1
|
Song Y, Li Y, Lu L, Yang C, Lu J. Case Report: Nephrotic syndrome as the primary manifestation of Alport syndrome in a Chinese pediatric patient. Front Pediatr 2025; 12:1518553. [PMID: 39845453 PMCID: PMC11750847 DOI: 10.3389/fped.2024.1518553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Background Alport syndrome (AS) is a genetically heterogeneous disorder resulting from variants in genes coding for the alpha-3/4/5 chains of Collagen IV, leading to defective basement membranes in the kidney, cochlea, and eye. The clinical manifestations of AS vary in patients. Cases of childhood AS caused by COL4A3 presenting primarily with nephrotic syndrome (NS) are rarely reported. Here, we report a pediatric case presenting initially with NS attributed to AS caused by COL4A3. Case presentation An 11-year-old boy presented with hematuria and nephrotic range proteinuria. After excluding secondary causes, primary NS was considered. He was administered with prednisone (60 mg/day). The patient had not responded to treatment by the end of 4 weeks, so he was diagnosed with steroid-resistant NS. A renal biopsy showed granular and vacuolar degeneration of renal tubular epithelial cells, multifocal foam cell infiltration in the renal interstitium, and immunofluorescence indicated the absence of α3, α4, and α5 expression in the glomerular and tubular basement membrane, while Bowman's capsule expression was normal. Electron microscopy ultrastructural suggested variable basement membrane thickness, and partial tearing and web-like structures. Genetic testing revealed a heterozygous COL4A3 missense mutation c.3210 (exon 37)G>A(NM:000091). These findings are consistent with the diagnosis of AS. Prednisone was gradually tapered and enalapril maleate was initiated. Conclusion We have described a pediatric case of AS featuring NS as its primary manifestation. It is important to consider AS to be a diagnosis or differential diagnosis in patients who have NS with hematuria or steroid resistance.
Collapse
Affiliation(s)
- Yue Song
- Department of Pediatrics, The FirstAffiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Yifei Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liqun Lu
- Department of Pediatrics, The FirstAffiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Changqiang Yang
- Department of Cardiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Jing Lu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Younsi ME, Achour A, Kraoua L, Nesrine M, Sayari T, Abderrahim E, Laabidi J, Zouaghi MK, Kharrat M, Gargah T, Trabelsi M, M'rad R. Genetic study of Alport syndrome in Tunisia. Pediatr Nephrol 2025; 40:103-116. [PMID: 39138691 DOI: 10.1007/s00467-024-06474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/13/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Alport syndrome is a genetic disorder affecting the kidneys, ears, and eyes, causing chronic kidney disease, sensorineural hearing loss, and ocular abnormalities. It results from pathogenic variants in the COL4A3, COL4A4, or COL4A5 genes, with different inheritance patterns: X-linked from COL4A5 variants, autosomal recessive from homozygous variants in COL4A3 or COL4A4, digenic from variants in both COL4A3 and COL4A4, and autosomal dominant from heterozygous variants in COL4A3 or COL4A4. METHODS We analyzed 45 patients with Alport syndrome from 11 Tunisian families to determine their clinical and genetic characteristics. Clinical data were collected retrospectively, and whole-exome sequencing was conducted on one patient from each family. Sanger sequencing validated pathogenic variants, and cascade screening extended the analysis to 53 individuals. RESULTS We identified nine likely pathogenic variants among 11 index cases: six novel and three known variations. Of these, five were in COL4A3, and four were in COL4A5, with variants including frameshift, nonsense, missense, and alternative splicing. Most variations affected the Gly-XY codon. Among the 45 clinically identified siblings, 30 tested positive for Alport syndrome. The cascade screening identified 3 additional affected individuals, 10 unaffected siblings, and 10 unaffected parents. The mode of inheritance was autosomal recessive in six families and X-linked in four families. CONCLUSIONS This study is the first to screen the mutational spectrum of Alport syndrome in Tunisia. It reveals novel pathogenic variants and suggests that autosomal recessive inheritance may be more common in the Tunisian population than X-linked inheritance, contrary to existing literature.
Collapse
Affiliation(s)
- Mariem El Younsi
- Laboratoire de Génétique Humaine, Faculté de Médecine de Tunis, Université de Tunis El Manar, LR99ES101007, Tunis, Tunisia
| | - Ahlem Achour
- Laboratoire de Génétique Humaine, Faculté de Médecine de Tunis, Université de Tunis El Manar, LR99ES101007, Tunis, Tunisia
- Service des Maladies Congénitales Et Héréditaires, Hôpital Charles Nicolle, 1006, Tunis, Tunisia
| | - Lilia Kraoua
- Laboratoire de Génétique Humaine, Faculté de Médecine de Tunis, Université de Tunis El Manar, LR99ES101007, Tunis, Tunisia
- Service des Maladies Congénitales Et Héréditaires, Hôpital Charles Nicolle, 1006, Tunis, Tunisia
| | - Mezzi Nesrine
- Laboratory of Biomedical Genomics and Oncogenetics, Pasteur Institute of Tunis, 1002, Tunis, Tunisia
| | - Taha Sayari
- Service de Néphrologie Pédiatrique, Hôpital Charles Nicolle, 1006, Tunis, Tunisia
| | - Ezzeddine Abderrahim
- Service de Médecine Interne Et de Néphrologie Adulte, Hôpital Charles Nicolle, 1006, Tunis, Tunisia
| | - Janet Laabidi
- Service Néphrologie, L'Hôpital Militaire Principal d'Instruction de Tunis, MontFleury, 1008, Tunis, Tunisia
| | - Mohamed Karim Zouaghi
- Service de Néphrologie, Dialyse Et Transplantation Rénale, Hôpital La Rabta 1007, Tunis, Tunisia
| | - Maher Kharrat
- Laboratoire de Génétique Humaine, Faculté de Médecine de Tunis, Université de Tunis El Manar, LR99ES101007, Tunis, Tunisia
| | - Tahar Gargah
- Service de Néphrologie Pédiatrique, Hôpital Charles Nicolle, 1006, Tunis, Tunisia
| | - Mediha Trabelsi
- Laboratoire de Génétique Humaine, Faculté de Médecine de Tunis, Université de Tunis El Manar, LR99ES101007, Tunis, Tunisia
- Service des Maladies Congénitales Et Héréditaires, Hôpital Charles Nicolle, 1006, Tunis, Tunisia
| | - Ridha M'rad
- Laboratoire de Génétique Humaine, Faculté de Médecine de Tunis, Université de Tunis El Manar, LR99ES101007, Tunis, Tunisia.
- Service des Maladies Congénitales Et Héréditaires, Hôpital Charles Nicolle, 1006, Tunis, Tunisia.
| |
Collapse
|
3
|
Eble J, Köttgen A, Schultheiß UT. Monogenic Kidney Diseases in Adults With Chronic Kidney Disease (CKD). DEUTSCHES ARZTEBLATT INTERNATIONAL 2024; 121:689-695. [PMID: 38958599 PMCID: PMC12005384 DOI: 10.3238/arztebl.m2024.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND According to current evidence, every 10th to 11th adult with chronic kidney disease (CKD) has a monogenic disease of the kidney. METHODS This review is based on reported studies in which molecular genetic diagnostic techniques were used to investigate monogenic kidney diseases in adults with CKD. The studies were identified by a selective literature search using predefined criteria. RESULTS In 12 selected studies, diagnostic variants of 179 different genes were identified in 1467 out of 6607 study participants with CKD (22.2%). More than 60% of these variants affected 8 genes (PKD1, PKD2, COL4A3, COL4A4, COL4A5, UMOD, MUC1, HNF1B). Three diseases are associated with these genes: autosomal dominant polycystic kidney disease (ADPKD), Alport syndrome, and autosomal dominant tubulo-interstitial kidney disease (ADTKD). Physicians treating patients with CKD should be alert to the presence of any red flags, such as onset at a young age, a positive family history, or hematuria of unknown cause. When a genetic etiology is suspected, a specialized work-up is indicated, often including a molecular genetic investigation. A positive genetic finding usually leads to a modification of the patient's specific diagnosis and/or treatment. CONCLUSION Awareness of the high prevalence of monogenic kidney diseases in adults with CKD and alertness to their suggestive clinical features are crucial for the timely initiation of targeted diagnostic testing. The molecular genetic identification of these diseases is a prerequisite for appropriate patient management.
Collapse
Affiliation(s)
- Julian Eble
- Institute of Genetic Epidemiology, Department of Data Driven Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Department of Data Driven Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Germany
| | - Ulla T. Schultheiß
- Institute of Genetic Epidemiology, Department of Data Driven Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Germany
- Faculty of Medicine and Medical Center, Department of Medicine IV-Nephrology and Primary Care, University of Freiburg, Germany
- Synlab MVZ Humangenetik Freiburg GmbH, Germany
| |
Collapse
|
4
|
Kang E, Park BH, Lee H, Kang HG, Kim JH, Kim YN, Jung Y, Rim H, Shin HS. A comprehensive review of Alport syndrome: definition, pathophysiology, clinical manifestations, and diagnostic considerations. Kidney Res Clin Pract 2024:j.krcp.24.065. [PMID: 39384344 DOI: 10.23876/j.krcp.24.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/22/2024] [Indexed: 10/11/2024] Open
Abstract
Alport syndrome, a rare genetic disorder affecting around 1 in 50,000 individuals, primarily presents as microscopic hematuria and chronic kidney disease (CKD) with associated extrarenal complications. The Alport syndrome results from mutations in COL4A3, COL4A4, and COL4A5 genes, disrupting the formation of the α3-α4-α5 chain in the collagen IV network. The etiology involves X chromosome-related, autosomal dominant, autosomal recessive, and digenic inheritance patterns. The disease primarily manifests as kidney involvement, featuring persistent hematuria, proteinuria, and a progressive decline in renal function. Hearing loss, ocular abnormalities, and extrarenal manifestations further contribute to its complexity. Genotype-phenotype correlations are relatively evident, with distinct presentations in X-linked, autosomal recessive, and autosomal dominant cases. Diagnosis relies on urinalysis, histologic examination, and genetic testing with advancements in next-generation sequencing aiding identification. Although no specific treatment exists, early diagnosis improves outcomes, emphasizing the importance of genetic testing for prognosis and familial screening. The purpose of this review is to advance knowledge and enhance understanding of Alport syndrome.
Collapse
Affiliation(s)
- Eunjeong Kang
- Transplantation Center, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byung Hwa Park
- Renal Division, Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
- Transplantation Research Institute, Kosin University College of Medicine, Busan, Republic of Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Hyun Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ye Na Kim
- Renal Division, Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
- Transplantation Research Institute, Kosin University College of Medicine, Busan, Republic of Korea
| | - Yeonsoon Jung
- Renal Division, Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
- Transplantation Research Institute, Kosin University College of Medicine, Busan, Republic of Korea
| | - Hark Rim
- Renal Division, Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
- Transplantation Research Institute, Kosin University College of Medicine, Busan, Republic of Korea
| | - Ho Sik Shin
- Renal Division, Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
- Transplantation Research Institute, Kosin University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
5
|
Sariyeva Ismayilov A, Akaci O. Corneal endothelial cell morphology in children with autosomal recessive Alport syndrome: a longitudinal study. Ophthalmic Genet 2024; 45:372-377. [PMID: 38622802 DOI: 10.1080/13816810.2024.2337882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/22/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE To evaluate the corneal endothelial cell morphology in children with autosomal recessive Alport syndrome (ARAS). METHODS This is a longitudinal, prospective cohort study that evaluated pediatric patients with genetically diagnosed ARAS. Fifty-eight eyes of 29 pediatric patients (12 patients, 17 controls) underwent a full ophthalmic examination. Corneal endothelial cell density (ECD) (cells/mm²), coefficient variation (CV) of cell area (polymegathism), the percentage of hexagonal cells (HEX) (pleomorphism), and central corneal thickness (CCT) were analyzed automatically using a noncontact specular microscopy. RESULTS The mean ECD was 2904 ± 355.48 cell/mm² in the ARAS group and 3263.20 ± 261.71 cell/mm² in the control group (p = 0.004). In the ARAS group, the mean CV was 46.53 ± 10.43, which was significantly higher than that in controls (p = 0.026). The mean HEX was 48.86 ± 14.71 in the ARAS group and 59.06 ± 10.64 in the control group (p = 0.038). The mean CCT was 565.26 ± 39.77 µm in the ARAS group and 579.66 ± 31.65 µm in the control group (p = 0.282). The comparison of endothelial cell characteristic of the ARAS group with 1-year follow-up is as follows: The mean ECD decreased from 2904 ± 355.48 cell/mm² to 2735 ± 241.58 cell/mm² (p = 0.003). The mean CV increased from 46.53 ± 10.43 to 47.93 ± 10.50 (p = 0.471). The mean HEX decreased from 48.86 ± 14.71 to 48.50 ± 10.06 (p = 0.916). The mean CCT decreased from 565.26 ± 39.77 µm to 542.86 ± 40.39 µm (p = 0.000). CONCLUSION Measurement of ECD and percentage of hexagonality can also be used as an indicator of the health of the corneal endothelium. In this study, the mean ECD and HEX were significantly lower in ARAS group than in age-matched pediatric controls. Polymegathism, which reflects cellular stress, was statistically significantly higher in ARAS group. The mean ECD and CCT decreased significantly at 1-year follow-up. This study may demostrated that endothelial damages and stress in ARAS patients appear in childhood and show a rapid increase with age.
Collapse
Affiliation(s)
- Ayna Sariyeva Ismayilov
- Department of Ophthalmology, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Okan Akaci
- Department of Pediatric Nephrology, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| |
Collapse
|
6
|
Chavez E, Goncalves S, Rheault MN, Fornoni A. Alport Syndrome. ADVANCES IN KIDNEY DISEASE AND HEALTH 2024; 31:170-179. [PMID: 39004457 DOI: 10.1053/j.akdh.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 07/16/2024]
Abstract
Alport syndrome (AS) is characterized by progressive kidney failure, hematuria, sensorineural hearing loss, and ocular abnormalities. Pathogenic variants in the COL4A3-5 genes result in a defective deposition of the collagen IV α3α4α5 protomers in the basement membranes of the glomerulus in the kidney, the cochlea in the ear and the cornea, lens capsule and retina in the eye. The presence of a large variety of COL4A3-5 gene(s) pathogenetic variants irrespective of the mode of inheritance (X-linked, autosomal recessive, autosomal dominant, or digenic) with and without syndromic features is better defined as the "Alport spectrum disorder", and represents the most common cause of genetic kidney disease and the second most common cause of genetic kidney failure. The clinical course and prognosis of individuals with AS is highly variable. It is influenced by gender, mode of inheritance, affected gene(s), type of genetic mutation, and genetic modifiers. This review article will discuss the epidemiology, classification, pathogenesis, diagnosis, clinical course with genotype-phenotype correlations, and current and upcoming treatment of patients with AS. It will also review current recommendations with respect to when to evaluate for hearing loss or ophthalmologic abnormalities.
Collapse
Affiliation(s)
- Efren Chavez
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL.
| | - Stefania Goncalves
- Department of Otolaryngology-Head and Neck Surgery, University of Miami Miller School of Medicine, University of Miami Ear Institute, Miami, FL
| | - Michelle N Rheault
- Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, MN
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL; Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL.
| |
Collapse
|
7
|
Wu J, Cui Y, Liu T, Gu C, Ma X, Yu C, Cai Y, Shu J, Wang W, Cai C. Whole exome sequencing approach for identification of the molecular etiology in pediatric patients with hematuria. Clin Chim Acta 2024; 554:117795. [PMID: 38262496 DOI: 10.1016/j.cca.2024.117795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/25/2023] [Accepted: 01/20/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Hematuria is a common condition in clinical practice of pediatric patients. It is related to a wide spectrum of disorders and has high heterogeneity both clinically and genetically, which contributes to challenges of diagnosis and lead many pediatric patients with hematuria not to receive accurate diagnosis and early management. METHODS In this single center study, 42 children with hematuria were included in Tianjin Children's Hospital between 2019 and 2020. We analyzed the clinical information and performed WES (Whole exome sequencing) for all cases. Then the classification of identified variants was performed according to the American College of Medical Genetics and Genomics (ACMG) guidelines for interpreting sequence variants. For the fragment deletion, qPCR was performed to validate and confirm the inherited pattern. RESULTS For the 42 patients, 16 cases had gross hematuria and 26 had microscopic hematuria. Molecular genetic causes were uncovered in 9 (21.4%) children, including 7 with Alport syndrome (AS), one with polycystic nephropathy and one with lipoprotein glomerulopathy. The genetic causes for other patients were not related with hematuria. CONCLUSIONS WES is a rapid and effective way to evaluate patients with hematuria. The analysis of genotype-phenotype correlations of patients with AS indicated that severe variants were associated with early kidney failure. Secondary findings were not rare in Chinese children, thus the clinician should pay more attention to the clinical interpretation of sequencing results and properly interaction with patients and their family.
Collapse
Affiliation(s)
- Jinying Wu
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, China
| | - Yaqiong Cui
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, China
| | - Tao Liu
- The department of nephrology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Chunyu Gu
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, China
| | - Ximeng Ma
- Basic Medical College, Tianjin Medical University, Tianjin 30070, China
| | - Changshun Yu
- Tianjin KingMed Center for Clinical Laboratory Co. Ltd., Tianjin 300392, China
| | - Yingzi Cai
- Department of Medicine,Tianjin University, Tianjin 300110, China
| | - Jianbo Shu
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, China.
| | - Wenhong Wang
- The department of nephrology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China.
| | - Chunquan Cai
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, China.
| |
Collapse
|
8
|
Batkov EN, Mikhaylova VI. [Spontaneous rupture of the anterior lens capsule in Alport syndrome (case study)]. Vestn Oftalmol 2024; 140:76-81. [PMID: 38962982 DOI: 10.17116/oftalma202414003176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Alport syndrome is a hereditary disease characterized by glomerulopathy, manifested by hematuria and/or proteinuria, progressive decline in renal function, often combined with hearing and vision pathology. This article presents a clinical case of spontaneous opening of the anterior lens capsule in a patient with Alport syndrome, accompanied by uveitis and ophthalmic hypertension, and describes the features of the surgical aid and the postoperative period.
Collapse
Affiliation(s)
- E N Batkov
- Cheboksary branch of S.N. Fedorov National Medical Research Center "MNTK "Eye Microsurgery", Cheboksary, Russia
| | - V I Mikhaylova
- Cheboksary branch of S.N. Fedorov National Medical Research Center "MNTK "Eye Microsurgery", Cheboksary, Russia
| |
Collapse
|
9
|
Gao X, Li M, Wang K, Li Z, Han C. Pregnancy in women with autosomal recessive Alport syndrome caused by novel compound heterozygous mutations of COL4A3 gene: Two cases reports. Medicine (Baltimore) 2023; 102:e36057. [PMID: 37986374 PMCID: PMC10659596 DOI: 10.1097/md.0000000000036057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023] Open
Abstract
RATIONALE Autosomal recessive Alport syndrome (ARAS) is an hereditary heterogeneous disease that poses a serious risk to pregnant women. PATIENT CONCERNS We reported 2 cases of pregnancy with progressive proteinuria. The case 1 was a 21-year-old woman with 24-h proteinuria increased from 2.03 to 11.72 g at 13 to 35 weeks of gestation, and the case 2 was a 28-year-old woman with 24-h proteinuria increased from 2.10 to 9.32 g at 8 to 36 weeks of gestation. In advanced stage of pregnancy, the fetal development was smaller than the gestational age. DIAGNOSES Sanger sequencing showed that novel compound heterozygous mutations [c.1315 G>T (p.G439C) and c.4847 G>A (p.C1616Y)] of the collagen type IV alpha 3 chain (COL4A3) gene were found in the 2 cases. Renal puncture pathology confirmed the diagnosis of ARAS. INTERVENTIONS The 2 cases were treated with albumin, compounded amino acids, calcium, vitamin D, and low molecular weight heparin in addition to conventional treatment during pregnancy. Pregnancy was terminated by cesarean section at 36 to 37 weeks of gestation. After delivery, the patients were treated with Losartan for anti-proteinuric therapy for 1 year. OUTCOMES The neonatal weights and Apgar scores were normal. The patients recovered well and 24-h proteinuria decreased to pre-pregnancy level. LESSONS When pregnant women present with a persistent increasing proteinuria, ARAS needs to be considered. Sanger sequencing is useful to assist in the diagnosis of ARAS. Multidisciplinary treatments from nephrologists and gynecologists are needed to ensure the safety of pregnancy and the fetus.
Collapse
Affiliation(s)
- Xiaoli Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Meilu Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Kan Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zengyan Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Cha Han
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
10
|
Zeng M, Di H, Liang J, Liu Z. Effectiveness of renin-angiotensin-aldosterone system blockers in patients with Alport syndrome: a systematic review and meta-analysis. Nephrol Dial Transplant 2023; 38:2485-2493. [PMID: 37218713 DOI: 10.1093/ndt/gfad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Although renin-angiotensin-aldosterone system (RAAS) blockers have been considered the primary treatment for patients with Alport syndrome (AS) for a decade, there is no comprehensive review with evidence-based analysis evaluating the effectiveness of RAAS blockers in AS. METHODS A systematic review and meta-analysis was performed of published studies that compared outcomes related to disease progression between patients with AS receiving RAAS blockers with those taking non-RAAS treatment. Outcomes were meta-analyzed using the random effects models. Cochrane risk-of-bias, Newcastle-Ottawa Scale and Grading of Recommendations Assessment, Development and Evaluation methodology (GRADE) assessment determined the certainty of evidence. RESULTS A total of eight studies (1182 patients) were included in the analysis. Overall, the risk of bias was low to moderate. Compared with non-RAAS treatment, RAAS blockers could reduce the rate of progression to end-stage kidney disease (ESKD) [four studies; hazard ratio (HR) 0.33, 95% confidence interval (CI) 0.24-0.45; moderate certainty evidence]. After stratified by genetic types, a similar benefit was detected: male X-linked AS (XLAS) (HR 0.32, 95% CI 0.22-0.48), autosomal recessive AS (HR 0.25, 95% CI 0.10-0.62), female XLAS and autosomal dominant AS (HR 0.40, 95% CI 0.21-0.75). In addition, RAAS blockers showed a clear gradient of benefit depending on the stage of disease at the initiation of treatment. CONCLUSION This meta-analysis suggested that RAAS blockers could be considered as a specific therapy to delay of ESKD for AS with any genetic type, especially at the early stage of the disease, and every further more-effective therapy would be advised to be applied on top of this standard of care.
Collapse
Affiliation(s)
- Mengyao Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Hongling Di
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Ju Liang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
11
|
Zhang Y, Wang X, Zhou J, Ding J, Wang F. Abnormal mRNA Splicing Effect of COL4A3 to COL4A5 Unclassified Variants. Kidney Int Rep 2023; 8:1399-1406. [PMID: 37441478 PMCID: PMC10334324 DOI: 10.1016/j.ekir.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Genetic diagnosis of Alport syndrome (AS), which results from pathogenic variants in COL4A3, COL4A4, or COL4A5 genes, is hindered by large numbers of unclassified variants detected using next-generation sequencing (NGS). We examined the impact on splicing of variants of uncertain significance in COL4A3 to COL4A5. Methods Nine unrelated patients with clinical diagnosis or suspicion of AS were enrolled according to the criteria. Their clinical and genetic data were collected. Blood and urine samples were obtained from the patients and their family members. Sanger sequencing was used to confirm the 9 COL4A3 to COL4A5 unclassified variants identified by NGS. COL4A3 to COL4A5 mRNAs from urine were analyzed using targeted reverse transcription polymerase chain reaction and direct sequencing. Results Nine COL4A3 to COL4A5 unclassified variants were found to alter mRNAs splicing. Skipping of an exon or an exon fragment was induced by variants COL4A3 c.828+5G>A; COL4A4 c.3506-13_3528del; and COL4A5 c.451A>G (p. [Ile151Val]), c.2042-9 T>G, c.2689 G>C (p. [Glu897Gln]) and c.1033-10_1033-2delGGTAATAAA. Retention of an intron fragment was caused by variants COL4A3 c.3211-30G>T, and COL4A5 c.4316-20T>A and c.1033-10 G>A, respectively. The 9 families in this study obtained genetic diagnosis of AS, including 3 with autosomal recessive AS and 6 with X-linked AS. Conclusions Our findings demonstrate that urine mRNA analysis facilitates the identification of abnormal splicing of unclassified variants in Alport genes, which provides evidence of routine use of RNA analysis to improve genetic diagnosis of AS.
Collapse
Affiliation(s)
- Yanqin Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaoyuan Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jianmei Zhou
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Fang Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
12
|
Zhou L, Xi B, Xu Y, Han Y, Yang Y, Yang J, Wang Y, Qiu L, Zhang Y, Zhou J. Clinical, histological and molecular characteristics of Alport syndrome in Chinese children. J Nephrol 2023; 36:1415-1423. [PMID: 37097554 DOI: 10.1007/s40620-023-01570-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/01/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND Alport syndrome is caused by COL4A3, COL4A4, or COL4A5 gene mutations. The present study aims to compare the clinicopathological features, gene mutations, and outcome of Chinese children with different forms of Alport syndrome. METHODS One hundred twenty-eight children from 126 families diagnosed with Alport syndrome through pathological and genetic examination between 2003 and 2021 were included in this single-center retrospective study. The laboratory and clinicopathological features of the patients with different inheritance patterns were analyzed. The patients were followed-up for disease progression and phenotype-genotype correlation. RESULTS Of the 126 Alport syndrome families, X-linked forms accounted for 77.0%, autosomal recessive for 11.9%, autosomal dominant for 7.1%, and digenic for 4.0%. Among the patients, 59.4% were males and 40.6% were females. Altogether, 114 different mutations were identified in 101 patients from 99 families by whole-exome sequencing, of which 68 have not been previously reported. The most prevalent type of mutation was glycine substitution, which was identified in 52.1%, 36.7%, and 60% of the patients with X-linked Alport syndrome, autosomal recessive and autosomal dominant Alport syndrome, respectively. At the end of a median follow up of 3.3 (1.8-6.3) years, Kaplan-Meier curves showed kidney survival was significantly lower in autosomal recessive compared to X-linked Alport syndrome (P = 0.004). Pediatric patients with Alport syndrome seldom presented extrarenal involvement. CONCLUSIONS X-linked Alport syndrome is the most frequent form found in this cohort. Progression was more rapid in autosmal recessive than in X-linked Alport syndrome.
Collapse
Affiliation(s)
- Lanqi Zhou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei Province, China
| | - Bijun Xi
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei Province, China
| | - Yongli Xu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei Province, China
| | - Yanxinli Han
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei Province, China
| | - Yuan Yang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei Province, China
| | - Jing Yang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei Province, China
| | - Yi Wang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei Province, China
| | - Liru Qiu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei Province, China
| | - Yu Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei Province, China
| | - Jianhua Zhou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
13
|
Groen In 't Woud S, Rood IM, Steenbergen E, Willemsen B, Dijkman HB, van Geel M, Schoots J, Wetzels JFM, Lugtenberg D, Deegens JKJ, Bongers EMHF. Kidney Disease Associated With Mono-allelic COL4A3 and COL4A4 Variants: A Case Series of 17 Families. Kidney Med 2023; 5:100607. [PMID: 36925663 PMCID: PMC10011433 DOI: 10.1016/j.xkme.2023.100607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rationale & Objective Mono-allelic variants in COL4A3 and COL4A4 (COL4A3/COL4A4) have been identified in a spectrum of glomerular basement membrane nephropathies, including thin basement membrane nephropathy and autosomal dominant Alport syndrome. With the increasing use of next generation sequencing, mono-allelic COL4A3/COL4A4 variants are detected more frequently, but phenotypic heterogeneity impedes counseling. We aimed to investigate the phenotypic spectrum, kidney biopsy results, and segregation patterns of patients with mono-allelic COL4A3/COL4A4 variants identified by whole exome sequencing. Study Design Case series. Setting & Participants We evaluated clinical and pathologic characteristics of 17 Dutch index patients with mono-allelic variants in COL4A3/COL4A4 detected by diagnostic whole exome sequencing and 25 affected family members with variants confirmed by Sanger sequencing. Results Eight different mono-allelic COL4A3/COL4A4 variants were identified across members of 11 families, comprising 7 glycine substituted missense variants and 1 frameshift variant. All index patients had microscopic hematuria at clinical presentation (median age 43 years) and 14 had (micro)albuminuria/proteinuria. All family members showed co-segregation of the variant with at least hematuria. At end of follow-up of all 42 individuals (median age 54 years), 16/42 patients had kidney function impairment, of whom 6 had kidney failure. Reports of kidney biopsies of 14 patients described thin basement membrane nephropathy, focal segmental glomerulosclerosis, minimal change lesions, and Alport syndrome. Electron microscopy images of 7 patients showed a significantly thinner glomerular basement membrane compared with images of patients with idiopathic focal segmental glomerulosclerosis and other hereditary glomerular diseases. No genotype-phenotype correlations could be established. Limitations Retrospective design, ascertainment bias toward severe kidney phenotypes, and familial hematuria. Conclusions This study confirms the wide phenotypic spectrum associated with mono-allelic COL4A3/COL4A4 variants, extending from isolated microscopic hematuria to kidney failure with high intra- and interfamilial variability.
Collapse
Affiliation(s)
- Sander Groen In 't Woud
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ilse M Rood
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eric Steenbergen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Brigith Willemsen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Henry B Dijkman
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michel van Geel
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jeroen Schoots
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack F M Wetzels
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dorien Lugtenberg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen K J Deegens
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ernie M H F Bongers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Plevova P, Indrakova J, Savige J, Kuhnova P, Tvrda P, Cerna D, Hilscherova S, Kudrejova M, Polendova D, Jaklova R, Langova M, Jahnova H, Lastuvkova J, Dusek J, Gut J, Vlckova M, Solarova P, Kreckova G, Kantorova E, Soukalova J, Slavkovsky R, Zapletalova J, Tichy T, Thomasova D. A founder COL4A4 pathogenic variant resulting in autosomal recessive Alport syndrome accounts for most genetic kidney failure in Romani people. Front Med (Lausanne) 2023; 10:1096869. [PMID: 36844206 PMCID: PMC9948603 DOI: 10.3389/fmed.2023.1096869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/11/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Romani people have a high prevalence of kidney failure. This study examined a Romani cohort for pathogenic variants in the COL4A3, COL4A4, and COL4A5 genes that are affected in Alport syndrome (AS), a common cause of genetic kidney disease, characterized by hematuria, proteinuria, end-stage kidney failure, hearing loss, and eye anomalies. Materials and methods The study included 57 Romani from different families with clinical features that suggested AS who underwent next-generation sequencing (NGS) of the COL4A3, COL4A4, and COL4A5 genes, and 83 family members. Results In total, 27 Romani (19%) had autosomal recessive AS caused by a homozygous pathogenic c.1598G>A, p.Gly533Asp variant in COL4A4 (n = 20) or a homozygous c.415G>C, p.Gly139Arg variant in COL4A3 (n = 7). For p.Gly533Asp, 12 (80%) had macroscopic hematuria, 12 (63%) developed end-stage kidney failure at a median age of 22 years, and 13 (67%) had hearing loss. For p.Gly139Arg, none had macroscopic hematuria (p = 0.023), three (50%) had end-stage kidney failure by a median age of 42 years (p = 0.653), and five (83%) had hearing loss (p = 0.367). The p.Gly533Asp variant was associated with a more severe phenotype than p.Gly139Arg, with an earlier age at end-stage kidney failure and more macroscopic hematuria. Microscopic hematuria was very common in heterozygotes with both p.Gly533Asp (91%) and p.Gly139Arg (92%). Conclusion These two founder variants contribute to the high prevalence of kidney failure in Czech Romani. The estimated population frequency of autosomal recessive AS from these variants and consanguinity by descent is at least 1:11,000 in Czech Romani. This corresponds to a population frequency of autosomal dominant AS from these two variants alone of 1%. Romani with persistent hematuria should be offered genetic testing.
Collapse
Affiliation(s)
- Pavlina Plevova
- Department of Clinical and Molecular Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia,Department of Biomedical Sciences, Faculty of Medicine, University of Ostrava, Ostrava, Czechia,*Correspondence: Pavlina Plevova,
| | - Jana Indrakova
- Department of Clinical and Molecular Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
| | - Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Royal Melbourne Hospital, Melbourne, Australia
| | - Petra Kuhnova
- Department of Clinical and Molecular Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
| | - Petra Tvrda
- Department of Clinical and Molecular Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
| | - Dita Cerna
- Department of Clinical and Molecular Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
| | - Sarka Hilscherova
- Department of Clinical and Molecular Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
| | - Monika Kudrejova
- Department of Clinical and Molecular Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
| | - Daniela Polendova
- Department of Medical Genetics, Faculty of Medicine in Plzeň, Charles University and University Hospital Plzeň, Plzeň, Czechia
| | - Radka Jaklova
- Department of Medical Genetics, Faculty of Medicine in Plzeň, Charles University and University Hospital Plzeň, Plzeň, Czechia
| | - Martina Langova
- Department of Medical Genetics, Thomayer University Hospital, Prague, Czechia
| | - Helena Jahnova
- Department of Pediatrics, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Prague, Czechia
| | - Jana Lastuvkova
- Department of Medical Genetics, Krajská zdravotní, a.s., Masaryk Hospital in Ústí nad Labem, Ústí nad Labem, Czechia
| | - Jiri Dusek
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Josef Gut
- Department of Pediatrics, Hospital Česká Lípa, Česká Lípa, Czechia
| | - Marketa Vlckova
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Pavla Solarova
- Department of Medical Genetics, University Hospital Hradec Králové, Hradec Králové, Czechia
| | | | - Eva Kantorova
- Department of Medical Genetics, Hospital České Budějovice a.s., České Budějovice, Czechia
| | - Jana Soukalova
- Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czechia
| | - Rastislav Slavkovsky
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| | - Jana Zapletalova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| | - Tomas Tichy
- Institute of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| | - Dana Thomasova
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| |
Collapse
|
15
|
An Update on Women and Girls with Alport Syndrome. CURRENT PEDIATRICS REPORTS 2022. [DOI: 10.1007/s40124-022-00279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Savige J, Huang M, Croos Dabrera MS, Shukla K, Gibson J. Genotype-Phenotype Correlations for Pathogenic COL4A3–COL4A5 Variants in X-Linked, Autosomal Recessive, and Autosomal Dominant Alport Syndrome. Front Med (Lausanne) 2022; 9:865034. [PMID: 35602506 PMCID: PMC9120524 DOI: 10.3389/fmed.2022.865034] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/24/2022] [Indexed: 12/28/2022] Open
Abstract
Alport syndrome is inherited as an X-linked (XL), autosomal recessive (AR), or autosomal dominant (AD) disease, where pathogenic COL4A3 – COL4A5 variants affect the basement membrane collagen IV α3α4α5 network. About 50% of pathogenic variants in each gene (major rearrangements and large deletions in 15%, truncating variants in 20%, splicing changes in 15%) are associated with “severe” disease with earlier onset kidney failure, and hearing loss and ocular abnormalities in males with XL inheritance and in males and females with AR disease. Severe variants are also associated with early proteinuria which is itself a risk factor for kidney failure. The other half of pathogenic variants are missense changes which are mainly Gly substitutions. These are generally associated with later onset kidney failure, hearing loss, and less often with major ocular abnormalities. Further determinants of severity for missense variants for XL disease in males, and in AD disease, include Gly versus non-Gly substitutions; increased distance from a non-collagenous interruption or terminus; and Gly substitutions with a more (Arg, Glu, Asp, Val, and Trp) or less disruptive (Ala, Ser, and Cys) residue. Understanding genotype-phenotype correlations in Alport syndrome is important because they help predict the likely age at kidney failure, and the need for early and aggressive management with renin-angiotensin system blockade and other therapies. Genotype-phenotype correlations also help standardize patients with Alport syndrome undergoing trials of clinical treatment. It is unclear whether severe variants predispose more often to kidney cysts or coincidental IgA glomerulonephritis which are recognized increasingly in COL4A3-, COL4A4 - and COL4A5-associated disease.
Collapse
|
17
|
Gibson JT, Huang M, Shenelli Croos Dabrera M, Shukla K, Rothe H, Hilbert P, Deltas C, Storey H, Lipska-Ziętkiewicz BS, Chan MMY, Sadeghi-Alavijeh O, Gale DP, Cerkauskaite A, Savige J. Genotype-phenotype correlations for COL4A3-COL4A5 variants resulting in Gly substitutions in Alport syndrome. Sci Rep 2022; 12:2722. [PMID: 35177655 PMCID: PMC8854626 DOI: 10.1038/s41598-022-06525-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
Alport syndrome is the commonest inherited kidney disease and nearly half the pathogenic variants in the COL4A3-COL4A5 genes that cause Alport syndrome result in Gly substitutions. This study examined the molecular characteristics of Gly substitutions that determine the severity of clinical features. Pathogenic COL4A5 variants affecting Gly in the Leiden Open Variation Database in males with X-linked Alport syndrome were correlated with age at kidney failure (n = 157) and hearing loss diagnosis (n = 80). Heterozygous pathogenic COL4A3 and COL4A4 variants affecting Gly (n = 304) in autosomal dominant Alport syndrome were correlated with the risk of haematuria in the UK 100,000 Genomes Project. Gly substitutions were stratified by exon location (1 to 20 or 21 to carboxyl terminus), being adjacent to a non-collagenous region (interruption or terminus), and the degree of instability caused by the replacement residue. Pathogenic COL4A5 variants that resulted in a Gly substitution with a highly destabilising residue reduced the median age at kidney failure by 7 years (p = 0.002), and age at hearing loss diagnosis by 21 years (p = 0.004). Substitutions adjacent to a non-collagenous region delayed kidney failure by 19 years (p = 0.014). Heterozygous pathogenic COL4A3 and COL4A4 variants that resulted in a Gly substitution with a highly destabilising residue (Arg, Val, Glu, Asp, Trp) were associated with an increased risk of haematuria (p = 0.018), and those adjacent to a non-collagenous region were associated with a reduced risk (p = 0.046). Exon location had no effect. In addition, COL4A5 variants adjacent to non-collagenous regions were over-represented in the normal population in gnomAD (p < 0.001). The nature of the substitution and of nearby residues determine the risk of haematuria, early onset kidney failure and hearing loss for Gly substitutions in X-linked and autosomal dominant Alport syndrome.
Collapse
Affiliation(s)
- Joel T Gibson
- Department of Medicine (Melbourne Health and Northern Health), Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Mary Huang
- Department of Medicine (Melbourne Health and Northern Health), Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Marina Shenelli Croos Dabrera
- Department of Medicine (Melbourne Health and Northern Health), Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Krushnam Shukla
- Department of Medicine (Melbourne Health and Northern Health), Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Hansjörg Rothe
- Centre for Nephrology and Metabolic Disorders, 02943, Weisswasser, Germany
| | - Pascale Hilbert
- Departement de Biologie Moleculaire, Institute de Pathologie et de Genetique ASBL, Gosselies, Belgium
| | - Constantinos Deltas
- Center of Excellence in Biobanking and Biomedical Research, University of Cyprus Medical School, Nicosia, Cyprus
| | - Helen Storey
- Molecular Genetics, Viapath Laboratories, 5th Floor Tower Wing, Guy's Hospital, London, SE1 9RT, UK
| | | | - Melanie M Y Chan
- Department of Renal Medicine, University College London, London, UK
| | | | - Daniel P Gale
- Department of Renal Medicine, University College London, London, UK
| | - Agne Cerkauskaite
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia.
| |
Collapse
|
18
|
Savige J, Lipska-Zietkiewicz BS, Watson E, Hertz JM, Deltas C, Mari F, Hilbert P, Plevova P, Byers P, Cerkauskaite A, Gregory M, Cerkauskiene R, Ljubanovic DG, Becherucci F, Errichiello C, Massella L, Aiello V, Lennon R, Hopkinson L, Koziell A, Lungu A, Rothe HM, Hoefele J, Zacchia M, Martic TN, Gupta A, van Eerde A, Gear S, Landini S, Palazzo V, al-Rabadi L, Claes K, Corveleyn A, Van Hoof E, van Geel M, Williams M, Ashton E, Belge H, Ars E, Bierzynska A, Gangemi C, Renieri A, Storey H, Flinter F. Guidelines for Genetic Testing and Management of Alport Syndrome. Clin J Am Soc Nephrol 2022; 17:143-154. [PMID: 34930753 PMCID: PMC8763160 DOI: 10.2215/cjn.04230321] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genetic testing for pathogenic COL4A3-5 variants is usually undertaken to investigate the cause of persistent hematuria, especially with a family history of hematuria or kidney function impairment. Alport syndrome experts now advocate genetic testing for persistent hematuria, even when a heterozygous pathogenic COL4A3 or COL4A4 is suspected, and cascade testing of their first-degree family members because of their risk of impaired kidney function. The experts recommend too that COL4A3 or COL4A4 heterozygotes do not act as kidney donors. Testing for variants in the COL4A3-COL4A5 genes should also be performed for persistent proteinuria and steroid-resistant nephrotic syndrome due to suspected inherited FSGS and for familial IgA glomerulonephritis and kidney failure of unknown cause.
Collapse
Affiliation(s)
- Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, Victoria, Australia
| | | | - Elizabeth Watson
- South West Genetic Laboratory Hub, North Bristol Trust, Bristol, United Kingdom
| | - Jens Michael Hertz
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Constantinos Deltas
- Center of Excellence in Biobanking and Biomedical Research, University of Cyprus Medical School, Nicosia, Cyprus
| | - Francesca Mari
- Department of Medical Biotechnology, Medical Genetics, University of Siena, Siena, Italy
| | - Pascale Hilbert
- Departement de Biologie Moleculaire, Institute de Pathologie et de Genetique, Gosselies, Belgium
| | - Pavlina Plevova
- Department of Medical Genetics, University Hospital of Ostrava, Ostrava, Czech Republic
- Department of Biomedical Sciences, University Hospital of Ostrava, Ostrava, Czech Republic
| | - Peter Byers
- Department of Pathology, University of Washington, Seattle, Washington
- Department of Medicine (Medical Genetics), University of Washington, Seattle, Washington
| | - Agne Cerkauskaite
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Martin Gregory
- Division of Nephrology, Department of Medicine, University of Utah Health, Salt Lake City, Utah
| | - Rimante Cerkauskiene
- Clinic of Pediatrics, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Danica Galesic Ljubanovic
- Department of Pathology, University of Zagreb, School of Medicine, Dubrava University Hospital, Zagreb, Croatia
| | | | | | - Laura Massella
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital, Rome, Italy
| | - Valeria Aiello
- Department of Experimental Diagnostic and Specialty Medicine, Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Louise Hopkinson
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Ania Koziell
- School of Immunology and Microbial Sciences, Faculty of Life Sciences, King's College London, London, United Kingdom
| | - Adrian Lungu
- Pediatric Nephrology Department, Fundeni Clinical Institute, Bucharest, Romania
| | | | - Julia Hoefele
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | | | | | - Asheeta Gupta
- Birmingham Children’s Hospital, Birmingham, United Kingdom
| | | | | | - Samuela Landini
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Viviana Palazzo
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Laith al-Rabadi
- Health Sciences Centre, University of Utah, Salt Lake City, Utah
| | - Kathleen Claes
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Anniek Corveleyn
- Center for Human Genetics, University Hospitals and Katholieke Universiteit Leuven, Leuven, Belgium
| | - Evelien Van Hoof
- Center for Human Genetics, University Hospitals and Katholieke Universiteit Leuven, Leuven, Belgium
| | - Micheel van Geel
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Maggie Williams
- Bristol Genetics Laboratory Pathology Sciences, Southmead Hospital, Southmead, United Kingdom
| | - Emma Ashton
- North East Thames Regional Genetics Laboratory, Great Ormond Street Hospital, London, United Kingdom
| | - Hendica Belge
- Institut de Pathologie et de Génétique, Center for Human Genetics, Gosselies, Belgium
| | - Elisabet Ars
- Molecular Biology Laboratory, Fundacio Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autonoma de Barcelona, Instituto de Investigación Carlos III, Barcelona, Spain
| | - Agnieszka Bierzynska
- Bristol Renal Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Concetta Gangemi
- Division of Nephrology and Dialysis, University Hospital of Verona, Verona, Italy
| | - Alessandra Renieri
- Department of Medical Biotechnology, Medical Genetics, University of Siena, Siena, Italy
| | - Helen Storey
- Molecular Genetics, Viapath Laboratories, Guy’s Hospital, London, United Kingdom
| | - Frances Flinter
- Department of Clinical Genetics, Guy’s and St. Thomas’ National Health Service Foundation Trust, London, United Kingdom
| |
Collapse
|
19
|
Smetana J, Vallova V, Wayhelova M, Hladilkova E, Filkova H, Horinova V, Broz P, Mikulasova A, Gaillyova R, Kuglík P. Case Report: Contiguous Xq22.3 Deletion Associated with ATS-ID Syndrome: From Genotype to Further Delineation of the Phenotype. Front Genet 2021; 12:750110. [PMID: 34777475 PMCID: PMC8585740 DOI: 10.3389/fgene.2021.750110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Alport syndrome with intellectual disability (ATS-ID, AMME complex; OMIM #300194) is an X-linked contiguous gene deletion syndrome associated with an Xq22.3 locus mainly characterized by hematuria, renal failure, hearing loss/deafness, neurodevelopmental disorder (NDD), midface retrusion, and elliptocytosis. It is thought that ATS-ID is caused by the loss of function of COL4A5 (ATS) and FACL4 (ACSL4) genes through the interstitial (micro)deletion of chromosomal band Xq22.3. We report detailed phenotypic description and results from genome-wide screening of a Czech family with diagnosis ATS-ID (proband, maternal uncle, and two female carriers). Female carriers showed mild clinical features of microscopic hematuria only, while affected males displayed several novel clinical features associated with ATS-ID. Utilization of whole-exome sequencing discovered the presence of approximately 3 Mb of deletion in the Xq23 area, which affected 19 genes from TSC22D3 to CHRDL1. We compared the clinical phenotype with previously reported three ATS-ID families worldwide and correlated their clinical manifestations with the incidence of genes in both telomeric and centromeric regions of the deleted chromosomal area. In addition to previously described phenotypes associated with aberrations in AMMECR1 and FACL4, we identified two genes, members of tripartite motif family MID2 and subunit of the proteasome PA700/19S complex (PSMD10), respectively, as prime candidate genes responsible for additional clinical features observed in our patients with ATS-ID. Overall, our findings further improve the knowledge about the clinical impact of Xq23 deletions and bring novel information about phenotype/genotype association of this chromosomal aberration.
Collapse
Affiliation(s)
- Jan Smetana
- Department of Genetics and Molecular Biology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech
| | - Vladimira Vallova
- Department of Genetics and Molecular Biology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech.,Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech
| | - Marketa Wayhelova
- Department of Genetics and Molecular Biology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech.,Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech
| | - Eva Hladilkova
- Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech
| | - Hana Filkova
- Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech
| | | | - Petr Broz
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University Prague and Faculty Hospital Motol, Prague, Czech
| | - Aneta Mikulasova
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Renata Gaillyova
- Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech
| | - Petr Kuglík
- Department of Genetics and Molecular Biology, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech.,Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech
| |
Collapse
|
20
|
Rubel D, Zhang Y, Sowa N, Girgert R, Gross O. Organoprotective Effects of Spironolactone on Top of Ramipril Therapy in a Mouse Model for Alport Syndrome. J Clin Med 2021; 10:jcm10132958. [PMID: 34209341 PMCID: PMC8268845 DOI: 10.3390/jcm10132958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 12/27/2022] Open
Abstract
Angiotensin-converting enzyme inhibitors (ACEi) delay progression of the inherited renal disease Alport syndrome. However, the effect of ACEis weakens gradually due to an “aldosterone escape”. Here, we investigate if an aldosterone antagonist can counteract loss of ACEi-efficacy. COL4A3−/− mice were treated with ramipril (ACEi), starting at 4.5 weeks of age, and spironolactone was added at 7 weeks of age. Lifespan until renal failure, as well as kidney function parameters, were investigated. Dual therapy decreased proteinuria levels compared to ACEi monotherapy. Matrix accumulation, as well as tubulointerstitial and glomerular scar-tissue formation, were significantly reduced compared to untreated mice and ACEi-monotherapy at 75 and 100 days. Lifespan in dual treated mice was extended compared to untreated mice. However, lifespan was not superior to ACEi monotherapy–despite improved urea-nitrogen levels in the dual therapy group. In conclusion, adding the aldosterone-antagonist spironolactone to ACEi therapy further improved kidney function and reduced proteinuria and fibrosis. However, survival was not improved further, possibly due to premature death from side effects of dual therapy such as hyperkalemia. Thus, dual therapy could offer an effective therapy option for Alport syndrome patients with progressive proteinuria. However, the risks of adverse events require close monitoring.
Collapse
Affiliation(s)
- Diana Rubel
- Clinic of Nephrology and Rheumatology, University Medical Center Goettingen, 37075 Goettingen, Germany; (D.R.); (Y.Z.); (N.S.); (R.G.)
| | - Yanqin Zhang
- Clinic of Nephrology and Rheumatology, University Medical Center Goettingen, 37075 Goettingen, Germany; (D.R.); (Y.Z.); (N.S.); (R.G.)
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Nenja Sowa
- Clinic of Nephrology and Rheumatology, University Medical Center Goettingen, 37075 Goettingen, Germany; (D.R.); (Y.Z.); (N.S.); (R.G.)
| | - Rainer Girgert
- Clinic of Nephrology and Rheumatology, University Medical Center Goettingen, 37075 Goettingen, Germany; (D.R.); (Y.Z.); (N.S.); (R.G.)
| | - Oliver Gross
- Clinic of Nephrology and Rheumatology, University Medical Center Goettingen, 37075 Goettingen, Germany; (D.R.); (Y.Z.); (N.S.); (R.G.)
- Correspondence: ; Tel.: +49-551-60488
| |
Collapse
|
21
|
Liu HF, Li Q, Peng YQ. Alport syndrome combined with lupus nephritis in a Chinese family: A case report. World J Clin Cases 2021; 9:4721-4727. [PMID: 34222438 PMCID: PMC8223833 DOI: 10.12998/wjcc.v9.i18.4721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/27/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alport syndrome (ATS) is a rare hereditary disease caused by mutations in genes such as COL4A3, COL4A4, and COL4A5. ATS involves a spectrum of phenotypes ranging from isolated hematuria that is nonprogressive to progressive renal disease with extrarenal abnormalities. Although ATS can be combined with other diseases or syndromes, ATS combined with lupus nephritis has not been reported before.
CASE SUMMARY A Chinese family with ATS was recruited for the current study. Clinical characteristics (including findings from renal biopsy) of ATS patients were collected from medical records, and potential causative genes were explored by whole-exome sequencing. A heterozygous substitution in intron 22 of COL4A3 (NM_000091 c.2657-1G>A) was found in the patients, which was further confirmed by quantitative polymerase chain reaction.
CONCLUSION Heterozygous substitution of a COL4A3 gene splice site was identified by whole-exome sequencing, revealing the molecular pathogenic basis of this disorder. In general, identification of pathogenic genes can help to fully understand the molecular mechanism of disease and facilitate precise treatment.
Collapse
Affiliation(s)
- Hui-Fang Liu
- Department of Nephrology, Traditional Chinese Medicine Hospital of Jiulongpo District, Chongqing 400050, China
| | - Qing Li
- Department of Nephrology, Traditional Chinese Medicine Hospital of Jiulongpo District, Chongqing 400050, China
| | - You-Qun Peng
- Department of Nephrology, Traditional Chinese Medicine Hospital of Jiulongpo District, Chongqing 400050, China
| |
Collapse
|
22
|
Long-term outcome among females with Alport syndrome from a single pediatric center. Pediatr Nephrol 2021; 36:945-951. [PMID: 33048202 PMCID: PMC7914153 DOI: 10.1007/s00467-020-04748-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/23/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Alport syndrome (AS) is a multisystem condition which can result in progressive kidney disease, hearing loss, and ocular changes. X-linked inheritance is observed in 85% of affected individuals. As a result, most prior studies have focused on males. Girls with AS can also be symptomatic although historically thought to have few clinical manifestations in childhood. The objective of the study was to describe the clinical presentation and course of females with AS. METHODS A single-center retrospective study of all young females with AS between January 1, 1987, and May 20, 2019. Subjects were identified using ICD-9/10 diagnosis codes for AS, familial hematuria, or nephritis. Clinical data were extracted by retrospective chart review. RESULTS Thirty-six female patients were included in the analysis. Mean age at presentation was 5.58 ± 3.0 years, and mean follow-up was 5.9 ± 3.9 years. Twenty-nine patients (80%) had a family history of AS. At end of the follow-up period, gross hematuria was observed in 15 patients (42%), 20 (56%) developed proteinuria, and 2 (6.7%) had an estimated glomerular filtration rate (eGFR) < 90 ml/min/1.73m2 with one patient developing stage 5 chronic kidney disease. Four of the twenty-seven (14.8%) who underwent audiologic testing had an abnormal exam. CONCLUSIONS Known family histories of AS or gross hematuria were the most common reasons for the initial presentation in our cohort. Development of proteinuria, eGFR < 90 ml/min/1.73m2, and abnormal audiology exam are not exceptional findings, suggesting that close monitoring of young females into adulthood is warranted.
Collapse
|
23
|
Genotype-phenotype correlations and nephroprotective effects of RAAS inhibition in patients with autosomal recessive Alport syndrome. Pediatr Nephrol 2021; 36:2719-2730. [PMID: 33772369 PMCID: PMC8370956 DOI: 10.1007/s00467-021-05040-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/20/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Autosomal recessive Alport syndrome (ARAS) is caused by pathogenic variants in both alleles of either COL4A3 or COL4A4 genes. Reports on ARAS are rare due to small patient numbers and there are no reports on renin-angiotensin-aldosterone system (RAAS) inhibition therapy in ARAS. METHODS Retrospective study in 101 patients with ARAS from Chinese Registry Database of Hereditary Kidney Diseases and European Alport Registry. Genotype-phenotype correlations and nephroprotective effects of RAAS inhibition in ARAS were evaluated. RESULTS Median age was 15 years (range 1.5-46 years). Twelve patients progressed to stage 5 chronic kidney disease (CKD5) at median age 20.5 years. Patients without missense variants had both higher prevalence and earlier onset age of hearing loss, nephrotic-range proteinuria, more rapid decline of eGFR, and earlier onset age of CKD5 compared to patients with 1 or 2 missense variants. Most patients (79/101, 78%) currently are treated with RAAS inhibitors; median age at therapy initiation was 10 years and mean duration 6.5 ± 6.0 years. Median age at CKD5 for untreated patients was 24 years. RAAS inhibition therapy delayed CKD5 onset in those with impaired kidney function (T-III) to median age 35 years, but is undefined in treated patients with proteinuria (T-II) due to low number of events. No treated patients with microalbuminuria (T-I) progressed to CKD5. ARAS patients with 1 or 2 missense variants showed better response to treatment than patients with non-missense-variants. CONCLUSIONS Our study provides the first evidence for early use of RAAS inhibition therapy in patients with ARAS. Furthermore, genotype in ARAS correlates with response to therapy in favor of missense variants.
Collapse
|
24
|
Nozu K, Takaoka Y, Kai H, Takasato M, Yabuuchi K, Yamamura T, Horinouchi T, Sakakibara N, Ninchoji T, Nagano C, Iijima K. Genetic background, recent advances in molecular biology, and development of novel therapy in Alport syndrome. Kidney Res Clin Pract 2020; 39:402-413. [PMID: 33214343 PMCID: PMC7771000 DOI: 10.23876/j.krcp.20.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/18/2022] Open
Abstract
Alport syndrome (AS) is a progressive inherited kidney disease characterized by hearing loss and ocular abnormalities. There are three forms of AS depending on inheritance mode: X-linked Alport syndrome (XLAS), autosomal recessive AS (ARAS), and autosomal dominant AS (ADAS). XLAS is caused by pathogenic variants in COL4A5, which encodes type IV collagen α5 chain, while ADAS and ARAS are caused by variants in COL4A3 or COL4A4, which encode type IV collagen α3 or α4 chain, respectively. In male XLAS or ARAS cases, end-stage kidney disease (ESKD) develops around a median age of 20 to 30 years old, while female XLAS or ADAS cases develop ESKD around a median age of 60 to 70 years old. The diagnosis of AS is dependent on either genetic or pathological findings. However, determining the pathogenicity of the variants detected by gene tests can be difficult. Recently, we applied the following molecular investigation tools to determine pathogenicity: 1) in silico and in vitro trimer formation assay of α345 chains to assess triple helix formation ability, 2) kidney organoids constructed from patients’ induced pluripotent stem cells to identify α5 chain expression on the glomerular basement membrane, and 3) in vitro splicing assay to detect aberrant splicing to determine the pathogenicity of variants. In this review article, we discuss the genetic background and novel assays for determining the pathogenicity of variants. We also discuss the current treatment approaches and introduce exon skipping therapy as one potential treatment option.
Collapse
Affiliation(s)
- Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yutaka Takaoka
- Division of Medical Informatics and Bioinformatics, Kobe University Hospital, Kobe, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Minoru Takasato
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kensuke Yabuuchi
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Ninchoji
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
25
|
Uliana V, Sebastio P, Riva M, Carli D, Ruberto C, Bianchi L, Graziano C, Capelli I, Faletra F, Pillon R, Mattina T, Sensi A, Bonatti F, Percesepe A. Deciphering the pathogenesis of the COL4-related hematuric nephritis: A genotype/phenotype study. Mol Genet Genomic Med 2020; 9:e1576. [PMID: 33369211 PMCID: PMC8077073 DOI: 10.1002/mgg3.1576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 11/05/2022] Open
Abstract
Background Alport syndrome (ATS) is a hereditary progressive hematuric nephropathy associated with sensorineural deafness and ocular abnormalities, which is caused by mutations in the COL4A5 gene (X‐linked ATS) and in two autosomal genes, COL4A4 and COL4A3, responsible of both recessive ATS and, when present in heterozygosity, of a spectrum of phenotypes ranging from isolated hematuria to frank renal disease. Methods Retrospective analysis of the clinical and genetic features of 76 patients from 34 unrelated ATS families (11 with mutations in COL4A5, 11 in COL4A3, and 12 in COL4A4) and genotype/phenotype correlation for the COL4A3/COL4A4 heterozygotes (34 patients from 14 families). Results Eight (24%) of the 34 heterozygous COL4A3 and COL4A4 carriers developed renal failure at a mean age of 57 years, with a significantly lower risk than hemizygous COL4A5 or double heterozygous COL4A3/COL4A4 carriers (p < 0.01), but not different from that of the heterozygous COL4A5 females (p = 0.6). Heterozygous carriers of frameshift/splicing variants in COL4A3/COL4A4 presented a higher risk of developing renal failure than those with missense variants in the glycine domains (p = 0.015). Conclusion The renal functional prognosis of patients with COL4A3/COL4A4‐positive ATS recapitulates that of the X‐linked ATS forms, with differences between heterozygous vs. double heterozygous patients and between carriers of loss‐of‐function vs. missense variants.
Collapse
Affiliation(s)
- Vera Uliana
- Medical Genetics, University Hospital of Parma, Parma, Italy
| | - Paola Sebastio
- Medical Genetics, University Hospital of Parma, Parma, Italy
| | - Matteo Riva
- Medical Genetics, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Diana Carli
- Medical Genetics, University Hospital "Città della Salute", Torino, Italy
| | | | - Laura Bianchi
- Pediatrics, University Hospital of Parma, Parma, Italy
| | - Claudio Graziano
- Medical Genetics, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Irene Capelli
- Nephrology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Flavio Faletra
- Medical Genetics, I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | | | - Teresa Mattina
- Medical Genetics, Centro di Riferimento Regionale per la Diagnosi e Cura della Malattie Genetiche, Catania, Italy
| | - Alberto Sensi
- Medical Genetics, Maurizio Bufalini Hospital, Cesena, Italy
| | - Francesco Bonatti
- Medical Genetics, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Antonio Percesepe
- Medical Genetics, University Hospital of Parma, Parma, Italy.,Medical Genetics, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
26
|
Sakuraya K, Nozu K, Oka I, Fujinaga S, Nagano C, Ohtomo Y, Iijima K. A different clinical manifestation in a Japanese family with autosomal dominant distal renal tubular acidosis caused by SLC4A1 mutation. CEN Case Rep 2020; 9:442-445. [DOI: 10.1007/s13730-020-00500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/22/2020] [Indexed: 10/23/2022] Open
|
27
|
Xu Z, Chen J, Yu W, Li X, Lin B, Lai D, Xu A, Tang Y. New COL4A5 mutation in IgA nephropathy. Postgrad Med J 2020; 98:13-17. [PMID: 33087535 DOI: 10.1136/postgradmedj-2020-138625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/09/2020] [Accepted: 10/03/2020] [Indexed: 01/24/2023]
Abstract
PURPOSE IgA nephropathy (IgAN) is the most common type of primary glomerulonephritis and a leading cause of chronic kidney disease (CKD) and end-stage kidney disease (ESKD). Recently, some case reports have shown that COL4A5 mutation is associated with IgAN. Here, we identified a new COL4A5 gene mutation in IgAN in a Chinese family. MATERIALS AND METHODS In the present study, the proband and his 23-year-old younger brother were both diagnosed with IgAN, manifested as haematuria, proteinuria and chronic kidney injury without hearing loss or ocular symptoms. Additionally, the proband's 30-year-old younger brother, also diagnosed with ESKD, had been undergoing dialysis for 2 years with normal hearing and eyesight. To exclude genetic disease, we conducted whole-exome sequencing and Sanger sequencing assays. RESULTS We found a new mutation in the COL4A5 gene (chrX:107 814 698, c.438+2->AAACCAATTATA-), a novel insertion mutation. Using vector transcription and Minigene transcriptional analyses, we verified, for the first time, the novel mutation pathogenicity of the COL4A5 gene. CONCLUSION Together with other published data, we suggest that genetic screening should be performed in IgAN, particularly for patients with a familial history. The effects of different mutated splice sites of the COL4A5 gene, as well as the tissue specificity of the splicing machinery contributing to the pathogenesis and prognosis of IgAN, remains unclear and warrants further exploration in the future.
Collapse
Affiliation(s)
- Zhenjian Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Junzhe Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenjuan Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaomei Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Baojuan Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Deyuan Lai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Anping Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ying Tang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China .,Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
28
|
Barozzi S, Soi D, Intieri E, Giani M, Aldè M, Tonon E, Signorini L, Renieri A, Fallerini C, Perin P, Montini G, Ambrosetti U. Vestibular and audiological findings in the Alport syndrome. Am J Med Genet A 2020; 182:2345-2358. [PMID: 32820599 DOI: 10.1002/ajmg.a.61796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 01/20/2023]
Abstract
Alport syndrome (AS) is caused by mutations in collagen IV, which is widespread in the basement membranes of many organs, including the kidneys, eyes, and ears. Whereas the effects of collagen IV changes in the cochlea are well known, no changes have been described in the posterior labyrinth. The aim of this study was to investigate both the auditory and the vestibular function of a group of individuals with AS. Seventeen patients, aged 9-52, underwent audiological tests including pure-tone and speech audiometry, immittance test and otoacoustic emissions and vestibular tests including video head impulse test, rotatory test, and vestibular evoked myogenic potentials. Hearing loss affected 25% of the males and 27.3% of the females with X-linked AS. It was sensorineural with a cochlear localization and a variable severity. 50% of the males and 45.4% of the females had a hearing impairment in the high-frequency range. Otoacoustic emissions were absent in about one-third of the individuals. A peripheral vestibular dysfunction was present in 75% of the males and 45.4% of the females, with no complaints of vertigo or dizziness. The vestibular impairment was compensated and the vestibulo-ocular reflex asymmetry was more evident in rotatory tests carried out at lower than higher speeds; a vestibular hypofunction was present in all hearing impaired ears although it was also found in subjects with normal hearing. A posterior labyrinth injury should be hypothesized in AS even when the patient does not manifest hearing disorders or evident signs of renal failure.
Collapse
Affiliation(s)
- Stefania Barozzi
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Daniela Soi
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,ASST Nord Milano, Milan, Italy
| | - Elisabetta Intieri
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,UOC Otorinolaringoiatria ASST Valle Olona, Busto Arsizio, Italy
| | - Marisa Giani
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mirko Aldè
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,UOC Audiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eleonora Tonon
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Lia Signorini
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Paola Perin
- Dipartimento di scienze del Sistema nervoso e del comportamento, Università di Pavia, Pavia, Italy
| | - Giovanni Montini
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Giuliana Bernardo Caprotti chair of Pediatrics, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Umberto Ambrosetti
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,UOC Audiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
29
|
Horinouchi T, Yamamura T, Nagano C, Sakakibara N, Ishiko S, Aoto Y, Rossanti R, Nakanishi K, Shima Y, Morisada N, Iijima K, Nozu K. Heterozygous Urinary Abnormality-Causing Variants of COL4A3 and COL4A4 Affect Severity of Autosomal Recessive Alport Syndrome. KIDNEY360 2020; 1:936-942. [PMID: 35369551 DOI: 10.34067/kid.0000372019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 07/15/2020] [Indexed: 11/27/2022]
Abstract
Background Autosomal recessive Alport syndrome (ARAS) is an inherited renal disorder caused by homozygous and compound heterozygous mutations in COL4A3 or COL4A4, but the prognostic predictors for this disorder are not yet fully understood. Recently, the magnitude of the clinical spectrum of the COL4A3 and COL4A4 heterozygous state has attracted attention. This spectrum includes asymptomatic carriers of ARAS, benign familial hematuria, thin basement membrane disease, and autosomal dominant Alport syndrome. Methods We retrospectively analyzed 49 patients with ARAS from 41 families with a median age of 19 years to examine the clinical features and prognostic factors of ARAS, including the associated genotypes. Results The median age of patients with ARAS at ESKD onset was 27 years. There was no significant association between the presence or absence of hearing loss or truncating mutations and renal prognosis. However, there was a statistically significant correlation between renal prognosis and heterozygous variants that cause urinary abnormalities. Where the urinary abnormality-causing variant was absent or present in only one allele, the median age of ESKD onset was 45 years, whereas the same variant present on both alleles was associated with an age of onset of 15 years (P<0.001). Conclusions This study was the first to demonstrate the clinical importance in ARAS of focusing on variants in COL4A3 or COL4A4 that cause urinary abnormalities in both the homozygous or heterozygous state. Although heterozygous mutation carriers of COL4A3 and COL4A4 comprise a broad clinical spectrum, clinical information regarding each variant is important for predicting ARAS prognosis.
Collapse
Affiliation(s)
- Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo, Kobe, Hyogo, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo, Kobe, Hyogo, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo, Kobe, Hyogo, Japan
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo, Kobe, Hyogo, Japan
| | - Shinya Ishiko
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo, Kobe, Hyogo, Japan
| | - Yuya Aoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo, Kobe, Hyogo, Japan
| | - Rini Rossanti
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo, Kobe, Hyogo, Japan
| | - Koichi Nakanishi
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Uehara, Nishihara-cho, Tyutou, Okinawa, Japan
| | - Yuko Shima
- Department of Pediatrics, Wakayama Medical University, Kimiidera, Wakayama, Wakayama Prefecture, Japan
| | - Naoya Morisada
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo, Kobe, Hyogo, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo, Kobe, Hyogo, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo, Kobe, Hyogo, Japan
| |
Collapse
|
30
|
Hess K, Pfau M, Wintergerst MWM, Loeffler KU, Holz FG, Herrmann P. Phenotypic Spectrum of the Foveal Configuration and Foveal Avascular Zone in Patients With Alport Syndrome. Invest Ophthalmol Vis Sci 2020; 61:5. [PMID: 32031577 PMCID: PMC7324255 DOI: 10.1167/iovs.61.2.5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/11/2019] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate characteristics of the foveal pit and the foveal avascular zone (FAZ) in patients with Alport syndrome (AS), a rare monogenetic disease due to mutations in genes encoding for collagen type IV. Methods Twenty-eight eyes of nine patients with AS, and five autosomal-recessive carriers and 15 eyes from 15 age-similar healthy control subjects were examined using optical coherence tomography (OCT) and OCT-angiography (OCT-A). Foveal configuration and FAZ measures including the FAZ area, circularity, and vessel density in the central 1° and 3° were correlated. Results Foveal hypoplasia was found in 10 eyes from seven patients with either genotype. In contrast, a staircase foveopathy was found in seven eyes of four X-linked AS patients. The average FAZ area did not differ significantly between AS patients and control subjects (mean ± SD 0.24 ± 0.24 mm2 vs. 0.21 ± 0.09 mm2; P = 0.64). Five eyes showed absence or severe anomalies of the FAZ with crossing macular capillaries that was linked to the degree of foveal hypoplasia on OCT images leading to a significant inverse correlation of FAZ area and foveal thickness (r = -0.88; P < 0.001). In contrary, female patients with X-linked mutations exhibited a significantly greater FAZ area (0.48 ± 0.30 mm2 vs. 0.21 ± 0.09 mm2; P = 0.007), in line with OCT findings of a staircase foveopathy. Conclusions The foveal phenotypic spectrum in AS ranges from foveal hypoplasia and absence of a FAZ to staircase foveopathy with an enlarged FAZ. Because the development of the FAZ and foveal pit are closely related, these findings suggest an important role for collagen type IV in foveal development and maturation.
Collapse
Affiliation(s)
- Kristina Hess
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University Hospital of Bonn, Bonn, Germany
| | - Maximilian Pfau
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
- GRADE Reading Center, Bonn, Germany
| | | | - Karin U. Loeffler
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Frank G. Holz
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University Hospital of Bonn, Bonn, Germany
- GRADE Reading Center, Bonn, Germany
| | - Philipp Herrmann
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
31
|
Hao W, Ao L, Zhang C, Zhu L, Xie D. IgA nephropathy suspected to be combined with Fabry disease or Alport syndrome: a case report. J Int Med Res 2019; 48:300060519891290. [PMID: 31840555 PMCID: PMC7783276 DOI: 10.1177/0300060519891290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immunoglobulin A (IgA) nephropathy is the most common glomerular disease, and it
often manifests as persistent microscopic hematuria or gross hematuria. Fabry
disease and Alport syndrome are hereditary diseases caused by mutation of genes,
and these diseases are rare in China. At present, patients can be diagnosed with
IgA nephropathy by clinical manifestations and laboratory examinations, but
there is still controversy about the simultaneous diagnosis of Alport syndrome
and Fabry disease in patients with IgA nephropathy. The present case was a
17-year-old girl with hematuria and proteinuria who underwent a renal biopsy.
Light microscopy and immunofluorescence showed that IgA was deposited in the
mesangium. Under electron microscopy, zebra bodies with a lamellated structure
were detected. A gene test showed a COL4A3 gene mutation. The patient was
administered prednisone 40 mg once a day and dispersible tablets of
mycophenolate mofetil 0.75 g two times a day. The patient’s condition showed a
trend of remission. The findings in our case emphasize the importance of renal
biopsy and gene detection in hereditary kidney disease, especially for Fabry
disease and its rare coexistence with Alport syndrome.
Collapse
Affiliation(s)
- Wen Hao
- Department of Nephrology, The Second People's Hospital of Yibin, Yibin, Sichuan, China.,North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lina Ao
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Chenli Zhang
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lei Zhu
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Deqiong Xie
- North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
32
|
Drury ER, Stillman IE, Pollak MR, Denker BM. Autosomal Recessive Alport Syndrome Unveiled by Pregnancy. Nephron Clin Pract 2019; 143:288-292. [PMID: 31408864 DOI: 10.1159/000502147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022] Open
Abstract
Alport syndrome is a hereditary disease affecting Type IV collagen characterized by hematuria, progressive renal failure, sensorineural hearing loss, and ocular abnormalities. Most cases are X-linked and involve the COL4A5 gene with a minority of patients having autosomal recessive mutations in the COL4A3 or COL4A4 genes encoding the α3(IV) or α4(IV) chain respectively. Here, we describe the case of a 31-year-old woman who presented during pregnancy with hematuria and proteinuria and was diagnosed with autosomal recessive Alport syndrome (ARAS) post-partum. Her biopsy was notable for findings of segmental glomerulosclerosis with some collapsing features, in addition to thin basement membranes and rare "splitting". Genetic testing identified 2 novel mutations in the COL4A4 gene: a truncating frame shift mutation c.3861delinsCTC and a missense mutation c.4708G>A (p.Glu1570Lys), both of which we assert to be pathogenic. She had normal full-term delivery without complications. This case has several unique features including the relatively mild disease phenotype and the findings of glomerular scarring with collapsing features on renal biopsy. The successful pregnancy outcome and her clinical presentation add to the growing body of evidence that ARAS can have a variable phenotype.
Collapse
Affiliation(s)
- Erika R Drury
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Isaac E Stillman
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Martin R Pollak
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Bradley M Denker
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA,
| |
Collapse
|
33
|
Yang C, Song Y, Chen Z, Yuan X, Chen X, Ding G, Guan Y, McGrath M, Song C, Tong Y, Wang H. A Nonsense Mutation in COL4A4 Gene Causing Isolated Hematuria in Either Heterozygous or Homozygous State. Front Genet 2019; 10:628. [PMID: 31312213 PMCID: PMC6614519 DOI: 10.3389/fgene.2019.00628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/17/2019] [Indexed: 01/15/2023] Open
Abstract
Alport syndrome (AS) is a hereditary nephropathy characterized by glomerular basement membrane lesions. AS shows a relatively rare entity with autosomal dominant gene mutation (accounts for less than 5% of AS cases) and is widely believed to be a consequence of heterozygous variants in the COL4A3 and COL4A4 genes. Until now, there have been no reports of homozygous variants in genes in AS patients, and it is scarce to detect both homozygous and heterozygous variants in a single AS pedigree. We performed genetic analysis by exome sequencing (exome-seq) in a Chinese family with AS and found four individuals harboring the COL4A4 c.4599T > G variant, a novel COL4A4 nonsense mutation that gains stop codon and results in a truncated protein. The proband and her two siblings were determined to be heterozygous, whereas their mother was homozygous. The proband satisfied the criteria for the diagnosis of AS, which included clinical manifestations of microscopic hematuria and proteinuria, and pathological features of the glomerular basement membrane (GBM), including irregular thickening and splitting. However, the other three individuals who were homozygous or heterozygous for the variant exhibited mild clinical features with isolated microscopic hematuria. In summary, we identified a novel pathogenic variant in either the heterozygous or homozygous state of the COL4A4 gene in a Chinese family with AS. Our results also suggest that the severity of clinical manifestations may not be entirely attributed to by the COL4A4 genetic variant itself in patients.
Collapse
Affiliation(s)
- Cheng Yang
- Renal Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan Song
- Renal Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaowei Chen
- Renal Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaohan Yuan
- Renal Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinhua Chen
- Renal Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guohua Ding
- Renal Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Guan
- Ultrastructure Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mary McGrath
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Chunhua Song
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Yongqing Tong
- Department of Laboratory Science, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huiming Wang
- Renal Department, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|