAN development. Conclusion There were abundant complement components in the urine of IgAN patients, indicating that the activation of AP and LP is involved in IgAN progression. Urinary complement proteins may be used as biomarkers for evaluating IgAN progression in the future.
Collapse
Affiliation(s)
- Xia Niu
- Core Facility of Instruments, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Shuyu Zhang
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chen Shao
- Core Facility of Instruments, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhengguang Guo
- Core Facility of Instruments, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jianqiang Wu
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianling Tao
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ke Zheng
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wenling Ye
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Wei Sun
- Core Facility of Instruments, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Mingxi Li
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|