1
|
Guo Z, Zhu J, Wang J, Wang L, Tang F, Huang H, Xia Z, Liu L, Wang D, Zhong N, Zhou H, Zhou Z, Dai W, Xu X, Zhou H, Deng L, Meng J, Sun Z, Shao L, Cao YJ, Liu Y, Qu R, Li G, Chen P, Zhang H, Liang J, Li Y, Liu J, Xu Z, Sung Inda S, Xiang X, Wu Q, Wang Q. Chinese expert consensus on the application of intravenous immunoglobulin in hematological diseases. Front Med (Lausanne) 2025; 12:1544025. [PMID: 40236459 PMCID: PMC11996829 DOI: 10.3389/fmed.2025.1544025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
Intravenous immunoglobulin (IVIG), first developed for the treatment of patients with antibody deficiencies, is now widely used in clinical practice, especially in hematological and immune system diseases, and its application in hematological oncology chemotherapy, cellular immunotherapy and hematopoietic stem cell transplantation (HSCT) is becoming more and more common. The Chinese Collaborative Group for Infection Immunology and Microecology Research Translation Collaborative Group organized relevant experts to discuss and propose the "Chinese expert consensus on the application of intravenous immunoglobulin in hematological diseases," which was formulated based on the progress of research on the application of IVIG in blood diseases, and provides a basis for the standardization of the use of IVIG in hematologic disorders.
Collapse
Affiliation(s)
- Zhi Guo
- Department of Hematology, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Jie Zhu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Wang
- Department of Hematology, Hongkong University Shenzhen Hospital, Shenzhen, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Feifei Tang
- Department of Hematology, Peking University People’s Hospital, Beijing, China
| | - Huiqiang Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhongjun Xia
- State Key Laboratory of Oncology in South China, Department of Hematology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liqiong Liu
- Department of Hematology, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Danyu Wang
- Department of Hematology, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Nan Zhong
- Department of Hematology, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Huanhuan Zhou
- Department of Hematology, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhaogui Zhou
- Department of Hematology, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Wei Dai
- Department of Hematology, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaojun Xu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hao Zhou
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijuan Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Jingye Meng
- Department of Hematology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Zhiqiang Sun
- Department of Hematology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu J. Cao
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yansong Liu
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Rong Qu
- Department of Critical Care Medicine, Huizhou Central People Hospital, Huizhou, China
| | - Guowei Li
- Department of Hematology, Huizhou Central People Hospital, Huizhou, China
| | - Peng Chen
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongyan Zhang
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Liang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yuhua Li
- Hematology Department, Southern Medical University, Zhujiang Hospital, Guangzhou, China
- Guangdong Engineering Research Center of Precision Immune Cell Therapy Technology, Guangzhou, China
| | - Jiajun Liu
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zishan Xu
- Department of Hematology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong SAR, China
| | - Soong Sung Inda
- Department of Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong SAR, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Leoni S, Ferraresi M, Motta I, Hu C, Fracanzani AL, Barcellini W, Fattizzo B. Deciphering cytopenias in internal medicine: a single-center observational study. Intern Emerg Med 2024; 19:661-668. [PMID: 38270774 PMCID: PMC11039542 DOI: 10.1007/s11739-023-03517-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 12/17/2023] [Indexed: 01/26/2024]
Abstract
Cytopenia is a common finding in patients admitted to internal medicine wards and the clinical workup may be long and time-consuming. In this single-center observational study, we analyzed a series of 151 inpatients who received hematologist referral due to cytopenia observed during hospital admission. Patients were mainly elderly (median 71 years, 15-96) and 87% had at least one comorbidity. Anemia was the most common cytopenia (91%), followed by thrombocytopenia (51%), and neutropenia (22%); 73 (48%) patients had a bicytopenia and 5 (3%) pancytopenia. Cytopenias were mainly severe, 66% of cases required RBC transfusions, and 21% platelet pools. During a median hospital stay of 15 days (1-166), 53 subjects (35%) received a hematologic discharge diagnosis, whilst the two-thirds had secondary cytopenia mainly due to associated comorbidities. Only about 34% of 2,728 diagnostic tests performed (including laboratory, imaging, and histology) clearly informed the discharge diagnosis in this heterogenous setting. Specifically, bone-marrow evaluation indicated in 46 (30%) patients, was diagnostic in 32 (69.6%). Eleven percent of patients died due to progression of the oncohematologic disease (29%), sepsis (24%), and solid tumor progression (24%). In conclusion, cytopenias in the internal medicine setting are mainly severe, more frequently secondary to associated comorbidities (2/3 of patients) and deserve proper workup before second/third-level tests (immune-hematological assays and CT scan or PET and bone-marrow evaluation, respectively).
Collapse
Affiliation(s)
- Simona Leoni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20100, Milan, Italy
- University of Milan, Milan, Italy
| | - Marta Ferraresi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20100, Milan, Italy
- University of Milan, Milan, Italy
| | - Irene Motta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20100, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Cinzia Hu
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20100, Milan, Italy
| | - Anna Ludovica Fracanzani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20100, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Wilma Barcellini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20100, Milan, Italy
- University of Milan, Milan, Italy
| | - Bruno Fattizzo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20100, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
3
|
Chakhunashvili DG, Chakhunashvili K, Kvirkvelia E. Visceral leishmaniasis misdiagnosed as an upper respiratory infection and iron-deficiency anemia in a 20-month-old male patient: a case report. J Med Case Rep 2024; 18:37. [PMID: 38291520 PMCID: PMC10829240 DOI: 10.1186/s13256-024-04356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Visceral Leishmaniasis should be suspected in every patient with a history of splenomegaly, fever, and pancytopenia. It is one of the most dangerous forms of infection and prompt recognition is the key to positive outcome. CASE PRESENTATION A 20-month-old Caucasian male patient was brought to our hospital as an outpatient with the complaint of persistent fever, which did not improve with empiric antibiotic treatment (> 96 hour after the initial dose). The antibiotic treatment had been prescribed by primary care physician at polyclinic, who also referred the patient to hematologist due to anemia, who prescribed iron supplement. Despite multiple subspecialist visits, bicytopenia was, unfortunately, left unidentified. Upon physical examination no specific signs were detected, however, spleen seemed slightly enlarged. Patient was admitted to the hospital for further work-up, management and evaluation. Abdominal ultrasound, complete blood count and c-reactive protein had been ordered. Hematologist and infectionist were involved, both advised to run serology for Epstein-Barr Virus and Visceral Leishmaniasis. The latter was positive; therefore, patient was transferred to the specialized clinic for specific management. CONCLUSION Both in endemic and non-endemic areas the awareness about VL should be increased among the medical professionals. We also recommend that our colleagues take the same approach when dealing with bicytopenia and fever, just as with pancytopenia and fever. The medical community should make sure that none of the cases of fever and pancytopenia are overlooked, especially if we have hepatomegaly and/or splenomegaly.
Collapse
Affiliation(s)
- Davit G Chakhunashvili
- Department of Pediatrics, Alte University, Tbilisi, Georgia
- Children's Clinic After I. Tsitsishvili, Tbilisi, Georgia
| | - Konstantine Chakhunashvili
- Department of Pediatrics, The University of Georgia, Tbilisi, Georgia.
- Children's Clinic After I. Tsitsishvili, Tbilisi, Georgia.
| | - Eka Kvirkvelia
- Department of Gynecology, Caucasus University, Tbilisi, Georgia
| |
Collapse
|
4
|
Berentsen S, Fattizzo B, Barcellini W. The choice of new treatments in autoimmune hemolytic anemia: how to pick from the basket? Front Immunol 2023; 14:1180509. [PMID: 37168855 PMCID: PMC10165002 DOI: 10.3389/fimmu.2023.1180509] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
Autoimmune hemolytic anemia (AIHA) is defined by increased erythrocyte turnover mediated by autoimmune mechanisms. While corticosteroids remain first-line therapy in most cases of warm-antibody AIHA, cold agglutinin disease is treated by targeting the underlying clonal B-cell proliferation or the classical complement activation pathway. Several new established or investigational drugs and treatment regimens have appeared during the last 1-2 decades, resulting in an improvement of therapy options but also raising challenges on how to select the best treatment in individual patients. In severe warm-antibody AIHA, there is evidence for the upfront addition of rituximab to prednisolone in the first line. Novel agents targeting B-cells, extravascular hemolysis, or removing IgG will offer further options in the acute and relapsed/refractory settings. In cold agglutinin disease, the development of complement inhibitors and B-cell targeting agents makes it possible to individualize therapy, based on the disease profile and patient characteristics. For most AIHAs, the optimal treatment remains to be found, and there is still a need for more evidence-based therapies. Therefore, prospective clinical trials should be encouraged.
Collapse
Affiliation(s)
- Sigbjørn Berentsen
- Department of Research and Innovation, Haugesund Hospital, Helse Fonna Hospital Trust, Haugesund, Norway
| | - Bruno Fattizzo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, and Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Wilma Barcellini
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
5
|
Fu R, Yu H. [How I diagnose and treat autoimmune hemolytic anemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:910-915. [PMID: 36709181 PMCID: PMC9808870 DOI: 10.3760/cma.j.issn.0253-2727.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 01/30/2023]
Affiliation(s)
- R Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - H Yu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
6
|
Barcellini W, Fattizzo B. Diagnosis and Management of Autoimmune Hemolytic Anemias. J Clin Med 2022; 11:6029. [PMID: 36294350 PMCID: PMC9604556 DOI: 10.3390/jcm11206029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 10/29/2023] Open
Abstract
Autoimmune hemolytic anemia (AIHA) is usually categorized, as other immune-mediated cytopenias, in so-called benign hematology, and it is consequently managed in various settings, namely, internal medicine, transfusion centers, hematology and, more rarely, onco-hematology departments [...].
Collapse
Affiliation(s)
- Wilma Barcellini
- Haematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20100 Milan, Italy
| | - Bruno Fattizzo
- Haematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20100 Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy
| |
Collapse
|
7
|
Abstract
INTRODUCTION Autoimmune hemolytic anemia (AIHA) is classified according to the direct antiglobulin test (DAT) and thermal characteristics of the autoantibody into warm and cold forms, and in primary versus secondary depending on the presence of associated conditions. AREAS COVERED AIHA displays a multifactorial pathogenesis, including genetic (association with congenital conditions and certain mutations), environmental (drugs, infections, including SARS-CoV-2, pollution, etc.), and miscellaneous factors (solid/hematologic neoplasms, systemic autoimmune diseases, etc.) contributing to tolerance breakdown. Several mechanisms, such as autoantibody production, complement activation, monocyte/macrophage phagocytosis, and bone marrow compensation are implicated in extra-/intravascular hemolysis. Treatment should be differentiated and sequenced according to AIHA type (i.e. steroids followed by rituximab for warm, rituximab alone or in association with bendamustine or fludarabine for cold forms). Several new drugs targeting B-cells/plasma cells, complement, and phagocytosis are in clinical trials. Finally, thrombosis and infections may complicate disease course burdening quality of life and increasing mortality. EXPERT OPINION Beyond warm and cold AIHA, a gray-zone still exists including mixed and DAT negative forms representing an unmet need. AIHA management is rapidly changing through an increasing knowledge of the pathogenic mechanisms, the refinement of diagnostic tools, and the development of novel targeted and combination therapies.
Collapse
Affiliation(s)
- B Fattizzo
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - W Barcellini
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
8
|
Barcellini W, Fattizzo B. Immune Phenomena in Myeloid Neoplasms: An " Egg or Chicken" Question. Front Immunol 2021; 12:751630. [PMID: 34659257 PMCID: PMC8511478 DOI: 10.3389/fimmu.2021.751630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Immune phenomena are increasingly reported in myeloid neoplasms, and include autoimmune cytopenias/diseases and immunodeficiency, either preceding or complicating acute myeloid leukemia, myelodysplastic syndromes (MDS), chronic myeloproliferative neoplasms, and bone marrow failure (BMF) syndromes. Autoimmunity and immunodeficiency are the two faces of a dysregulated immune tolerance and surveillance and may result, along with contributing environmental and genetic factors, in an increased incidence of both tumors and infections. The latter may fuel both autoimmunity and immune activation, triggering a vicious circle among infections, tumors and autoimmune phenomena. Additionally, alterations of the microbiota and of mesenchymal stem cells (MSCs) pinpoint to the importance of a permissive or hostile microenvironment for tumor growth. Finally, several therapies of myeloid neoplasms are aimed at increasing host immunity against the tumor, but at the price of increased autoimmune phenomena. In this review we will examine the epidemiological association of myeloid neoplasms with autoimmune diseases and immunodeficiencies, and the pivotal role of autoimmunity in the pathogenesis of MDS and BMF syndromes, including the paroxysmal nocturnal hemoglobinuria conundrum. Furthermore, we will briefly examine autoimmune complications following therapy of myeloid neoplasms, as well as the role of MSCs and microbiota in these settings.
Collapse
Affiliation(s)
- Wilma Barcellini
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Bruno Fattizzo
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Wittmann G. [54/f-Dyspnea, yellow sclera and dark-colored urine : Preparation for the medical specialist examination: part 73]. Internist (Berl) 2021; 62:482-485. [PMID: 34448013 DOI: 10.1007/s00108-021-01104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 11/25/2022]
Affiliation(s)
- G Wittmann
- Labor Becker und Kollegen MVZ GbR, Führichstr. 70, 81671, München, Deutschland.
| |
Collapse
|
10
|
Fattizzo B, Ferraresi M, Giannotta JA, Barcellini W. Secondary Hemophagocytic Lymphohistiocytosis and Autoimmune Cytopenias: Case Description and Review of the Literature. J Clin Med 2021; 10:870. [PMID: 33672504 PMCID: PMC7923749 DOI: 10.3390/jcm10040870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Hemophagocytic lymphohistocytosis (HLH) is a rare hyperinflammatory condition which may be primary or secondary to many diseases, including hematologic malignancies. Due to its life-threatening evolution, a timely diagnosis is paramount but challenging, since it relies on non-specific clinical and laboratory criteria. The latter are often altered in other diseases, including autoimmune cytopenias (AIC), which in turn can be secondary to infections, systemic autoimmune or lymphoproliferative disorders. In the present article, we describe two patients presenting at the emergency department with acute AICs subsequently diagnosed as HLH with underlying diffuse large B cell lymphoma. We discuss the diagnostic challenges in the differential diagnosis of acute cytopenias in the internal medicine setting, providing a literature review of secondary HLH and AIC.
Collapse
Affiliation(s)
- Bruno Fattizzo
- Oncohematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (J.A.G.); (W.B.)
- Department of Oncology and Oncohematology, University of Milan, 20122 Milan, Italy
| | - Marta Ferraresi
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Department of Internal Medicine, University of Milan, 20122 Milan, Italy
| | - Juri Alessandro Giannotta
- Oncohematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (J.A.G.); (W.B.)
| | - Wilma Barcellini
- Oncohematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (J.A.G.); (W.B.)
| |
Collapse
|