1
|
Fu H, Quan M, Qiu Q, Jin F. WIPF1 regulates stemness in small cell lung cancer. Sci Prog 2025; 108:368504251345012. [PMID: 40415347 DOI: 10.1177/00368504251345012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
ObjectiveSmall cell lung cancer (SCLC) is a highly malignant subtype of lung cancer. Cancer stem cell (CSC)-like cells have been implicated in chemoresistance and recurrence. Although previous studies have demonstrated the significance of WASP-interacting protein (WIPF1) in malignant tumors, its underlying molecular mechanism in SCLC is not well known. Here, we demonstrate that WIPF1 can regulate tumorigenesis and its underlying molecular mechanism in SCLC.MethodsSphere-formation culture effectively enriches CSC-like cells, such as tumor stem cell-like cells. RNA-seq was used to identify differentially expressed genes between enriched CSCs (3D cultures) and differentiated cells. Next, we adopted RNA interference techniques to investigate the effects of WIPF1 on colony and sphere-formation capacity, as well as cisplatin sensitivity in SCLC cells. Furthermore, we performed western blot analysis to analyze protein expression and employed the STRING database to identify potential signaling pathways.ResultsWIPF1 was significantly upregulated in sphere-formed SCLC cells, relative to differentiated ones under adherent growth conditions (2D cultures). The gene was involved in the regulation of colony formation, sphere-formation capacity, and cisplatin sensitivity in SCLC cell line model. Knocking down of WIPF1 significantly suppressed the proliferation of cancer cells via the YAP/TAZ protein.ConclusionsSphere-formation and chemoresistance represent indispensable characteristics of CSC-like cells. Notably, sphere-formation culture is a more effective approach for enriching of CSCs-like cells than traditional adherent culture. Upregulation of WIPF1 in sphere-formed cells, relative to differentiated ones, indicated that it plays an important role in the tumorigenesis of SCLC. Moreover, this process is mediated by the YAP/TAZ pathway, suggesting that it may be a potential therapeutic target for SCLC.
Collapse
Affiliation(s)
- Hongyong Fu
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Mingji Quan
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Qianqian Qiu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fanjie Jin
- Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
2
|
Hsu TH, Chang YC, Lee YY, Chen CL, Hsiao M, Lin FR, Chen LH, Lin CH, Angata T, Liu FT, Lin KI. B4GALT1-dependent galectin-8 binding with TGF-β receptor suppresses colorectal cancer progression and metastasis. Cell Death Dis 2024; 15:654. [PMID: 39231945 PMCID: PMC11375092 DOI: 10.1038/s41419-024-07028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
Transforming growth factor (TGF)-β signaling is critical for epithelial-mesenchymal transition (EMT) and colorectal cancer (CRC) metastasis. Disruption of Smad-depednent TGF-β signaling has been shown in CRC cells. However, TGF-β receptor remains expressed on CRC cells. Here, we investigated whether the cooperation between tumor-associated N-glycosylation and a glycan-binding protein modulated the TGF-β-driven signaling and metastasis of CRC. We showed that galectin-8, a galactose-binding lectin, hampered TGF-β-induced EMT by interacting with the type II TGF-β receptor and competing with TGF-β binding. Depletion of galectin-8 promoted the migration of CRC cells by increasing TGF-β-receptor-mediated RAS and Src signaling, which was attenuated after recombinant galectin-8 treatment. Treatment with recombinant galectin-8 also induces JNK-dependent apoptosis in CRC cells. The anti-migratory effect of galectin-8 depended on β4-galactosyltransferase-I (B4GALT1), an enzyme involved in N-glycan synthesis. Increased B4GALT1 expression was observed in clinical CRC samples. Depletion of B4GALT1 reduced the metastatic potential of CRC cells. Furthermore, inducible expression of galectin-8 attenuated tumor development and metastasis of CRC cells in an intra-splenic injection model. Our results thus demonstrate that galectin-8 alters non-canonical TGF-β response in CRC cells and suppresses CRC progression.
Collapse
Affiliation(s)
- Tzu-Hui Hsu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chan Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Yuan Lee
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Long Chen
- Department of Pathology, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Fan-Ru Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Li-Han Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
3
|
Yang Y, Li Y, Wang WD, He S, Yuan TF, Hu J, Peng DH. Altered N-linked glycosylation in depression: A pre-clinical study. J Affect Disord 2024; 359:333-341. [PMID: 38801920 DOI: 10.1016/j.jad.2024.05.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/29/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Neuroimmune plays an important role in major depressive disorders (MDD). N-linked protein glycosylation (NLG) might contribute to depression by regulating the neuroinflammatory response. As microglia is the main executor of neuroimmune function in the central neural system (CNS), targeting the process of N-linked protein glycosylation of microglia in the mice used for studying depression might potentially offer new avenues for the strategy for MDD. METHODS The chronic unpredictable mild stress (CUMS) mouse model was established for the whole brain microglia isolating. Then, RNA samples of microglia were extracted for transcriptome sequencing and mRNA analysis. Immunofluorescence (IF) was used to identify the expression level of NLG-related enzyme, B4galt1, in microglia. RESULTS The data showed that NLG was positively related to depression. Moreover, the NLG-related gene, B4galt1 increased expression in the microglia of CUMS mice. Then, the inhibition of NLG reversed the depressive behavior in CUMS mice. The expression level of B4galt1 in CUMS mice was upregulating following the NLG-inhibitor treatment. Similar results haven't been observed in neurons. Information obtained from these experiments showed increasing expression of B4galt1 in microglia following depressive-like behaviors. CONCLUSIONS These findings indicate that NLG in microglia is associated with MDD, and suggest that therapeutically targeting NLG might be an effective strategy for depression. LIMITATIONS How to modulate the B4galt1 or NLG pathways in microglia efficiently and economically request new technologies.
Collapse
Affiliation(s)
- Yao Yang
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Di Wang
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shen He
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dai-Hui Peng
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Ni Q, Sang K, Zhou J, Pan C. Role of miR-93-5p and Its Opposing Effect of Ionizing Radiation in Non-Small Cell Lung Cancer. Anal Cell Pathol (Amst) 2024; 2024:4218464. [PMID: 39157415 PMCID: PMC11330335 DOI: 10.1155/2024/4218464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/09/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Background Radiation therapy is an effective local therapy for lung cancer. However, the interaction between genes and radiotherapy is multifaceted and intricate. Therefore, we explored the role of miR-93-5p in the proliferation, apoptosis, and migration abilities of A549 cells. Simultaneously, we also investigated the interactions between miR-93-5p and ionizing radiation (IR). Methods Cell Counting Kit-8, transwell, and apoptotic assay were performed to measure the proliferation, migration, and apoptosis abilities. The expression levels of miR-93-5p and its target gene in lung cancer were predicted using starBase v3.0. Then, data were validated using qPCR and western blot. Results miR-93-5p significantly promoted the proliferation (P < 0.01) and migration abilities (P < 0.001) of A549 cells. Gasdermin E (GSDME) was identified to be a putative target of miR-93-5p and had a negative correlation with miR-93-5p (P < 0.001). Overexpression of miR-93-5p significantly decreased GSDME in A549 (P < 0.001). Interestingly, miR-93-5p decreased cell proliferation (P < 0.01) and cell migration (P < 0.01) and increased apoptosis (P < 0.01) in A549 cells after exposure to IR. Conclusions miR-93-5p is presumed to play an oncogenic role in lung cancer by enhancing A549 cell proliferation and migration. It can enhance the sensitivity of radiotherapy under IR conditions. We speculate that the miR-93-5p/GSDME pathway was inhibited, activating the GSDME-related pyroptosis pathway when the cells were exposed to IR. Therefore, miR-93-5p can overcome resistance to radiotherapy and improve the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Qingtao Ni
- Department of OncologyJiangsu Taizhou People's Hospital, The Affiliated Taizhou People's Hospital of Nanjing Medical UniversityTaizhou School of Clinical MedicineNanjing Medical University, Taizhou 225300, China
| | - Kai Sang
- Department of General SurgeryJiangsu Taizhou People's Hospital, The Affiliated Taizhou People's Hospital of Nanjing Medical UniversityTaizhou School of Clinical MedicineNanjing Medical University, Taizhou 225300, China
| | - Jian Zhou
- Department of General SurgeryJiangsu Taizhou People's Hospital, The Affiliated Taizhou People's Hospital of Nanjing Medical UniversityTaizhou School of Clinical MedicineNanjing Medical University, Taizhou 225300, China
| | - Chi Pan
- Department of General SurgeryJiangsu Taizhou People's Hospital, The Affiliated Taizhou People's Hospital of Nanjing Medical UniversityTaizhou School of Clinical MedicineNanjing Medical University, Taizhou 225300, China
| |
Collapse
|
5
|
Chen PD, Liao YY, Cheng YC, Wu HY, Wu YM, Huang MC. Decreased B4GALT1 promotes hepatocellular carcinoma cell invasiveness by regulating the laminin-integrin pathway. Oncogenesis 2023; 12:49. [PMID: 37907465 PMCID: PMC10618527 DOI: 10.1038/s41389-023-00494-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023] Open
Abstract
Beta1,4-galactosyltransferases (B4GALTs) play a crucial role in several diseases, including cancer. B4GALT1 is highly expressed in the liver, and patients with mutations in B4GALT1 exhibit hepatopathy. However, the role of B4GALT1 in liver cancer remains unclear. Here, we found that B4GALT1 was significantly downregulated in hepatocellular carcinoma (HCC) tissue compared with the adjacent liver tissue, and low B4GALT1 expression was associated with vascular invasion and poor overall survival in patients with HCC. Additionally, silencing or loss of B4GALT1 enhanced HCC cell migration and invasion in vitro and promoted lung metastasis of HCC in NOD/SCID mice. Moreover, B4GALT1 knockdown or knockout increased cell adhesion to laminin, whereas B4GALT1 overexpression decreased the adhesion. Through a mass spectrometry-based approach and Griffonia simplicifolia lectin II (GSL-II) pull-down assays, we identified integrins α6 and β1 as the main protein substrates of B4GALT1 and their N-glycans were modified by B4GALT1. Further, the increased cell migration and invasion induced by B4GALT1 knockdown or knockout were significantly reversed using a blocking antibody against integrin α6 or integrin β1. These results suggest that B4GALT1 downregulation alters N-glycosylation and enhances the laminin-binding activity of integrin α6 and integrin β1 to promote invasiveness of HCC cells. Our findings provide novel insights into the role of B4GALT1 in HCC metastasis and highlight targeting the laminin-integrin axis as a potential therapeutic strategy for HCC with low B4GALT1 expression.
Collapse
Affiliation(s)
- Po-Da Chen
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Department of Surgical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Ying-Yu Liao
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chia Cheng
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yi Wu
- Instrumentation center, National Taiwan University, Taipei, Taiwan
| | - Yao-Ming Wu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Surgical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan.
| | - Min-Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
6
|
Han X, Han B, Luo H, Ling H, Hu X. Integrated Multi-Omics Profiling of Young Breast Cancer Patients Reveals a Correlation between Galactose Metabolism Pathway and Poor Disease-Free Survival. Cancers (Basel) 2023; 15:4637. [PMID: 37760606 PMCID: PMC10526161 DOI: 10.3390/cancers15184637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, there has been a notable rise in the incidence of breast cancer among young patients, who exhibit worse survival outcomes and distinct characteristics compared to intermediate and elderly patients. Therefore, it is imperative to identify the specific features unique to young patients, which could offer insights into potential therapeutic strategies and improving survival outcomes. In our study, we performed an integrative analysis of bulk transcriptional and genomic data from extensive clinical cohorts to identify the prognostic factotrs. Additionally, we analyzed the single-cell transcriptional data and conducted in vitro experiments. Our work confirmed that young patients exhibited higher grading, worse disease-free survival (DFS), a higher frequency of mutations in TP53 and BRCA1, a lower frequency of mutations in PIK3CA, and upregulation of eight metabolic pathways. Notably, the galactose metabolism pathway showed upregulation in young patients and was associated with worse DFS. Further analysis and experiments indicated that the galactose metabolism pathway may regulate the stemness of cancer cells and ultimately contribute to worse survival outcomes. In summary, our finding identified distinct clinicopathological, transcriptional, and genomics features and revealed a correlation between the galactose metabolism pathway, stemness, and poor disease-free survival of breast cancer in young patients.
Collapse
Affiliation(s)
- Xiangchen Han
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.H.); (B.H.)
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai 200032, China;
| | - Boyue Han
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.H.); (B.H.)
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai 200032, China;
| | - Hong Luo
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai 200032, China;
| | - Hong Ling
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.H.); (B.H.)
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin Hu
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai 200032, China;
| |
Collapse
|
7
|
Li H, Yang F, Chang K, Yu X, Guan F, Li X. The synergistic function of long and short forms of β4GalT1 in p53-mediated drug resistance in bladder cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119409. [PMID: 36513218 DOI: 10.1016/j.bbamcr.2022.119409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
β1,4-galactosyltransferase-1 (β4GalT1) is a type II membrane protein that catalyzes the transfer of galactose (Gal) from UDP-Gal to N-acetylglucosamine (GlcNAc) and forms a LacNAc structure. β4GalT1 has a long form (termed β4GalT1-L) and a short form (termed β4GalT1-S) in mammalian cells. Although β4GalT1 has been proven to play an important role in many biological and pathological processes, such as differentiation, immune responses and cancer development, the different functions of the two β4GalT1 forms remain ambiguous. In this study, we demonstrated that total β4GalT1 was upregulated in bladder cancer. Overexpression of β4GalT1-S, but not β4GalT1-L, increased drug resistance in bladder epithelial cells by upregulating p53 expression. Glycoproteomic analysis revealed that the substrate specificities of the two β4GalT1 forms were different. Among the LacNAcylated proteins, the E3 ligase MDM2 could be preferentially modified by β4GalT1-L compared to β4GalT1-S, and this modification could increase the binding of MDM2 and p53 and further facilitate the degradation of p53. Our data proved that the two forms of β4GalT1 could synergistically regulate p53-mediated cell survival under chemotherapy treatment. These results provide insights into the role of β4GalT1-L and β4GalT1-S and suggest their differentially important implications in the development of bladder cancer.
Collapse
Affiliation(s)
- Hongjiao Li
- Key Laboratory of Resource Biology and Biotechnology Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Fenfang Yang
- Key Laboratory of Resource Biology and Biotechnology Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Kaijing Chang
- Key Laboratory of Resource Biology and Biotechnology Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Xinwen Yu
- Key Laboratory of Resource Biology and Biotechnology Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China.
| | - Xiang Li
- Institute of Hematology, School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
8
|
De Vitis C, D’Ascanio M, Sacconi A, Pizzirusso D, Salvati V, Mancini M, Scafetta G, Cirombella R, Ascenzi F, Bruschini S, Esposito A, Castelli S, Salvucci C, Teodonio L, Sposato B, Catizone A, Di Napoli A, Vecchione A, Ciliberto G, Sciacchitano S, Ricci A, Mancini R. B4GALT1 as a New Biomarker of Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2022; 23:15040. [PMID: 36499368 PMCID: PMC9738382 DOI: 10.3390/ijms232315040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease characterized by progressive scarring of the lung that involves the pulmonary interstitium. The disease may rapidly progress, leading to respiratory failure, and the long-term survival is poor. There are no accurate biomarkers available so far. Our aim was to evaluate the expression of the B4GALT1 in patients with IPF. Analysis of B4GALT1 gene expression was performed in silico on two gene sets, retrieved from the Gene Expression Omnibus database. Expression of B4GALT1 was then evaluated, both at the mRNA and protein levels, on lung specimens obtained from lung biopsies of 4 IPF patients, on one IPF-derived human primary cell and on 11 cases of IPF associated with cancer. In silico re-analysis demonstrated that the B4GALT1 gene was overexpressed in patients and human cell cultures with IPF (p = 0.03). Network analysis demonstrated that B4GALT1 upregulation was correlated with genes belonging to the EMT pathway (p = 0.01). The overexpression of B4GALT1 was observed, both at mRNA and protein levels, in lung biopsies of our four IPF patients and in the IPF-derived human primary cell, in other fibrotic non-lung tissues, and in IPF associated with cancer. In conclusion, our results indicate that B4GALT1 is overexpressed in IPF and could represent a novel marker of this disease.
Collapse
Affiliation(s)
- Claudia De Vitis
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | | | - Andrea Sacconi
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Dario Pizzirusso
- UOC Respiratory Disease, Sant’Andrea Hospital, 00189 Rome, Italy
| | - Valentina Salvati
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Massimiliano Mancini
- Morphologic and Molecular Pathology Unit, S. Andrea University Hospital, 00189 Rome, Italy
| | - Giorgia Scafetta
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Roberto Cirombella
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Francesca Ascenzi
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Sara Bruschini
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Antonella Esposito
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Silvia Castelli
- UOC Respiratory Disease, Sant’Andrea Hospital, 00189 Rome, Italy
| | - Claudia Salvucci
- UOC Respiratory Disease, Sant’Andrea Hospital, 00189 Rome, Italy
| | - Leonardo Teodonio
- Division of Thoracic Surgery, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Bruno Sposato
- Pneumology Department, Azienda USL Toscana Sud-Est, “Misericordia” Hospital, 58100 Grosseto, Italy
| | - Angela Catizone
- Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy
| | - Arianna Di Napoli
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Alberto Ricci
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “Sapienza”, 00185 Rome, Italy
| |
Collapse
|
9
|
Zhang Y, Cheng Y, Qin L, Liu Y, Huang S, Dai L, Tao J, Pan J, Su C, Zhang Y. Plasma metabolomics for the assessment of the progression of non-small cell lung cancer. Int J Biol Markers 2022; 38:37-45. [PMID: 36377344 DOI: 10.1177/03936155221137359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives Non-small cell lung cancer (NSCLC) is a leading type of lung cancer with a high mortality rate worldwide. Although many procedures for the diagnosis and prognosis assessment of lung cancer exist, they are often laborious, expensive, and invasive. This study aimed to develop an ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC–MS/MS)-based analysis method for the plasma biomarkers of NSCLC with the potential to indicate the stages and progression of this malignancy conveniently and reliably. Methods A total of 53 patients with NSCLC in early stages (I–III) and advanced stage (IV) were classified into the early and advanced groups based on the tumor node metastasis staging system. A comprehensive metabolomic analysis of plasma from patients with NSCLC was performed via UPLC–MS/MS. Principal component analysis and partial least squares–discriminant analysis were conducted for statistical analysis. Potential biomarkers were evaluated and screened through receiver operating characteristic analyses and correlation analysis. Main differential metabolic pathways were also identified by utilizing metaboanalyst. Results A total of 129 differential metabolites were detected in accordance with the criteria of VIP ≥ 1 and a P-value of ≤ 0.05. The receiver operating characteristic curves indicated that 11 of these metabolites have the potential to be promising markers of disease progression. Apparent correlated metabolites were also filtered out. Furthermore, the 11 most predominant metabolic pathways with alterations involved in NSCLC were identified. Conclusion Our study focused on the plasma metabolomic changes in patients with NSCLC. These changes may be used for the prediction of the stage and progression of NSCLC. Moreover, we discussed the metabolic pathways wherein the altered metabolites were mainly enriched.
Collapse
Affiliation(s)
- Yingtian Zhang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Yaping Cheng
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Liqiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, Jiangsu, PR China
| | - Yuanliang Liu
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Sijia Huang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Liya Dai
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Jialong Tao
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Jie Pan
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Cunjin Su
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Yusong Zhang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| |
Collapse
|
10
|
Bruschini S, Pallocca M, Sperandio E, D'Ambrosio L, Ascenzi F, De Vitis C, Salvati V, Esposito A, Di Martino S, De Nicola F, Paolini F, Fattore L, Alessandrini G, Facciolo F, Foddai ML, Bassi M, Venuta F, D'Ascanio M, Ricci A, D' Andrilli A, Napoli C, Aurisicchio L, Fanciulli M, Rendina EA, Ciliberto G, Mancini R. Deconvolution of malignant pleural effusions immune landscape unravels a novel macrophage signature associated with worse clinical outcome in lung adenocarcinoma patients. J Immunother Cancer 2022; 10:jitc-2021-004239. [PMID: 35584864 PMCID: PMC9119185 DOI: 10.1136/jitc-2021-004239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
Background Immune checkpoint inhibitors are still unable to provide clinical benefit to the large majority of non-small cell lung cancer (NSCLC) patients. A deeper characterization of the tumor immune microenvironment (TIME) is expected to shed light on the mechanisms of cancer immune evasion and resistance to immunotherapy. Here, we exploited malignant pleural effusions (MPEs) from lung adenocarcinoma (LUAD) patients as a model system to decipher TIME in metastatic NSCLC. Methods Mononuclear cells from MPEs (PEMC) and peripheral blood (PBMC), cell free pleural fluid and/or plasma were collected from a total of 24 LUAD patients and 12 healthy donors. Bulk-RNA sequencing was performed on total RNA extracted from PEMC and matched PBMC. The DEseq2 Bioconductor package was used to perform differential expression analysis and CIBERSORTx for the regression-based immune deconvolution of bulk gene expression data. Cytokinome analysis of cell-free pleural fluid and plasma samples was performed using a 48-Plex Assay panel. THP-1 monocytic cells were used to assess macrophage polarization. Survival analyses on NSCLC patients were performed using KM Plotter (LUAD, N=672; lung squamous cell carcinoma, N=271). Results Transcriptomic analysis of immune cells and cytokinome analysis of soluble factors in the pleural fluid depicted MPEs as a metastatic niche in which all the components required for an effective antitumor response are present, but conscripted in a wound-healing, proinflammatory and tumor-supportive mode. The bioinformatic deconvolution analysis revealed an immune landscape dominated by myeloid subsets with the prevalence of monocytes, protumoral macrophages and activated mast cells. Focusing on macrophages we identified an MPEs-distinctive signature associated with worse clinical outcome in LUAD patients. Conclusions Our study reports for the first time a wide characterization of MPEs LUAD microenvironment, highlighting the importance of specific components of the myeloid compartment and opens new perspectives for the rational design of new therapies for metastatic NSCLC.
Collapse
Affiliation(s)
- Sara Bruschini
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy.,Department Clinical and Molecular Medicine, Sant' Andrea Hospital-Sapienza University of Rome, Rome, Italy
| | - Matteo Pallocca
- Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Eleonora Sperandio
- Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lorenzo D'Ambrosio
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Ascenzi
- Department of Clinical and Molecular Medicine, Sant' Andrea Hospital-Sapienza University of Rome, Rome, Italy
| | - Claudia De Vitis
- Department of Clinical and Molecular Medicine, Sant' Andrea Hospital-Sapienza University of Rome, Rome, Italy
| | - Valentina Salvati
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Antonella Esposito
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Simona Di Martino
- Pathology Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | | | - Francesca Paolini
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.,HPV-Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Luigi Fattore
- SAFU Laboratory, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Francesco Facciolo
- Thoracic Surgery Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Laura Foddai
- Immunohematology and Transfusional Medicine Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Federico Venuta
- Thoracic Surgery Unit, Sapienza University of Rome, Rome, Italy
| | - Michela D'Ascanio
- Department of Clinical and Molecular Medicine, Sant' Andrea Hospital-Sapienza University of Rome, Rome, Italy
| | - Alberto Ricci
- Department of Clinical and Molecular Medicine, Sant' Andrea Hospital-Sapienza University of Rome, Rome, Italy
| | - Antonio D' Andrilli
- Thoracic Surgery Unit, Sant' Andrea Hospital-Sapienza University of Rome, Rome, Italy
| | - Christian Napoli
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Maurizio Fanciulli
- SAFU Laboratory, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Erino Angelo Rendina
- Thoracic Surgery Unit, Sant' Andrea Hospital-Sapienza University of Rome, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Directorate, IRCSS Regina Elena National Cancer Institute, Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant' Andrea Hospital-Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Kang J, Song Y, Zhang Z, Wang S, Lu Y, Liu X. Identification of Key microRNAs in Diabetes Mellitus Erectile Dysfunction Rats with Stem Cell Therapy by Bioinformatic Analysis of Deep Sequencing Data. World J Mens Health 2022; 40:663-677. [PMID: 35021304 PMCID: PMC9482859 DOI: 10.5534/wjmh.210147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/16/2021] [Accepted: 09/30/2021] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Diabetes mellitus erectile dysfunction (DMED) is a common resulting complication of diabetes. Studies have shown mesenchymal stem cell (MSC)-based therapy was beneficial in alleviating erectile function of DMED rats. While the pathogenesis of DMED and the mechanism MSCs actions are unclear. MATERIALS AND METHODS We constructed a rat model of DMED with or without intracavernous injection of MSCs, and performed microRNA (miRNA) sequencing of corpora cavernosa tissues. RESULTS We identified three overlapping differentially expressed miRNAs (rno-miR-1298, rno-miR-122-5p, and rno-miR-6321) of the normal control group, DMED group, and DMED+MSCs group. We predicted 285 target genes of three miRNAs through RNAhybrid and miRanda database and constructed a miRNA-target gene network through Cytoscape. Next, we constructed protein-protein interaction networks through STRING database and identified the top 10 hub genes with highest connectivity scores. Five GO terms including cellular response to growth factor stimulus (GO:0071363), ossification (GO:0001503), response to steroid hormone (GO:0048545), angiogenesis (GO:0001525), positive regulation of apoptotic process (GO:0043065), and one Reactome pathway (Innate Immune System) were significantly enriched by 10 hub genes using the Metascape database. We selected the GSE2457 dataset to validate the expression of hub genes and found only the expression of B4galt1 was statistically different (p<0.001). B4galt1 was highly expressed in penile tissues of diabetic rats and would be negatively regulated by rno-miR-1298. CONCLUSIONS Three key miRNAs were identified in DMED rats with stem cell therapy and the miR-1298/B4GalT1 axis might exert function in stem cell therapy for ED.
Collapse
Affiliation(s)
- Jiaqi Kang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuxuan Song
- Department of Urology, Peking University People's Hospital, Beijing, China.,Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Zhexin Zhang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shangren Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi Lu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
12
|
Bui S, Mejia I, Díaz B, Wang Y. Adaptation of the Golgi Apparatus in Cancer Cell Invasion and Metastasis. Front Cell Dev Biol 2021; 9:806482. [PMID: 34957124 PMCID: PMC8703019 DOI: 10.3389/fcell.2021.806482] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
The Golgi apparatus plays a central role in normal cell physiology by promoting cell survival, facilitating proliferation, and enabling cell-cell communication and migration. These roles are partially mediated by well-known Golgi functions, including post-translational modifications, lipid biosynthesis, intracellular trafficking, and protein secretion. In addition, accumulating evidence indicates that the Golgi plays a critical role in sensing and integrating external and internal cues to promote cellular homeostasis. Indeed, the unique structure of the mammalian Golgi can be fine-tuned to adapt different Golgi functions to specific cellular needs. This is particularly relevant in the context of cancer, where unrestrained proliferation and aberrant survival and migration increase the demands in Golgi functions, as well as the need for Golgi-dependent sensing and adaptation to intrinsic and extrinsic stressors. Here, we review and discuss current understanding of how the structure and function of the Golgi apparatus is influenced by oncogenic transformation, and how this adaptation may facilitate cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Sarah Bui
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Isabel Mejia
- Department of Internal Medicine, Division of Medical Hematology and Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Begoña Díaz
- Department of Internal Medicine, Division of Medical Hematology and Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States.,David Geffen School of Medicine and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.,Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| |
Collapse
|
13
|
Sciacchitano S, Capalbo C, Napoli C, Negro A, De Biase L, Marcolongo A, Anibaldi P, Salvati V, Petrella L, Merlo L, Alampi D, Alessandri E, Loffredo C, Ulivieri A, Lavra L, Magi F, Morgante A, Salehi LB, De Vitis C, Mancini R, Coluzzi F, Rocco M. Nonthyroidal illness syndrome (NTIS) in severe COVID-19 patients: role of T3 on the Na/K pump gene expression and on hydroelectrolytic equilibrium. J Transl Med 2021; 19:491. [PMID: 34861865 PMCID: PMC8640710 DOI: 10.1186/s12967-021-03163-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022] Open
Abstract
Background Nonthyroidal Illness Syndrome (NTIS) can be detected in many critical illnesses. Recently, we demonstrated that this condition is frequently observed in COVID-19 patients too and it is correlated with the severity the disease. However, the exact mechanism through which thyroid hormones influence the course of COVID-19, as well as that of many other critical illnesses, is not clear yet and treatment with T4, T3 or a combination of both is still controversial. Aim of this study was to analyze body composition in COVID-19 patients in search of possible correlation with the thyroid function. Methods and findings We report here our experience performed in 74 critically ill COVID-19 patients hospitalized in the intensive care unit (ICU) of our University Hospital in Rome. In these patients, we evaluated the thyroid hormone function and body composition by Bioelectrical Impedance Analysis (BIA) during the acute phase of the disease at admission in the ICU. To examine the effects of thyroid function on BIA parameters we analyzed also 96 outpatients, affected by thyroid diseases in different functional conditions. We demonstrated that COVID-19 patients with low FT3 serum values exhibited increased values of the Total Body Water/Free Fat Mass (TBW/FFM) ratio. Patients with the lowest FT3 serum values had also the highest level of TBW/FFM ratio. This ratio is an indicator of the fraction of FFM as water and represents one of the best-known body-composition constants in mammals. We found an inverse correlation between FT3 serum values and this constant. Reduced FT3 serum values in COVID-19 patients were correlated with the increase in the total body water (TBW), the extracellular water (ECW) and the sodium/potassium exchangeable ratio (Nae:Ke), and with the reduction of the intracellular water (ICW). No specific correlation was observed in thyroid patients at different functional conditions between any BIA parameters and FT3 serum values, except for the patient with myxedema, that showed a picture similar to that seen in COVID-19 patients with NTIS. Since the Na+/K+ pump is a well-known T3 target, we measured the mRNA expression levels of the two genes coding for the two major isoforms of this pump. We demonstrated that COVID-19 patients with NTIS had lower levels of mRNA of both genes in the peripheral blood mononuclear cells (PBMC)s obtained from our patients during the acute phase of the disease. In addition, we retrieved data from transcriptome analysis, performed on human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM)s treated with T3 and we demonstrated that in these cells T3 is able to stimulate the expression of these two genes in a dose-dependent manner. Conclusions In conclusion, we demonstrated that measurement of BIA parameters is a useful method to analyze water and salt retention in COVID-19 patients hospitalized in ICU and, in particular, in those that develop NTIS. Our results indicate that NTIS has peculiar similarities with myxedema seen in severe hypothyroid patients, albeit it occurs more rapidly. The Na+/K+ pump is a possible target of T3 action, involved in the pathogenesis of the anasarcatic condition observed in our COVID-19 patients with NTIS. Finally, measurement of BIA parameters may represent good endpoints to evaluate the benefit of future clinical interventional trials, based on the administration of T3 in patients with NTIS.
Collapse
Affiliation(s)
- Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sapienza University, Viale Regina Elena n. 324, 00161, Rome, Italy. .,Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Rome, Italy.
| | - Carlo Capalbo
- Department of Medical Oncology, Sant'Andrea University Hospital, 00189, Rome, Italy.,Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Christian Napoli
- Department of Clinical and Surgical Translational Medicine, Sapienza University, Rome, Italy
| | - Andrea Negro
- Department of Clinical and Molecular Medicine, Sapienza University, Viale Regina Elena n. 324, 00161, Rome, Italy
| | - Luciano De Biase
- Heart Failure Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Paolo Anibaldi
- Health Management Director, Sant'Andrea Hospital, Rome, Italy
| | - Valentina Salvati
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lea Petrella
- Department of Methods and Models for Economics, Territory and Finance (MEMOTEF), Sapienza University of Rome, Rome, Italy
| | - Luca Merlo
- Department of Statistical Sciences, Sapienza University of Rome, Rome, Italy
| | - Daniela Alampi
- Department of Clinical and Surgical Translational Medicine, Sapienza University, Rome, Italy.,Unit of Anesthesia, Intensive Care and Pain Medicine, Sant'Andrea University Hospital, Rome, Italy
| | - Elisa Alessandri
- Unit of Anesthesia, Intensive Care and Pain Medicine, Sant'Andrea University Hospital, Rome, Italy
| | - Chiara Loffredo
- Unit of Anesthesia, Intensive Care and Pain Medicine, Sant'Andrea University Hospital, Rome, Italy
| | - Alessandra Ulivieri
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Rome, Italy
| | - Luca Lavra
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Rome, Italy
| | - Fiorenza Magi
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Rome, Italy
| | - Alessandra Morgante
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Rome, Italy
| | - Leila B Salehi
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Rome, Italy.,U.O.C. of Medical Genetics, Policlinic of Tor Vergata, Rome, Italy
| | - Claudia De Vitis
- Department of Clinical and Molecular Medicine, Sapienza University, Viale Regina Elena n. 324, 00161, Rome, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sapienza University, Viale Regina Elena n. 324, 00161, Rome, Italy
| | - Flaminia Coluzzi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Monica Rocco
- Department of Clinical and Surgical Translational Medicine, Sapienza University, Rome, Italy.,Unit of Anesthesia, Intensive Care and Pain Medicine, Sant'Andrea University Hospital, Rome, Italy
| |
Collapse
|
14
|
Tang Z, Tang N, Jiang S, Bai Y, Guan C, Zhang W, Fan S, Huang Y, Lin H, Ying Y. The Chemosensitizing Role of Metformin in Anti-Cancer Therapy. Anticancer Agents Med Chem 2021; 21:949-962. [PMID: 32951587 DOI: 10.2174/1871520620666200918102642] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/23/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
Chemoresistance, which leads to the failure of chemotherapy and further tumor recurrence, presents the largest hurdle for the success of anti-cancer therapy. In recent years, metformin, a widely used first-line antidiabetic drug, has attracted increasing attention for its anti-cancer effects. A growing body of evidence indicates that metformin can sensitize tumor responses to different chemotherapeutic drugs, such as hormone modulating drugs, anti-metabolite drugs, antibiotics, and DNA-damaging drugs via selective targeting of Cancer Stem Cells (CSCs), improving the hypoxic microenvironment, and by suppressing tumor metastasis and inflammation. In addition, metformin may regulate metabolic programming, induce apoptosis, reverse Epithelial to Mesenchymal Transition (EMT), and Multidrug Resistance (MDR). In this review, we summarize the chemosensitization effects of metformin and focus primarily on its molecular mechanisms in enhancing the sensitivity of multiple chemotherapeutic drugs, through targeting of mTOR, ERK/P70S6K, NF-κB/HIF-1 α, and Mitogen- Activated Protein Kinase (MAPK) signaling pathways, as well as by down-regulating the expression of CSC genes and Pyruvate Kinase isoenzyme M2 (PKM2). Through a comprehensive understanding of the molecular mechanisms of chemosensitization provided in this review, the rationale for the use of metformin in clinical combination medications can be more systematically and thoroughly explored for wider adoption against numerous cancer types.>.
Collapse
Affiliation(s)
- Zhimin Tang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Nan Tang
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Shanshan Jiang
- Institute of Hematological Research, Shanxi Provincial People's Hospital, Xian 710000, China
| | - Yangjinming Bai
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Chenxi Guan
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Wansi Zhang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Shipan Fan
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Yonghong Huang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| |
Collapse
|
15
|
Fattore L, Mancini R, Ciliberto G. Cancer Stem Cells and the Slow Cycling Phenotype: How to Cut the Gordian Knot Driving Resistance to Therapy in Melanoma. Cancers (Basel) 2020; 12:cancers12113368. [PMID: 33202944 PMCID: PMC7696527 DOI: 10.3390/cancers12113368] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Cancer stem cells play a central role in the development of cancer and are poorly sensitive to standard chemotherapy and radiotherapy. Furthermore, they are also responsible for the onset of drug resistance. This also occurs in malignant melanoma, the deadliest form of skin cancer. Hence, cancer stem cells eradication is one of the main challenges for medical oncology. Here, we conducted a bioinformatics approach aimed to identify the main circuits and proteins underpinning cancer stem cell fitness in melanoma. Several lessons emerged from our work and may help to conceptualize future therapeutic approaches to prolong the efficacy of current therapies. Abstract Cancer stem cells (CSCs) have historically been defined as slow cycling elements that are able to differentiate into mature cells but without dedifferentiation in the opposite direction. Thanks to advances in genomic and non-genomic technologies, the CSC theory has more recently been reconsidered in a dynamic manner according to a “phenotype switching” plastic model. Transcriptional reprogramming rewires this plasticity and enables heterogeneous tumors to influence cancer progression and to adapt themselves to drug exposure by selecting a subpopulation of slow cycling cells, similar in nature to the originally defined CSCs. This model has been conceptualized for malignant melanoma tailored to explain resistance to target therapies. Here, we conducted a bioinformatics analysis of available data directed to the identification of the molecular pathways sustaining slow cycling melanoma stem cells. Using this approach, we identified a signature of 25 genes that were assigned to four major clusters, namely (1) kinases and metabolic changes, (2) melanoma-associated proteins, (3) Hippo pathway and (4) slow cycling/CSCs factors. Furthermore, we show how a protein−protein interaction network may be the main driver of these melanoma cell subpopulations. Finally, mining The Cancer Genome Atlas (TCGA) data we evaluated the expression levels of this signature in the four melanoma mutational subtypes. The concomitant alteration of these genes correlates with the worst overall survival (OS) for melanoma patients harboring BRAF-mutations. All together these results underscore the potentiality to target this signature to selectively kill CSCs and to achieve disease control in melanoma.
Collapse
Affiliation(s)
- Luigi Fattore
- Department of Research, Advanced Diagnostics and Technological Innovation, SAFU Laboratory, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS, “Fondazione G. Pascale”, 80131 Naples, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sant’ Andrea Hospital, Sapienza University of Rome, 00161 Rome, Italy;
| | - Gennaro Ciliberto
- Scientific Directorate, IRCSS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Correspondence:
| |
Collapse
|
16
|
Reverse transcriptase inhibition potentiates target therapy in BRAF-mutant melanomas: effects on cell proliferation, apoptosis, DNA-damage, ROS induction and mitochondrial membrane depolarization. Cell Commun Signal 2020; 18:150. [PMID: 32933538 PMCID: PMC7493390 DOI: 10.1186/s12964-020-00633-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/23/2020] [Indexed: 12/31/2022] Open
Abstract
Abstract Target therapies based on BRAF and MEK inhibitors (MAPKi) have changed the therapeutic landscape for metastatic melanoma patients bearing mutations in the BRAF kinase. However, the emergence of drug resistance imposes the necessity to conceive novel therapeutic strategies capable to achieve a more durable disease control. In the last years, retrotransposons laying in human genome have been shown to undergo activation during tumorigenesis, where they contribute to genomic instability. Their activation can be efficiently controlled with reverse transcriptase inhibitors (RTIs) frequently used in the treatment of AIDS. These drugs have demonstrated anti-proliferative effects in several cancer models, including also metastatic melanoma. However, to our knowledge no previous study investigated the capability of RTIs to mitigate drug resistance to target therapy in BRAF-mutant melanomas. In this short report we show that the non-nucleoside RTI, SPV122 in combination with MAPKi strongly inhibits BRAF-mutant melanoma cell growth, induces apoptosis, and delays the emergence of resistance to target therapy in vitro. Mechanistically, this combination strongly induces DNA double-strand breaks, mitochondrial membrane depolarization and increased ROS levels. Our results shed further light on the molecular activity of RTI in melanoma and pave the way to their use as a novel therapeutic option to improve the efficacy of target therapy. Video Abstract
Graphical abstract ![]()
Collapse
|
17
|
Fattore L, Campani V, Ruggiero CF, Salvati V, Liguoro D, Scotti L, Botti G, Ascierto PA, Mancini R, De Rosa G, Ciliberto G. In Vitro Biophysical and Biological Characterization of Lipid Nanoparticles Co-Encapsulating Oncosuppressors miR-199b-5p and miR-204-5p as Potentiators of Target Therapy in Metastatic Melanoma. Int J Mol Sci 2020; 21:E1930. [PMID: 32178301 PMCID: PMC7139872 DOI: 10.3390/ijms21061930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Uncontrolled MAPK signaling is the main oncogenic driver in metastatic melanomas bearing mutations in BRAF kinase. These tumors are currently treated with the combination of BRAF/MEK inhibitors (MAPKi), but this therapy is plagued by drug resistance. In this context we recently discovered that several microRNAs are involved in the development of drug resistance. In particular miR-204-5p and miR-199b-5p were found to function as antagonists of resistance because their enforced overexpression is able to inhibit melanoma cell growth in vitro either alone or in combination with MAPKi. However, the use of miRNAs in therapy is hampered by their rapid degradation in serum and biological fluids, as well as by the poor intracellular uptake. Here, we developed lipid nanoparticles (LNPs) encapsulating miR-204-5p, miR-199b-5p individually or in combination. We obtained LNPs with mean diameters < 200 nm and high miRNA encapsulation efficiency. These formulations were tested in vitro on several melanoma cell lines sensitive to MAPKi or rendered drug resistant. Our results show that LNPs encapsulating combinations of the two oncosuppressor miRNAs are highly efficient in impairing melanoma cell proliferation and viability, affect key signaling pathways involved in melanoma cell survival, and potentiate the efficacy of drugs inhibiting BRAF and MEK. These results warrant further assessment of the anti-tumor efficacy of oncosuppressor miRNAs encapsulating LNPs in in vivo tumor models.
Collapse
Affiliation(s)
- Luigi Fattore
- Istituto Nazionale Tumori IRCCS, "Fondazione G. Pascale", 80131 Naples, Italy; (L.F.); (G.B.); (P.A.A.)
| | - Virginia Campani
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (V.C.); (L.S.); (G.D.R.)
| | - Ciro Francesco Ruggiero
- IRCCS, Istituto Nazionale Tumori “Regina Elena”, Via Elio Chianesi 53, 00144 Rome, Italy; (C.F.R.); (V.S.)
| | - Valentina Salvati
- IRCCS, Istituto Nazionale Tumori “Regina Elena”, Via Elio Chianesi 53, 00144 Rome, Italy; (C.F.R.); (V.S.)
| | - Domenico Liguoro
- Department of Molecular and Clinical Medicine, University of Roma “Sapienza”, 00185 Rome, Italy; (D.L.); (R.M.)
| | - Lorena Scotti
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (V.C.); (L.S.); (G.D.R.)
| | - Gerardo Botti
- Istituto Nazionale Tumori IRCCS, "Fondazione G. Pascale", 80131 Naples, Italy; (L.F.); (G.B.); (P.A.A.)
| | - Paolo Antonio Ascierto
- Istituto Nazionale Tumori IRCCS, "Fondazione G. Pascale", 80131 Naples, Italy; (L.F.); (G.B.); (P.A.A.)
| | - Rita Mancini
- Department of Molecular and Clinical Medicine, University of Roma “Sapienza”, 00185 Rome, Italy; (D.L.); (R.M.)
| | - Giuseppe De Rosa
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (V.C.); (L.S.); (G.D.R.)
| | - Gennaro Ciliberto
- IRCCS, Istituto Nazionale Tumori “Regina Elena”, Via Elio Chianesi 53, 00144 Rome, Italy; (C.F.R.); (V.S.)
| |
Collapse
|