1
|
Gao Y, He X, Xu W, Deng Y, Xia Z, Chen J, He Y. Three-dimensional finite element analysis of the biomechanical properties of different material implants for replacing missing teeth. Odontology 2025; 113:80-88. [PMID: 38717525 DOI: 10.1007/s10266-024-00942-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/17/2024] [Indexed: 01/11/2025]
Abstract
The purpose of this study was to analyze the biomechanical properties of implants made of different materials to replace missing teeth by using three-dimensional finite element analysis and provide a theoretic basis for clinical application. CBCT data was imported into the Mimics and 3-Matic to construct the three-dimensional finite element model of a missing tooth restored by an implant. Then, the model was imported into the Marc Mentat. Based on the variations of the implant materials (titanium, titanium-zirconia, zirconia and poly (ether-ether-ketone) (PEEK)) and bone densities (high and low), a total of eight models were created. An axial load of 150 N was applied to the crown of the implant to simulate the actual occlusal situation. Both the maximum values of stresses in the cortical bone and implant were observed in the Zr-low model. The maximum displacements of the implants were also within the normal range except for the PEEK models. The cancellous bone strains were mainly distributed in the apical area of the implant, and the maximum value (3225 μstrain) was found in PEEK-low model. Under the premise of the same implant material, the relevant data from various indices in low-density bone models were larger than that in high-density bone models. From the biomechanical point of view, zirconia, titanium and titanium-zirconia were all acceptable implant materials for replacing missing teeth and possessed excellent mechanical properties, while the application of PEEK material needs to be further optimized and modified.
Collapse
Affiliation(s)
- Yichen Gao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xianyi He
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Wei Xu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yuyao Deng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhaoxin Xia
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Junliang Chen
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yun He
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
2
|
Ceddia M, Romasco T, De Bortoli N, Mello BF, Piattelli A, Mijiritsky E, Di Pietro N, Trentadue B. Biomechanical Finite Element Analysis of Two Types of Short-Angled Implants Across Various Bone Classifications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5680. [PMID: 39685119 DOI: 10.3390/ma17235680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024]
Abstract
The aim of this finite element analysis (FEA) was to investigate the distribution of von Mises stress within dental implant components, as well as trabecular and cortical bone. The study considered various bone qualities that influence cortical thickness in contact with the implant, specifically examining cortical thicknesses of 0.5, 1.5, and 3 mm, corresponding to Bergkvist's classifications IV, III, and II, respectively. A simplified 3D model of the bone was developed for the analysis. Two short implants were inserted into the model: one with a 30° inclined abutment (IA) and another positioned at a 30° angle featuring a straight abutment (II). A vertical force (120 N) was applied to the upper surface of the abutments. FEA software was employed to assess the stresses on the peri-implant tissues and the implants. The findings indicated that a reduction in cortical bone thickness results in an increase in stress within the cortical bone. For IA, the stresses recorded 32.56, 56.12, and 96.14 MPa for cortical thicknesses of 3, 1.5, and 0.5 mm, respectively. Conversely, II exhibited increased stresses across all bone qualities (52.32, 76.15, and 126.32 MPa for the same cortical thicknesses). It is advisable to avoid II in cases of poor bone quality and thin cortical due to the heightened risk of overload-induced bone resorption; however, it may be preferable to use IA in scenarios involving good bone quality and thicker cortical.
Collapse
Affiliation(s)
- Mario Ceddia
- Department of Mechanics, Mathematics and Management, Politecnico di Bari University, 70125 Bari, Italy
| | - Tea Romasco
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Nilton De Bortoli
- Department of Oral Implantology, Associação Paulista dos Cirurgiões Dentistas-APCD, São Bernardo do Campo 02011-000, Brazil
| | - Bruno Freitas Mello
- Department of Periodontics and Implant Dentistry, University of Vale do Itajaí, Itajaí 88302-901, Brazil
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Eitan Mijiritsky
- Department of Head and Neck Surgery and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, School of Medicine, Tel-Aviv University, Tel Aviv 64239, Israel
- Goldschleger School of Dental Medicine, Faculty of Medicine, Tel-Aviv University, Tel Aviv 39040, Israel
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Bartolomeo Trentadue
- Department of Mechanics, Mathematics and Management, Politecnico di Bari University, 70125 Bari, Italy
| |
Collapse
|
3
|
Wong I, Zhang Z, Dang X, Yu X, Lin X, Li Y, Deng F, Xu R. Single missing molar with wide mesiodistal length restored using a single or double implant-supported crown: A self-controlled case report and 3D finite element analysis. J Prosthodont Res 2024; 68:658-666. [PMID: 38644231 DOI: 10.2186/jpr.jpr_d_23_00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
PURPOSE Based on a self-controlled case, this study evaluated the finite element analysis (FEA) results of a single missing molar with wide mesiodistal length (MDL) restored by a single or double implant-supported crown. METHODS A case of a missing bilateral mandibular first molar with wide MDL was restored using a single or double implant-supported crown. The implant survival and peri-implant bone were compared. FEA was conducted in coordination with the case using eight models with different MDLs (12, 13, 14, and 15 mm). Von Mises stress was calculated in the FEA to evaluate the biomechanical responses of the implants under increasing vertical and lateral loading, including the stress values of the implant, abutment, screw, crown, and cortical bone. RESULTS The restorations on the left and right sides supported by double implants have been used for 6 and 12 years, respectively, and so far have shown excellent osseointegration radiographically.The von Mises stress calculated in the FEA showed that when the MDL was >14 mm, both the bone and prosthetic components bore more stress in the single implant-supported strategy. The strength was 188.62-201.37 MPa and 201.85-215.9 MPa when the MDL was 14 mm and 15 mm, respectively, which significantly exceeded the allowable yield stress (180 MPa). CONCLUSIONS Compared with the single implant-supported crown, the double implant-supported crown reduced peri-implant bone stress and produced a more appropriate stress transfer model at the implant-bone interface when the MDL of the single missing molar was ≥14 mm.
Collapse
Affiliation(s)
- Iohong Wong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zhengchuan Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaobing Dang
- Guangdong Janus Biotechnology Co., Ltd., Guangzhou, China
- Guangdong CAS Angels Biotechnology Co., Ltd., Foshan, China
| | - Xiaoran Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoxuan Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yiming Li
- Department of Stomatology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ruogu Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
4
|
Deshmukh P, Dhatrak P. Evaluating the Feasibility of Short Dental Implants as Alternatives to Long Dental Implants in Mandibular Bone: A Finite Element Study. J Biomed Mater Res B Appl Biomater 2024; 112:e35481. [PMID: 39213170 DOI: 10.1002/jbm.b.35481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
This study uses finite element analysis to investigate the potential application of shorter dental implants as a substitute for longer implants in the lower jaw (mandible). FEA allows the evaluation of the stress patterns around the implant-bone interface, a critical factor for successful osseointegration. Ten models were generated, encompassing five long (L1-L5) and five short implant models (S1-S5) with variations in diameter and length. Hypermesh software was utilized to meticulously prepare the FEA models, ensuring accurate mesh generation. The FEA simulations were conducted under four distinct loading scenarios (100 N occlusal load, 40 N lateral load, 100 N oblique at 30°, and 100 N oblique at 45°) to realistically mimic the forces exerted during biting, using an ABAQUS CAE solver. The results revealed that the von Mises stress generated within the short implant models was demonstrably lower compared to their long implants. Additionally, a significant drop in stress was observed with increasing the diameter of the short implants, to a certain diameter range. These findings suggest the potential for successful substitution of long implant model L4 with short implant model S4 due to the demonstrably lower stress values achieved. Furthermore, the data indicates the possibility of utilizing short implant models S3 and S5 as alternatives to long implant models L3 and L5, respectively. These observations hold significant promise for evaluating the feasibility of replacing long implants with shorter variants, potentially leading to a reduction in implant-related failures.
Collapse
Affiliation(s)
- Prathamesh Deshmukh
- Department of Mechanical Engineering, Dr. Vishwanath Karad MIT World Peace University, Pune, India
| | - Pankaj Dhatrak
- Department of Mechanical Engineering, Dr. Vishwanath Karad MIT World Peace University, Pune, India
| |
Collapse
|
5
|
Qiu P, Cao R, Li Z, Fan Z. A comprehensive biomechanical evaluation of length and diameter of dental implants using finite element analyses: A systematic review. Heliyon 2024; 10:e26876. [PMID: 38434362 PMCID: PMC10907775 DOI: 10.1016/j.heliyon.2024.e26876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Background With a wide range of dental implants currently used in clinical scenarios, evidence is limited on selecting the type of dental implant best suited to endure the biting force of missing teeth. Finite Element Analysis (FEA) is a reliable technology which has been applied in dental implantology to study the distribution of biomechanical stress within the bone and dental implants. Purpose This study aimed to perform a systematic review to evaluate the biomechanical properties of dental implants regarding their length and diameter using FEA. Material and methods A comprehensive search was performed in PubMed/MEDLINE, Scopus, Embase, and Web of Science for peer-reviewed studies published in English from October 2003 to October 2023. Data were organized based on the following topics: area, bone layers, type of bone, design of implant, implant material, diameter of implant, length of implant, stress units, type of loading, experimental validation, convergence analysis, boundary conditions, parts of Finite Element Model, stability factor, study variables, and main findings. The present study is registered in PROSPERO under number CRD42022382211. Results The query yielded 852 results, of which 40 studies met the inclusion criteria and were selected in this study. The diameter and length of the dental implants were found to significantly influence the stress distribution in cortical and cancellous bone, respectively. Implant diameter was identified as a key factor in minimizing peri-implant stress concentrations and avoiding crestal overloading. In terms of stress reduction, implant length becomes increasingly important as bone density decreases. Conclusions The diameter of dental implants is more important than implant length in reducing bone stress distribution and improving implant stability under both static and immediate loading conditions. Short implants with a larger diameter were found to generate lower stresses than longer implants with a smaller diameter. Other potential influential design factors including implant system, cantilever length, thread features, and abutment collar height should also be considered in future implant design as they may also have an impact on implant performance.
Collapse
Affiliation(s)
- Piaopiao Qiu
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Rongkai Cao
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Zhaoyang Li
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Zhen Fan
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
6
|
Qin S, Gao Z. Comparative evaluation of short or standard implants with different prosthetic designs in the posterior mandibular region: a three-dimensional finite element analysis study. Comput Methods Biomech Biomed Engin 2023; 26:1499-1509. [PMID: 36125258 DOI: 10.1080/10255842.2022.2124859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/29/2022] [Accepted: 09/11/2022] [Indexed: 11/03/2022]
Abstract
The purpose of this study is to evaluate the stress distribution of splinted or nonsplinted restorations supported by 2 short or 2 standard dental implants in the mandibular molar region using three-dimensional finite element analysis. Two standard implants (4.8 × 10mm) were placed in the mandibular molar area. Two short implants (4.8 × 6 mm) were located in the mandibular molar atrophied area. Implant-supported prostheses were simulated with splinted or nonsplinted crowns design. Vertical load of 200 N and oblique load of 100 N were applied on the central fossa and the buccal cusps. Evaluation of stress distribution in implants and peri-implant cortical bone using the finite element analysis software (Ansys, Version 2020, R2), a multipurpose computer design program. The maximum principal stress of cortical bone around the implants was higher in nonsplinted crowns when compared to splinted crowns. The stress concentration of cortical bone surrounding implants increased as the implant length decreased either splinted crowns or nonsplinted crowns. The short implants with nonsplinted crowns showed lower stresses when compared to standard implants with nonsplinted crowns. The results suggest that the nonsplinted prostheses supported by short dental implants might be considered in the molar area of the atrophic mandible.
Collapse
Affiliation(s)
- Siqi Qin
- Department of Stomatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhi Gao
- Department of Stomatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
7
|
Adolfi D, Grangeiro MTV, Ausiello P, Bottino MA, Tribst JPM. Effect of Antirotational Two-Piece Titanium Base on the Vertical Misfit, Fatigue Behavior, Stress Concentration, and Fracture Load of Implant-Supported Zirconia Crowns. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4848. [PMID: 37445162 DOI: 10.3390/ma16134848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
This study investigated the effects of antirotational titanium bases on the mechanical behavior of CAD/CAM titanium bases used for implant-supported prostheses. The aim was to assess the impact on the marginal fit, fatigue behavior, stress concentration, and fracture load of implant-supported CAD/CAM zirconia crowns. Forty titanium implants were divided into two groups: those with antirotational titanium bases (ARs) and those with rotational titanium bases (RTs). Torque loosening and vertical misfit were evaluated before and after cyclic fatigue testing (200 N, 2 Hz, 2 × 106 cycles). Fracture resistance was assessed using a universal testing machine (1 mm/min, 1000 kgf), and failed specimens were examined with microscopy. Three-dimensional models were created, and FEA was used to calculate stress. Statistical analysis was performed on the in vitro test data using two-way analysis of variance and Tukey's test (α = 0.5). Results show that the presence of an antirotational feature between the implant and titanium base reduced preload loss and stress concentration compared to rotational titanium bases. However, there were no differences in vertical misfit and resistance to compressive load.
Collapse
Affiliation(s)
- Dario Adolfi
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology, São Paulo State University (UNESP), São José Dos Campos 12220-000, Brazil
| | - Manassés Tercio Vieira Grangeiro
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology, São Paulo State University (UNESP), São José Dos Campos 12220-000, Brazil
| | - Pietro Ausiello
- School of Dentistry, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Marco Antonio Bottino
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology, São Paulo State University (UNESP), São José Dos Campos 12220-000, Brazil
| | - João Paulo Mendes Tribst
- Department of Reconstructive Oral Care, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
8
|
Yang Y, Liu Y, Yuan X, Ren M, Chen X, Luo L, Zheng L, Liu Y. Three-dimensional finite element analysis of stress distribution on short implants with different bone conditions and osseointegration rates. BMC Oral Health 2023; 23:220. [PMID: 37061667 PMCID: PMC10105927 DOI: 10.1186/s12903-023-02945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/05/2023] [Indexed: 04/17/2023] Open
Abstract
OBJECTIVE This experiment aimed to investigate the effects of bone conditions and osseointegration rates on the stress distribution of short implants using finite element analysis and also to provide some reference for the application of short implants from a biomechanical prospect. MATERIALS AND METHODS Anisotropic jaw bone models with three bone conditions and 4.1 × 6 mm implant models were created, and four osseointegration rates were simulated. Stress and strain for the implants and jaws were calculated during vertical or oblique loading. RESULTS The cortical bone area around the implant neck was most stressed. The maximum von Mises stress in cortical bone increased with bone deterioration and osseointegration rate, with maximum values of 144.32 MPa and 203.94 MPa for vertical and inclined loading, respectively. The osseointegration rate had the greatest effect on the maximum principal stress in cortical bone of type III bone, with its value increasing by 63.8% at a 100% osseointegration rate versus a 25% osseointegration rate. The maximum and minimum principal stresses under inclined load are 1.3 ~ 1.7 and 1.4 ~ 1.8 times, respectively, those under vertical load. The stress on the jaw bone did not exceed the threshold when the osseointegration rate was ≥ 50% for Type II and 100% for Type III. High strain zones are found in cancellous bone, and the maximum strain increases as the bone condition deteriorate and the rate of osseointegration decreases. CONCLUSIONS The maximum stress in the jaw bone increases as the bone condition deteriorates and the osseointegration rate increases. Increased osseointegration rate reduces cancellous bone strain and improves implant stability without exceeding the yield strength of the cortical bone. When the bone condition is good, and the osseointegration ratio is relatively high, 6 mm short implants can be used. In clinical practice, incline loading is an unfavorable loading condition, and axial loading should be used as much as possible.
Collapse
Affiliation(s)
- Yunhe Yang
- Graduate School of Dalian Medical University, Dalian, China
| | - Yuchen Liu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Xi Yuan
- Graduate School of Dalian University, Dalian, China
| | - Mingfa Ren
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, China
| | - Xiaodong Chen
- Department of Prosthodontics, Dalian Stomatological Hospital, Dalian, 116021, China
| | - Lailong Luo
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Lang Zheng
- Graduate School of Dalian University, Dalian, China
| | - Yang Liu
- Department of Prosthodontics, Dalian Stomatological Hospital, Dalian, 116021, China.
| |
Collapse
|
9
|
Insertion Torque, Removal Torque, and Resonance Frequency Analysis Values of Ultrashort, Short, and Standard Dental Implants: An In Vitro Study on Polyurethane Foam Sheets. J Funct Biomater 2022; 14:jfb14010010. [PMID: 36662057 PMCID: PMC9866818 DOI: 10.3390/jfb14010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Short implants were introduced to reduce morbidity, treatment duration, and complex bone regeneration interventions in atrophic jaws and to improve patient-reported outcomes. This study aimed to determine the insertion torque (IT), removal torque (RT), and resonance frequency analysis (RFA) values of ultrashort (3 mm length), short (7 mm length), and standard implants (10 mm length) inserted in 1-, 2-, 3-, and 4-mm thickness polyurethane sheets with densities of 10, 20, and 30 pounds per cubic foot (PCF). Standard-length implants were the gold standard (control). Overall, short-length implant IT values were higher or similar to the control in most experimental conditions. Those inserted into a 3 mm/30 PCF lamina showed the highest IT values, whereas 5 mm diameter ultrashort-length implants inserted into 2 and 3 mm/20 PCF laminas were higher than other implants. RT values followed the same trend and RFA values were more appreciable in short- and standard-length implants in all the scenarios. However, ultrashort-length implants reached a primary stability comparable to that of standard implants in lower thicknesses. In conclusion, although further studies are needed to corroborate this in vitro model with preclinical and clinical studies, our data shed light on short- and ultrashort-length implants geometries to a potential application in critical atrophy of the posterior jaws.
Collapse
|
10
|
Al Qahtani WMS. Effect of Short Dental Implant Material on Bone Stress: An In Vitro Finite Element Analysis. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aim: Using finite element analysis, determine the influence of short dental implant material on surrounding bone stresses. Material and Methods: One simplified model was created for a short implant of 4.8×4.8×4 mm placed vertically in simplified bone geometry
to support dummy crown fixed by 50micron resin cement layer. Three materials were tested as an implant material, Zirconia, Titanium, and 30% CFR-PEEK. Components of the 3D model were prepared on engineering CAD/CAM software accumulated under ANSYS modeling for finite element analysis. The
model was subjected to two loading cases as; 100 N compressive load and 50 N Oblique (45°), both at the central fossa. Results: Under the applied loads, all values of total deformations and Von Mises stresses that developed during the current investigation were within physiological
limits. Under both loading cases, changing the implant material from Zirconia to titanium to Polyether ether ketone (PEEK) decreased Von Mises stress values in the implant, cortical, and cancellous bone. The cement layer, abutment, and connecting screws all showed signs of growth. Conclusion:
Zirconia and Titanium can replace each other as short implant material. In addition, 30% CFR-PEEK can also be used as short implant material with minor acceptable stress differences.
Collapse
Affiliation(s)
- Waleed M. S. Al Qahtani
- Department of Prosthetic Dentistry, King Khalid University College of Dentistry Abha, 62529, Saudi Arabia
| |
Collapse
|
11
|
Zupancic Cepic L, Frank M, Reisinger AG, Sagl B, Pahr DH, Zechner W, Schedle A. Experimental validation of a micro-CT finite element model of a human cadaveric mandible rehabilitated with short-implant-supported partial dentures. J Mech Behav Biomed Mater 2021; 126:105033. [PMID: 34933158 DOI: 10.1016/j.jmbbm.2021.105033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE This study aimed to address the predictive value of a micro-computed tomography (μCT)-based finite element (μFE) model of a human cadaveric edentulous posterior mandible, rehabilitated by short dental implants. Hereby, three different prosthetic/implant configurations of fixed partial dentures ("Sp"-3 splinted crowns on 3 implants, "Br" - Bridge: 3 splinted crowns on 2 implants, and "Si"- 3 single crowns) were analysed by comparing the computational predictions of the global stiffness with experimental data. METHODS Experimental displacement of the bone/implant/prosthesis system was measured under axial and oblique loads of 100 N using an optical deformation system (GOM Aramis) and the overall movement of the testing machine (Zwick Z030). Together with the measured machine force, an "Aramis" (optical markers) and "Zwick" (test machine) stiffness were calculated. FE models were created based on μCT-scans of the cadaveric mandible sample (n = 1) before and after implantation and using stl-files of the crowns. The same load tests and boundary conditions were simulated on the models and the μFE-results were compared to experimental data using linear regression analysis. RESULTS The regression line through a plot of pooled stiffness values (N/mm) for the optical displacement recording (true local displacement) and the test machine (machine compliance included) had a slope of 0.57 and a correlation coefficient R2 of 0.82. The average pooled correlation of global stiffness between the experiment and FE-analysis (FEA) showed a R2 of 0.80, but the FEA-stiffness was 7.2 times higher. The factor was highly dependent on the test configuration. Sp-configuration showed the largest stiffness followed by Br-configuration (17% difference in experiment and 21% in FEA). CONCLUSIONS The current study showed good qualitative agreement between the experimental and predicted global stiffness of different short implant configurations. It could be deduced that 1:1 splinting of the short implants by the crowns is most favorable for the stiffness of the implant/prosthesis system. However, in the clinical context, the absolute in silico readings must be interpreted cautiously, as the FEA showed a considerable overestimation of the values.
Collapse
Affiliation(s)
- Lana Zupancic Cepic
- Department of Prosthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Martin Frank
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, 1090, Vienna, Austria
| | - Andreas G Reisinger
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, 1090, Vienna, Austria; Department of Anatomy und Biomechanics, Division Biomechanics, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
| | - Benedikt Sagl
- Center of Clinical Research, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Dieter H Pahr
- Department of Anatomy und Biomechanics, Division Biomechanics, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria.
| | - Werner Zechner
- Department of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Andreas Schedle
- Competence Center for Dental Materials, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
12
|
Comparative analysis of stress distribution in one-piece and two-piece implants with narrow and extra-narrow diameters: A finite element study. PLoS One 2021; 16:e0245800. [PMID: 33539392 PMCID: PMC7861395 DOI: 10.1371/journal.pone.0245800] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/07/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The aim of this in vitro study was to evaluate the stress distribution on three implant models with narrow and extra-narrow diameters using the finite element method (FEA). MATERIALS AND METHODS Dental implants of extra-narrow diameter of 2.5 mm for a one-piece implant (group G1), a narrow diameter of 3.0 mm for a one-piece implant (group G2) and a narrow diameter of 3.5 mm for a two-piece implant with a Morse taper connection (group G3). A three-dimensional model was designed with cortical and cancellous bone, a crown and an implant/abutment set of each group. Axial and angled (30°) loads of 150 N was applied. The equivalent von Mises stress was used for the implants and peri-implant bone plus the Mohr-Coulomb analysis to confirm the data of the peri-implant bone. RESULTS In the axial load, the maximum stress value of the cortical bone for the group G1 was 22.35% higher than that the group G2 and 321.23% than the group G3. Whereas in angled load, the groups G1 and G2 showing a similar value (# 3.5%) and a highest difference for the group G3 (391.8%). In the implant structure, the group G1 showed a value of 2188MPa, 93.6% higher than the limit. CONCLUSIONS The results of this study show that the extra-narrow one-piece implant should be used with great caution, especially in areas of non-axial loads, whereas the one- and two-piece narrow-diameter implants show adequate behavior in both directions of the applied load.
Collapse
|
13
|
Biomechanical Evaluation of Initial Stability of a Root Analogue Implant Design with Drilling Protocol: A 3D Finite Element Analysis. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The aim of this study was to biomechanically evaluate the initial stability of a patient-specific root analogue implant (RAI) design with drilling protocol by comparing it to designs without drilling protocol through a 3D finite element analysis (FEA). Methods: A 3D surface model of an RAI for the upper right incisor was constructed. To evaluate the effect of root apex drilling, four modified RAI shapes were designed with the press-fit implantation method: Non-modified, wedge added at root surface, lattice added at root surface, and apex-anchor added at root apex (AA). Each model was subjected to an oblique load of 100 N. To simulate the initial stability of implantation, contact conditions at the implant–bone interface were set to allow for the sliding phenomenon with low friction (frictional coefficient 0.1–0.5). Analysis was performed to evaluate micro-displacements of the implants and peak stress on the surrounding bones. Results: Under all low frictional coefficient conditions, the lowest von Mises stress level on the cortical bone and fewest micro-displacements of the implant were observed in the AA design. Conclusion: In view of these results, the AA design proved superior in reducing the stress concentration on the supporting cortical bone and the micro-displacement of RAI.
Collapse
|
14
|
Cicciù M. Bioengineering Methods of Analysis and Medical Devices: A Current Trends and State of the Art. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E797. [PMID: 32050530 PMCID: PMC7040794 DOI: 10.3390/ma13030797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/08/2020] [Indexed: 12/12/2022]
Abstract
Implantology, prosthodontics, and orthodontics in all their variants, are medical and rehabilitative medical fields that have greatly benefited from bioengineering devices of investigation to improve the predictability of clinical rehabilitations. The finite element method involves the simulation of mechanical forces from an environment with infinite elements, to a simulation with finite elements. This editorial aims to point out all the progress made in the field of bioengineering and medicine. Instrumental investigations, such as finite element method (FEM), are an excellent tool that allows the evaluation of anatomical structures and any facilities for rehabilitation before moving on to experimentation on animals, so as to have mechanical characteristics and satisfactory load cycle testing. FEM analysis contributes substantially to the development of new technologies and new materials in the biomedical field. Thanks to the 3D technology and to the reconstructions of both the anatomical structures and eventually the alloplastic structures used in the rehabilitations it is possible to consider all the mechanical characteristics, so that they could be analyzed in detail and improved where necessary.
Collapse
Affiliation(s)
- Marco Cicciù
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, Messina University, 98122 Messina, Italy
| |
Collapse
|
15
|
Prospective, Clinical Pilot Study with Eleven 4-Mm Extra-Short Implants Splinted to Longer Implants for Posterior Maxilla Rehabilitation. J Clin Med 2020; 9:jcm9020357. [PMID: 32012979 PMCID: PMC7074081 DOI: 10.3390/jcm9020357] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/17/2020] [Accepted: 01/26/2020] [Indexed: 01/01/2023] Open
Abstract
In many clinical situations, rehabilitation with implants in the posterior maxillary region is complicated by limited bone availability. In this context, the use of 4 mm long implants (known as extra-short implants) may be used thanks to the concept of osseointegration enhancement. It has been demonstrated that short implants offer an alternative to the regeneration procedures involved in placing longer implants in areas where bone height is compromised. This prospective pilot study tested a treatment protocol in which 11 extra-short (4 mm) implants were splinted to 11 mesially placed longer (8 mm) implants in the posterior maxillary regions of partially edentulous patients, without using supplementary bone regeneration procedures. Eleven patients were included in this single cohort study. The clinical performance of the extra-short implants was assessed during a two-year follow-up period, obtaining a 100% survival rate and mean bone loss of 0.3 mm. Implant stability measured by resonance frequency analysis (RFA) at the time of placement was 54.9 ± 4.9, increasing to 77.0 ± 2.6 at 24 months. The study demonstrated the gradual consolidation of osseointegration in bone of less-than-ideal quality in the posterior maxillary region. The results obtained show that a partially edentulous maxilla with reduced bone height may be rehabilitated by using an extra-short implant splinted to a mesial implant of 8mm length or longer. Despite the small sample size, this pilot study observed that extra-short implants achieved adequate bone stability and clinical performance after a 24-month follow-up.
Collapse
|