1
|
Pellicano C, Cusano G, Basile U, Rosato E. Thymic stromal lymphopoietin and digital microvascular damage in systemic sclerosis patients: A pilot study. Microvasc Res 2024; 155:104714. [PMID: 38960318 DOI: 10.1016/j.mvr.2024.104714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Systemic sclerosis (SSc) is a complex autoimmune connective-tissue disease, characterised by vasculopathy and fibrosis of the skin and internal organs. Activation of microvascular endothelial cells (ECs) causes the intimal hyperplasia that characterises the vascular remodelling in SSc. The most frequent complication of SSc is the development of digital ulcers (DUs). Thymic stromal lymphopoietin (TSLP) may trigger fibrosis and sustain vascular damage. Aim of this study was to evaluate the correlation between serum level of TSLP and DUs. METHODS 75 consecutive SSc patients were enrolled and serum TSLP levels were measured. The presence of history of DUs (HDU) was evaluated. Recurrent new DUs were defined as the presence of at least 3 episodes of DUs in a 12-months follow up period. The risk of developing new DUs was calculated by applying the capillaroscopic skin ulcer risk index (CSURI). RESULTS The median value of TSLP was higher in patients with HDU than patients without HDU [181.67 pg/ml (IQR 144.67; 265.66) vs 154.67 pg/ml (IQR 110.67; 171.33), p < 0.01]. The median value of TSLP was higher in patients with an increased CSURI index than patients without an increased CSURI [188 pg/ml (IQR 171.33; 246.33) vs 159.33 pg/ml (IQR 128.67; 218), p < 0.01]. Kaplan-Meier curves demonstrated that free survival from new DUs was significantly (p < 0.01) lower in SSc patients with increased TSLP serum levels. CONCLUSION TSLP might have a key role in digital microvascular damage of SSc patients.
Collapse
Affiliation(s)
- Chiara Pellicano
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppina Cusano
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Umberto Basile
- UOC of Clinical Pathology DEA II level, Hospital Santa Maria Goretti-ASL Latina, Latina, Italy
| | - Edoardo Rosato
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Tang X, Yang L, Zhang R, Fang H, Tang H, Xie Q, Wang H, Chen L, Yang Y. Non-invasive detection of Aspergillosis in ventilated patients: Galactomannan analysis in exhaled breath. Diagn Microbiol Infect Dis 2024; 110:116420. [PMID: 38954860 DOI: 10.1016/j.diagmicrobio.2024.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
This study evaluates the non-invasive diagnosis of Invasive Aspergillosis Pneumonia (IPA) in mechanically ventilated patients by measuring galactomannan (GM) in exhaled breath condensate (EBC). Utilizing a rat model and a novel EBC collection device, we compared GM levels in bronchoalveolar lavage fluid (BALF) and EBC, supplemented by cytokine profiling. Analysis of 75 patients confirmed the device's efficacy, with EBC-GM and BALF-GM showing high diagnostic accuracy (AUC = 0.88). The threshold of 0.235 ng/ml for EBC-GM achieved 92.8 % sensitivity and 66.7 % specificity, with a strong correlation (r = 0.707, P < 0.001) with BALF-GM. This approach offers a safe, effective alternative to invasive diagnostics, enhancing precision with IL-6 and TNF-α measurements. The number registered on clinicaltrails.gov is NCT06333379.
Collapse
Affiliation(s)
- XiaoHong Tang
- Department of Pulmonary and Critical Care Medicine. Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Yang
- Department of Pulmonary and Critical Care Medicine. Enyang District People's Hospital of Bazhong City
| | - Rong Zhang
- Department of Pulmonary and Critical Care Medicine. Southwest Medical University. Luzhou, China
| | - Hong Fang
- Department of Pulmonary and Critical Care Medicine. Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huan Tang
- Department of Intensive Care Unit. North Sichuan Medical Collage. Nanchong, China
| | - Qian Xie
- Department of Pulmonary and Critical Care Medicine. Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - HaiLian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine. Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Yang Yang
- Department of Pulmonary and Critical Care Medicine. Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Poole JA, England BR, Sayles H, Johnson TM, Duryee MJ, Hunter CD, Baker JF, Kerr GS, Kunkel G, Cannon GW, Sauer BC, Wysham KD, Joseph AM, Wallace BI, Thiele GM, Mikuls TR. Serum alarmins and the risk of incident interstitial lung disease in rheumatoid arthritis. Rheumatology (Oxford) 2024; 63:1998-2005. [PMID: 37812235 PMCID: PMC11215989 DOI: 10.1093/rheumatology/kead535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/25/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
OBJECTIVES To quantify associations of serum alarmins with risk of rheumatoid arthritis-associated interstitial lung disease (RA-ILD). METHODS Using serum collected at enrolment, three alarmins (IL-33, thymic stromal lymphopoietin [TSLP] and IL-25) were measured in a multicentre prospective RA cohort. ILD was classified using systematic medical record review. Cross-sectional associations of log-transformed (IL-33, TSLP) or quartile (IL-25) values with RA-ILD at enrolment (prevalent RA-ILD) were examined using logistic regression, while associations with incident RA-ILD developing after enrolment were examined using Cox proportional hazards. Covariates in multivariate models included age, sex, race, smoking status, RA disease activity score and anti-cyclic citrullinated antibody positivity. RESULTS Of 2835 study participants, 115 participants (4.1%) had prevalent RA-ILD at baseline and an additional 146 (5.1%) developed incident ILD. There were no associations between serum alarmin concentrations and prevalent ILD in unadjusted or adjusted logistic regression models. In contrast, there was a significant inverse association between IL-33 concentration and the risk of developing incident RA-ILD in unadjusted (hazard ratio [HR] 0.73 per log-fold increase; 95% CI: 0.57, 0.95; P = 0.018) and adjusted (HR 0.77; 95% CI: 0.59, 1.00; P = 0.047) models. No significant associations of TSLP or IL-25 with incident ILD were observed. CONCLUSION In this study, we observed a significant inverse association between serum IL-33 concentration and the risk of developing incident RA-ILD, but no associations with prevalent ILD. Additional investigation is required to better understand the mechanisms driving this relationship and how serum alarmin IL-33 assessment might contribute to clinical risk stratification in patients with RA.
Collapse
Affiliation(s)
- Jill A Poole
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bryant R England
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Harlan Sayles
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tate M Johnson
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Michael J Duryee
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Carlos D Hunter
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Joshua F Baker
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, School of Medicine and Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - Gail S Kerr
- Washington, D.C. VA, Georgetown and Howard University, Washington, DC, USA
| | - Gary Kunkel
- George E. Wahlen Veterans Affairs Medical Center, University of Utah, Salt Lake City, UT, USA
| | - Grant W Cannon
- George E. Wahlen Veterans Affairs Medical Center, University of Utah, Salt Lake City, UT, USA
| | - Brian C Sauer
- George E. Wahlen Veterans Affairs Medical Center, University of Utah, Salt Lake City, UT, USA
| | - Katherine D Wysham
- VA Puget Sound Health Care System, University of Washington, Seattle, WA, USA
| | - Amy M Joseph
- VA St. Louis Health Care System, Washington University School of Medicine, St Louis, MO, USA
| | - Beth I Wallace
- VA Ann Arbor Healthcare System, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Geoffrey M Thiele
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Ted R Mikuls
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| |
Collapse
|
4
|
Nedeva D, Kowal K, Mihaicuta S, Guidos Fogelbach G, Steiropoulos P, Jose Chong-Neto H, Tiotiu A. Epithelial alarmins: a new target to treat chronic respiratory diseases. Expert Rev Respir Med 2023; 17:773-786. [PMID: 37746733 DOI: 10.1080/17476348.2023.2262920] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION In response to injury, epithelial cells release alarmins including thymic stromal lymphopoietin (TSLP), high mobility group-box-1 (HMGB1), interleukin (IL)-33 and -25 that can initiate innate immune responses. These alarmins are recognized as activators of T2-immune responses characteristic for asthma, but recent evidence highlighted their role in non-T2 inflammation, airway remodeling, and pulmonary fibrosis making them an attractive therapeutic target for chronic respiratory diseases (CRD). AREAS COVERED In this review, firstly we discuss the role of TSLP, IL-33, IL-25, and HMGB1 in the pathogenesis of asthma, COPD, idiopathic pulmonary fibrosis, and cystic fibrosis according to the published data. In the second part, we summarize the current evidence concerning the efficacy of the antialarmin therapies in CRD. Recent clinical trials showed that anti-TSLP and IL-33/R antibodies can improve severe asthma outcomes. Blocking the IL-33-mediated pathway decreased the exacerbation rate in COPD patients with more important benefit for former-smokers. EXPERT OPINION Despite progress in the understanding of the alarmins' role in the pathogenesis of CRD, all their mechanisms of action are not yet identified. Blocking IL-33 and TSLP pathways offers an interesting option to treat severe asthma and COPD, but future investigations are needed to establish their place in the treatment strategies.
Collapse
Affiliation(s)
- Denislava Nedeva
- Clinic of Asthma and Allergology, UMBAL Alexandrovska, Medical University Sofia, Sofia, Bulgaria
| | - Krzysztof Kowal
- Department of Experimental Allergology and Immunology, Department of Internal Medicine and Allergology, Medical University of Bialystok, Bialystok, Poland
| | - Stefan Mihaicuta
- Center for Research and Innovation in Precision Medicine and Pharmacy, University of Medicine and Pharmacy, Timisoara, Romania
- Department of Pulmonology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | | | - Paschalis Steiropoulos
- Department of Respiratory Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Herberto Jose Chong-Neto
- Division of Allergy and Immunology, Complexo Hospital de Clinicas Federal University of Paraná, Curitiba, PR, Brazil
| | - Angelica Tiotiu
- Department of Pulmonology, University Hospital of Nancy, Vandœuvre-lès-Nancy, France
- Development, Adaptation and Disadvantage. Cardiorespiratory regulations and motor control (EA 3450 DevAH), University of Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
5
|
Abstract
Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine that acts on multiple cell lineages, including dendritic cells, T cells, B cells, neutrophils, mast cells, eosinophils and innate lymphoid cells, affecting their maturation, survival and recruitment. It is best known for its role in promoting type 2 immune responses such as in allergic diseases and, in 2021, a monoclonal antibody targeting TSLP was approved for the treatment of severe asthma. However, it is now clear that TSLP has many other important roles in a variety of settings. Indeed, several genetic variants for TSLP are linked to disease severity, and chromosomal alterations in TSLP are common in certain cancers, indicating important roles of TSLP in disease. In this Review, we discuss recent advances in TSLP biology, highlighting how it regulates the tissue environment not only in allergic disease but also in infectious diseases, inflammatory diseases and cancer. Encouragingly, therapies targeting the TSLP pathway are being actively pursued for several diseases.
Collapse
Affiliation(s)
- Risa Ebina-Shibuya
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Warren J Leonard
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Gaurav R, Poole JA. Interleukin (IL)-33 immunobiology in asthma and airway inflammatory diseases. J Asthma 2022; 59:2530-2538. [PMID: 34928757 PMCID: PMC9234100 DOI: 10.1080/02770903.2021.2020815] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Identify key features of IL-33 immunobiology important in allergic and nonallergic airway inflammatory diseases and potential therapeutic strategies to reduce disease burden. DATA SOURCES PubMed, clinicaltrials.gov. STUDY SELECTIONS A systematic and focused literature search was conducted of PubMed from March 2021 to December 2021 using keywords to either PubMed or BioMed Explorer including IL-33/ST2, genetic polymorphisms, transcription, translation, post-translation modification, nuclear protein, allergy, asthma, and lung disease. Clinical trial information on IL-33 was extracted from clinicaltrials.gov in August 2021. RESULTS In total, 72 publications with relevance to IL-33 immunobiology and/or clinical lung disease were identified (allergic airway inflammation/allergic asthma n = 26, non-allergic airway inflammation n = 9, COPD n = 8, lung fibrosis n = 10). IL-33 levels were higher in serum, BALF and/or lungs across inflammatory lung diseases. Eight studies described viral infections and IL-33 and 4 studies related to COVID-19. Mechanistic studies (n = 39) including transcript variants and post-translational modifications related to the immunobiology of IL-33. Single nucleotide polymorphism in IL-33 or ST2 were described in 9 studies (asthma n = 5, inflammatory bowel disease n = 1, mycosis fungoides n = 1, ankylosing spondylitis n = 1, coronary artery disease n = 1). Clinicaltrials.gov search yielded 84 studies of which 17 were related to therapeutic or biomarker relevance in lung disease. CONCLUSION An integral role of IL-33 in the pathogenesis of allergic and nonallergic airway inflammatory disease is evident with several emerging clinical trials investigating therapeutic approaches. Current data support a critical role of IL-33 in damage signaling, repair and regeneration of lungs.
Collapse
Affiliation(s)
- Rohit Gaurav
- Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, USA
| | - Jill A. Poole
- Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, USA
| |
Collapse
|
7
|
Wilson AC, Chiles J, Ashish S, Chanda D, Kumar PL, Mobley JA, Neptune ER, Thannickal VJ, McDonald MLN. Integrated bioinformatics analysis identifies established and novel TGFβ1-regulated genes modulated by anti-fibrotic drugs. Sci Rep 2022; 12:3080. [PMID: 35197532 PMCID: PMC8866468 DOI: 10.1038/s41598-022-07151-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/14/2022] [Indexed: 11/29/2022] Open
Abstract
Fibrosis is a leading cause of morbidity and mortality worldwide. Although fibrosis may involve different organ systems, transforming growth factor-β (TGFβ) has been established as a master regulator of fibrosis across organs. Pirfenidone and Nintedanib are the only currently-approved drugs to treat fibrosis, specifically idiopathic pulmonary fibrosis, but their mechanisms of action remain poorly understood. To identify novel drug targets and uncover potential mechanisms by which these drugs attenuate fibrosis, we performed an integrative 'omics analysis of transcriptomic and proteomic responses to TGFβ1-stimulated lung fibroblasts. Significant findings were annotated as associated with pirfenidone and nintedanib treatment in silico via Coremine. Integrative 'omics identified a co-expressed transcriptomic and proteomic module significantly correlated with TGFβ1 treatment that was enriched (FDR-p = 0.04) with genes associated with pirfenidone and nintedanib treatment. While a subset of genes in this module have been implicated in fibrogenesis, several novel TGFβ1 signaling targets were identified. Specifically, four genes (BASP1, HSD17B6, CDH11, and TNS1) have been associated with pirfenidone, while five genes (CLINT1, CADM1, MTDH, SYDE1, and MCTS1) have been associated with nintedanib, and MYDGF has been implicated with treatment using both drugs. Using the Clue Drug Repurposing Hub, succinic acid was highlighted as a metabolite regulated by the protein encoded by HSD17B6. This study provides new insights into the anti-fibrotic actions of pirfenidone and nintedanib and identifies novel targets for future mechanistic studies.
Collapse
Affiliation(s)
- Ava C. Wilson
- grid.265892.20000000106344187Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL USA ,grid.265892.20000000106344187Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Joe Chiles
- grid.265892.20000000106344187Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Shah Ashish
- grid.265892.20000000106344187Department of Orthopedic Surgery, University of Alabama at Birmingham, Birmingham, AL USA
| | - Diptiman Chanda
- grid.265892.20000000106344187Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Preeti L. Kumar
- grid.265892.20000000106344187Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - James A. Mobley
- grid.265892.20000000106344187Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Enid R. Neptune
- grid.21107.350000 0001 2171 9311Department of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Victor J. Thannickal
- grid.265892.20000000106344187Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,grid.265219.b0000 0001 2217 8588John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA USA
| | - Merry-Lynn N. McDonald
- grid.265892.20000000106344187Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL USA ,grid.265892.20000000106344187Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,grid.265892.20000000106344187Department of Genetics, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
8
|
Mikuls TR, Gaurav R, Thiele GM, England BR, Wolfe MG, Shaw BP, Bailey KL, Wyatt TA, Nelson AJ, Duryee MJ, Hunter CD, Wang D, Romberger DJ, Ascherman DP, Poole JA. The impact of airborne endotoxin exposure on rheumatoid arthritis-related joint damage, autoantigen expression, autoimmunity, and lung disease. Int Immunopharmacol 2021; 100:108069. [PMID: 34461491 PMCID: PMC8551041 DOI: 10.1016/j.intimp.2021.108069] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022]
Abstract
Airborne biohazards are risk factors in the development and severity of rheumatoid arthritis (RA) and RA-associated lung disease, yet the mechanisms explaining this relationship remain unclear. Lipopolysaccharide (LPS, endotoxin) is a ubiquitous inflammatory agent in numerous environmental and occupational air pollutant settings recognized to induce airway inflammation. Combining repetitive LPS inhalation exposures with the collagen induced arthritis (CIA) model, DBA1/J mice were assigned to either: sham (saline injection/saline inhalation), CIA (CIA/saline), LPS (saline/LPS 100 ng inhalation), or CIA + LPS for 5 weeks. Serum anti-citrullinated (CIT) protein antibody (ACPA) and anti-malondialdehyde-acetaldehyde (MAA) antibodies were strikingly potentiated with co-exposure (CIA + LPS). CIT- and MAA-modified lung proteins were increased with co-exposure and co-localized across treatment groups. Inhaled LPS exacerbated arthritis with CIA + LPS > LPS > CIA versus sham. Periarticular bone loss was demonstrated in CIA and CIA + LPS but not in LPS alone. LPS induced airway inflammation and neutrophil infiltrates were reduced with co-exposure (CIA + LPS). Potentially signaling transition to pro-fibrotic processes, there were increased infiltrates of activated CD11c+CD11b+ macrophages and transitioning CD11c+CD11bint monocyte-macrophage populations with CIA + LPS. Moreover, several lung remodeling proteins including fibronectin and matrix metalloproteinases as well as complement C5a were potentiated with CIA + LPS compared to other treatment groups. IL-33 concentrations in lung homogenates were enhanced with CIA + LPS with IL-33 lung staining driven by LPS. IL-33 expression was also significantly increased in lung tissues from patients with RA-associated lung disease (N = 8) versus controls (N = 7). These findings suggest that patients with RA may be more susceptible to developing interstitial lung disease following airborne biohazard exposures enriched in LPS.
Collapse
MESH Headings
- Air Pollutants/adverse effects
- Animals
- Arthritis, Experimental/complications
- Arthritis, Experimental/diagnosis
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/complications
- Arthritis, Rheumatoid/diagnosis
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- Autoantibodies/immunology
- Autoantigens/immunology
- Case-Control Studies
- Dust
- Healthy Volunteers
- Humans
- Inhalation Exposure/adverse effects
- Interleukin-33/analysis
- Interleukin-33/metabolism
- Lipopolysaccharides/adverse effects
- Lung/immunology
- Lung/pathology
- Lung Diseases, Interstitial/immunology
- Lung Diseases, Interstitial/pathology
- Male
- Mice
- Severity of Illness Index
Collapse
Affiliation(s)
- Ted R Mikuls
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, USA; Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rohit Gaurav
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geoffrey M Thiele
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, USA; Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bryant R England
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, USA; Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Madison G Wolfe
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brianna P Shaw
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kristina L Bailey
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, USA; Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Todd A Wyatt
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, USA; Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Environmental, Agricultural & Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amy J Nelson
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael J Duryee
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, USA; Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Carlos D Hunter
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, USA; Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dong Wang
- Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Debra J Romberger
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, USA; Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dana P Ascherman
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jill A Poole
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
9
|
Blokland K, Pouwels S, Schuliga M, Knight D, Burgess J. Regulation of cellular senescence by extracellular matrix during chronic fibrotic diseases. Clin Sci (Lond) 2020; 134:2681-2706. [PMID: 33084883 PMCID: PMC7578566 DOI: 10.1042/cs20190893] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is a complex network of macromolecules surrounding cells providing structural support and stability to tissues. The understanding of the ECM and the diverse roles it plays in development, homoeostasis and injury have greatly advanced in the last three decades. The ECM is crucial for maintaining tissue homoeostasis but also many pathological conditions arise from aberrant matrix remodelling during ageing. Ageing is characterised as functional decline of tissue over time ultimately leading to tissue dysfunction, and is a risk factor in many diseases including cardiovascular disease, diabetes, cancer, dementia, glaucoma, chronic obstructive pulmonary disease (COPD) and fibrosis. ECM changes are recognised as a major driver of aberrant cell responses. Mesenchymal cells in aged tissue show signs of growth arrest and resistance to apoptosis, which are indicative of cellular senescence. It was recently postulated that cellular senescence contributes to the pathogenesis of chronic fibrotic diseases in the heart, kidney, liver and lung. Senescent cells negatively impact tissue regeneration while creating a pro-inflammatory environment as part of the senescence-associated secretory phenotype (SASP) favouring disease progression. In this review, we explore and summarise the current knowledge around how aberrant ECM potentially influences the senescent phenotype in chronic fibrotic diseases. Lastly, we will explore the possibility for interventions in the ECM-senescence regulatory pathways for therapeutic potential in chronic fibrotic diseases.
Collapse
Affiliation(s)
- Kaj E.C. Blokland
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia
| | - Simon D. Pouwels
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
- Department of Lung Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | - Michael Schuliga
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
| | - Darryl A. Knight
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Providence Health Care Research Institute, Vancouver, BC, Canada
| | - Janette K. Burgess
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| |
Collapse
|
10
|
Exhaled Biomarkers in Idiopathic Pulmonary Fibrosis-A Six-Month Follow-Up Study in Patients Treated with Pirfenidone. J Clin Med 2020; 9:jcm9082523. [PMID: 32764328 PMCID: PMC7465603 DOI: 10.3390/jcm9082523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/11/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022] Open
Abstract
The mechanism of action of pirfenidone in idiopathic pulmonary fibrosis (IPF) has not been fully elucidated. To offer additional insight, we evaluated the change in the cytokine profile in exhaled breath condensate (EBC) following a six-month treatment with pirfenidone in patients with IPF. EBC concentrations of interleukin (IL)-6, IL-8, IL-15, TNF-α and VEGF-A were assessed with ELISA and compared at baseline and after six months of pirfenidone treatment. Twenty-nine patients with IPF and 13 controls were evaluated at baseline. With the exception of IL-8 concentration, which was lower in patients with IPF when compared to controls (p = 0.005), the cytokine levels did not differ between the groups. Despite the use of a high sensitivity assay, IL-8 reached detectable values only in 24% of IPF patients. EBC analysis after six months of treatment with pirfenidone did not reveal any differences in the cytokine levels. The change in EBC vascular endothelial growth factor A (VEGF-A) correlated with the change in the 6 min walk distance (r = 0.54, p = 0.045). We conclude that a six-month treatment with pirfenidone did not significantly change the EBC cytokine profile. Our findings support the potential usefulness of VEGF-A as a marker in IPF. The low EBC IL-8 level in patients with IPF is a novel finding which needs confirmation in larger studies.
Collapse
|
11
|
Liu K, Liu D, Feng Y, Zhang H, Zeng D, Liu Q, Qu J. Spliceosome-associated protein 130: a novel biomarker for idiopathic pulmonary fibrosis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:986. [PMID: 32953786 PMCID: PMC7475450 DOI: 10.21037/atm-20-4404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Spliceosome-associated protein 130 (SAP130), a novel danger-associated molecular pattern (DAMP), is involved in inflammatory disease. However, no data are available about SAP130 in idiopathic pulmonary fibrosis (IPF). Our study aimed to investigate SAP130 in the serum and lung tissue of patients with IPF and to determine its clinical significance. Methods SAP130 levels in the serum of 83 IPF patients and 38 healthy subjects were measured. Additionally, immunohistochemical staining for SAP130 was performed in lung specimens of IPF patients and control subjects. Correlation between serum SAP130 levels and clinical parameters were investigated. Results Serum SAP130 levels were elevated in IPF patients compared with healthy controls. In parallel, the expression of SAP130 in lung tissue was elevated in IPF. SAP130 levels were higher in patients with acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) than patients with stable IPF (P=0.0144). The area under curve (AUC) of the ROC curve for the diagnosis of IPF was 0.944 (95% CI, 0.810–0.997) for SAP130. The sensitivity (92.1%) and specificity (69.9%) were obtained for the cutoff value of 643.87 pg/mL. In patients with stable IPF, the SAP130 level correlated positively with fibrosis on high-resolution CT (HRCT) (r=0.4164, P=0.0029) and serum KL-6 (r=0.4564, P=0.0010), and inversely with FEV1 (r=−0.3562, P=0.0120) and DLCO (r=−0.5550, P<0.0001). In patients with AE-IPF, the SAP130 level correlated positively with fibrosis (r=0.3735, P=0.0296) and ground-glass opacity (r=0.4697, P=0.0051) on HRCT and serum Krebs von den Lungen 6 (KL-6) (r=0.5470, P= 0.0008). Conclusions The study suggested that SAP130 was a potential noninvasive biomarker that correlates well with disease severity of IPF. A prospective, multicentre study is required to validate the clinical and pathophysiological utility of SAP130 in IPF.
Collapse
Affiliation(s)
- Kaixiong Liu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dong Liu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Feng
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongying Zhang
- Department of Respiratory Medicine, Fuzhou Pulmonary Hospital, Fuzhou, China
| | - Dunhuan Zeng
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qinhua Liu
- Department of Respiratory disease, Fujian Geriatric Hospital, Fuzhou, China
| | - Jieming Qu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|