1
|
Na HJ, Sung MJ, Park JS. Age- and oxidative stress-induced centrosome amplification and renal stones in Drosophila Malpighian tubules. Biol Open 2024; 13:bio061743. [PMID: 39680672 PMCID: PMC11683567 DOI: 10.1242/bio.061743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Renal diseases, including cancer, are rapidly increasing worldwide, driven by rising temperatures and changing diets, especially among younger people. Renal stones, a major risk for chronic renal disease, are increasingly common due to various health issues. Research on the underlying mechanisms, drug discovery, and the effects of aging and stress is limited. We used Drosophila, due to its similarity to the human renal system and ease of use, to identify cancer hallmarks and renal stone formation related to aging and oxidative stress. Our results indicate that centrosome amplification and stone formation increase with age and oxidative stress, and high sucrose feeding also heightens stone formation in the renal system. Our results show a close relationship between these diseases and aging, reactive oxygen species (ROS) stress, and chronic diseases. We suggest that the Drosophila renal model could be a powerful tool to study the relationship between age and age-related diseases and to discovering new agents for nephropathy.
Collapse
Affiliation(s)
- Hyun-Jin Na
- Aging and Metabolism Research Group, Division of Food Functionality Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Mi-Jeong Sung
- Aging and Metabolism Research Group, Division of Food Functionality Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Joung-Sun Park
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
2
|
Wang X, Bao H, Huang YC, Barua A, Lai CM, Sun J, Zhou Y, Cong F, Gong S, Chang CH, Deng WM. Sex-dimorphic tumor growth is regulated by tumor microenvironmental and systemic signals. SCIENCE ADVANCES 2024; 10:eads4229. [PMID: 39642218 PMCID: PMC11623276 DOI: 10.1126/sciadv.ads4229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/01/2024] [Indexed: 12/08/2024]
Abstract
Tumor growth and progression involve coordinated regulation by internal, microenvironmental, and systemic signals and often display conspicuous sexual dimorphism. The mechanisms governing the integration and coordination of these signals, along with their sex-based differences, remain largely unknown. Using a Drosophila tumor model originating from nonreproductive tissue, we show that female-biased tumor growth involves multifaceted communications among tumor cells, hemocytes, and neuroendocrine insulin-producing cells (IPCs). Notch-active tumor cells recruit hemocytes carrying the tumor necrosis factor-α (TNF-α) homolog Eiger to the tumor microenvironment (TME), activating the c-Jun N-terminal kinase (JNK) pathway in tumor cells, instigating the sexually dimorphic up-regulation of cytokine Unpaired 2 (Upd2). Upd2, in turn, exerts a distal influence by modulating the release of a Drosophila insulin-like peptide (Dilp2) from IPCs. Dilp2 then activates the insulin signaling in the tumor, thereby fostering sexual-dimorphic tumor growth. Together, these findings reveal a relay mechanism involving the TME and systemic signals that collectively control the sexual dimorphism of tumor growth.
Collapse
Affiliation(s)
- Xianfeng Wang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Hongcun Bao
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Yi-Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Anindita Barua
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | | | - Jie Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Youfang Zhou
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Fei Cong
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | | | | | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Sorensen RM, Savić-Zdravković D, Jovanović B. Changes in the wing shape and size in fruit flies exposed to micro and nanoplastics. CHEMOSPHERE 2024; 363:142821. [PMID: 38986775 DOI: 10.1016/j.chemosphere.2024.142821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
Geometric morphometrics analysis (GMA) is a well-known technique to identify minute changes in Drosophila wings. This study aimed to determine potential changes in Drosophila wings shape and size after exposure to polystyrene nanoplastics (NPs) (50 nm) and microplastics (MPs) (1 μm). Flies were exposed from eggs to pupal eclosion and analyzed using GMA. Results revealed a difference in shape and size between male and female wings, as expected, due to sexual dimorphism. Therefore, wings were analyzed by sex. Wings of MPs and NPs treated females were elongated compared to controls and had a constriction of the wing joint. Additionally, MPs treated female flies had the most dissimilar shape compared to controls. In male flies, NPs flies had smaller wings compared to MPs and control flies. Compared to control, NPs wings of males were shrunken at the joint and in the entire proximal region of the wing. However, male MPs wings had a narrower anal region and were slightly elongated. These results reveal that wing shape and size can change in a different way based on the sex of the flies and size of plastic particles that larvae interacted with. All the changes in the wings occurred only within the normally allowed wing variation and treatment with NPs/MPs did not cause development of the aberrant phenotypes. Results can pave the way for further understanding of how MPs and NPs can alter phenotypes of flies.
Collapse
Affiliation(s)
- Rachel M Sorensen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Dimitrija Savić-Zdravković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, Niš, 18000, Serbia.
| | - Boris Jovanović
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
4
|
Guo T, Miao C, Liu Z, Duan J, Ma Y, Zhang X, Yang W, Xue M, Deng Q, Guo P, Xi Y, Yang X, Huang X, Ge W. Impaired dNKAP function drives genome instability and tumorigenic growth in Drosophila epithelia. J Mol Cell Biol 2024; 15:mjad078. [PMID: 38059855 PMCID: PMC11070879 DOI: 10.1093/jmcb/mjad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 11/09/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023] Open
Abstract
Mutations or dysregulated expression of NF-kappaB-activating protein (NKAP) family genes have been found in human cancers. How NKAP family gene mutations promote tumor initiation and progression remains to be determined. Here, we characterized dNKAP, the Drosophila homolog of NKAP, and showed that impaired dNKAP function causes genome instability and tumorigenic growth in a Drosophila epithelial tumor model. dNKAP-knockdown wing imaginal discs exhibit tumorigenic characteristics, including tissue overgrowth, cell-invasive behavior, abnormal cell polarity, and cell adhesion defects. dNKAP knockdown causes both R-loop accumulation and DNA damage, indicating the disruption of genome integrity. Further analysis showed that dNKAP knockdown induces c-Jun N-terminal kinase (JNK)-dependent apoptosis and causes aberrant cell proliferation in distinct cell populations. Activation of the Notch and JAK/STAT signaling pathways contributes to the tumorigenic growth of dNKAP-knockdown tissues. Furthermore, JNK signaling is essential for dNKAP depletion-mediated cell invasion. Transcriptome analysis of dNKAP-knockdown tissues confirmed the misregulation of signaling pathways involved in promoting tumorigenesis and revealed abnormal regulation of metabolic pathways. dNKAP knockdown and oncogenic Ras, Notch, or Yki mutations show synergies in driving tumorigenesis, further supporting the tumor-suppressive role of dNKAP. In summary, this study demonstrates that dNKAP plays a tumor-suppressive role by preventing genome instability in Drosophila epithelia and thus provides novel insights into the roles of human NKAP family genes in tumor initiation and progression.
Collapse
Affiliation(s)
- Ting Guo
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Chen Miao
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Zhonghua Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingwei Duan
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yanbin Ma
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiao Zhang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Weiwei Yang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Maoguang Xue
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiannan Deng
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Pengfei Guo
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yongmei Xi
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaohang Yang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanzhong Ge
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
de Oliveira-Júnior FC, Oliveira ACPD, Pansa CC, Molica LR, Moraes KCM. Drosophila melanogaster as a Biotechnological Tool to Investigate the Close Connection Between Fatty Diseases and Pesticides. BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY 2024; 67. [DOI: 10.1590/1678-4324-2024230091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Kim N, Ahn Y, Ko K, Kim B, Han K, Suh HJ, Jung J, Hong KB. Yeast Hydrolysate Inhibits Lipid Accumulation via Regulation of Lipid Accumulation-Related Genes in a Drosophila Model of High-Sugar Diet-Induced Obesity. Int J Mol Sci 2023; 24:16302. [PMID: 38003491 PMCID: PMC10671767 DOI: 10.3390/ijms242216302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
The increasing frequency of processed food consumption has led to the higher ingestion of sugar, increasing the risk of chronic diseases, such as obesity. Yeast hydrolysates (YHs) inhibit body fat accumulation. However, the action mechanism of YH in relation to high-sugar diet-induced obesity is still unclear. Therefore, this study aimed to evaluate the biological effects of YH on lipid accumulation and verify behavioral changes and carbohydrate metabolic gene regulation in high-sugar diet-fed fruit flies. Adult male flies (Drosophila melanogaster; 2-5 days old) were exposed to 20% sucrose for obesity induction. In high-sugar-fed Drosophila, the effect of YH was compared with that of yeast extract. The effects of YH on body conditions and lipid droplet size were quantified and analyzed. Behavioral factors were evaluated by analyzing circadian rhythm patterns and neurotransmitter content, and a molecular approach was used to analyze the expression of metabolism-related genes. Dietary supplementation with YH did not reduce total sugar content, but significantly decreased the triglyceride (TG) levels in Drosophila. A behavioral analysis showed that the total number of night-time activities increased significantly with YH treatment in a dose-dependent manner. In addition, YH effectively regulated the gene expression of insulin-like peptides related to carbohydrate metabolism as well as genes related to lipogenesis. The TG content was significantly reduced at a YH concentration of 0.5%, confirming that the active compound in YH effectively suppresses fat accumulation. These findings support that YH is a potential anti-obesity food material via regulating carbohydrate metabolism in Drosophila.
Collapse
Affiliation(s)
- Nari Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; (N.K.); (K.H.); (H.J.S.)
| | - Yejin Ahn
- Research Group of Functional Food Materials, Korea Food Research Institute, Wanju 55365, Republic of Korea;
| | - Kayoung Ko
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Republic of Korea;
| | - Boyun Kim
- Department of SmartBio, Kyungsung University, Busan 48434, Republic of Korea;
| | - Kisoo Han
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; (N.K.); (K.H.); (H.J.S.)
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; (N.K.); (K.H.); (H.J.S.)
| | - Jewon Jung
- Department of SmartBio, Kyungsung University, Busan 48434, Republic of Korea;
| | - Ki-Bae Hong
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Republic of Korea;
| |
Collapse
|
7
|
Li S, Wang J, Tian X, Toufeeq S, Huang W. Immunometabolic regulation during the presence of microorganisms and parasitoids in insects. Front Immunol 2023; 14:905467. [PMID: 37818375 PMCID: PMC10560992 DOI: 10.3389/fimmu.2023.905467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Multicellular organisms live in environments containing diverse nutrients and a wide variety of microbial communities. On the one hand, the immune response of organisms can protect from the intrusion of exogenous microorganisms. On the other hand, the dynamic coordination of anabolism and catabolism of organisms is a necessary factor for growth and reproduction. Since the production of an immune response is an energy-intensive process, the activation of immune cells is accompanied by metabolic transformations that enable the rapid production of ATP and new biomolecules. In insects, the coordination of immunity and metabolism is the basis for insects to cope with environmental challenges and ensure normal growth, development and reproduction. During the activation of insect immune tissues by pathogenic microorganisms, not only the utilization of organic resources can be enhanced, but also the activated immune cells can usurp the nutrients of non-immune tissues by generating signals. At the same time, insects also have symbiotic bacteria in their body, which can affect insect physiology through immune-metabolic regulation. This paper reviews the research progress of insect immune-metabolism regulation from the perspective of insect tissues, such as fat body, gut and hemocytes. The effects of microorganisms (pathogenic bacteria/non-pathogenic bacteria) and parasitoids on immune-metabolism were elaborated here, which provide guidance to uncover immunometabolism mechanisms in insects and mammals. This work also provides insights to utilize immune-metabolism for the formulation of pest control strategies.
Collapse
Affiliation(s)
- Shirong Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi, China
| | - Jing Wang
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| | - Xing Tian
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi, China
| | - Shahzad Toufeeq
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wuren Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
8
|
Miao Y, Chen R, Wang X, Zhang J, Tang W, Zhang Z, Liu Y, Xu Q. Drosophila melanogaster diabetes models and its usage in the research of anti-diabetes management with traditional Chinese medicines. Front Med (Lausanne) 2022; 9:953490. [PMID: 36035393 PMCID: PMC9403128 DOI: 10.3389/fmed.2022.953490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The prevalence of diabetes mellitus (DM) is increasing rapidly worldwide, but the underlying molecular mechanisms of disease development have not been elucidated, and the current popular anti-diabetic approaches still have non-negligible limitations. In the last decades, several different DM models were established on the classic model animal, the fruit fly (Drosophila melanogaster), which provided a convenient way to study the mechanisms underlying diabetes and to discover and evaluate new anti-diabetic compounds. In this article, we introduce the Drosophila Diabetes model from three aspects, including signal pathways, established methods, and pharmacodynamic evaluations. As a highlight, the progress in the treatments and experimental studies of diabetes with Traditional Chinese Medicine (TCM) based on the Drosophila Diabetes model is reviewed. We believe that the values of TCMs are underrated in DM management, and the Drosophila Diabetes models can provide a much more efficient tool to explore its values of it.
Collapse
Affiliation(s)
- Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Yaodong Miao,
| | - Rui Chen
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Wang
- Jimo District Qingdao Hospital of Traditional Chinese Medicine, Qingdao, China
| | - Jie Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Weina Tang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yaoyuan Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qiang Xu
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Qiang Xu,
| |
Collapse
|
9
|
Della Noce B, Martins da Silva R, de Carvalho Uhl MV, Konnai S, Ohashi K, Calixto C, Arcanjo A, de Abreu LA, de Carvalho SS, da Silva Vaz I, Logullo C. REDOX IMBALANCE INDUCES REMODELING OF GLUCOSE METABOLISM IN RHIPICEPHALUS MICROPLUS EMBRYONIC CELL LINE. J Biol Chem 2022; 298:101599. [PMID: 35063504 PMCID: PMC8857477 DOI: 10.1016/j.jbc.2022.101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/26/2022] Open
Abstract
Carbohydrate metabolism not only functions in supplying cellular energy but also has an important role in maintaining physiological homeostasis and in preventing oxidative damage caused by reactive oxygen species. Previously, we showed that arthropod embryonic cell lines have high tolerance to H2O2 exposure. Here, we describe that Rhipicephalus microplus tick embryonic cell line (BME26) employs an adaptive glucose metabolism mechanism that confers tolerance to hydrogen peroxide at concentrations too high for other organisms. This adaptive mechanism sustained by glucose metabolism remodeling promotes cell survival and redox balance in BME26 cell line after millimolar H2O2 exposure. The present work shows that this tick cell line could tolerate high H2O2 concentrations by initiating a carbohydrate-related adaptive response. We demonstrate that gluconeogenesis was induced as a compensation strategy that involved, among other molecules, the metabolic enzymes NADP-ICDH, G6PDH, and PEPCK. We also found that this phenomenon was coupled to glycogen accumulation and glucose uptake, supporting the pentose phosphate pathway to sustain NADPH production and leading to cell survival and proliferation. Our findings suggest that the described response is not atypical, being also observed in cancer cells, which highlights the importance of this model to all proliferative cells. We propose that these results will be useful in generating basic biological information to support the development of new strategies for disease treatment and parasite control.
Collapse
|
10
|
Lam Wong KK, Verheyen EM. Metabolic reprogramming in cancer: mechanistic insights from Drosophila. Dis Model Mech 2021; 14:1-17. [PMID: 34240146 PMCID: PMC8277969 DOI: 10.1242/dmm.048934] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cancer cells constantly reprogram their metabolism as the disease progresses. However, our understanding of the metabolic complexity of cancer remains incomplete. Extensive research in the fruit fly Drosophila has established numerous tumor models ranging from hyperplasia to neoplasia. These fly tumor models exhibit a broad range of metabolic profiles and varying nutrient sensitivity. Genetic studies show that fly tumors can use various alternative strategies, such as feedback circuits and nutrient-sensing machinery, to acquire and consolidate distinct metabolic profiles. These studies not only provide fresh insights into the causes and functional relevance of metabolic reprogramming but also identify metabolic vulnerabilities as potential targets for cancer therapy. Here, we review the conceptual advances in cancer metabolism derived from comparing and contrasting the metabolic profiles of fly tumor models, with a particular focus on the Warburg effect, mitochondrial metabolism, and the links between diet and cancer. Summary: Recent research in fruit flies has demonstrated that tumors rewire their metabolism by using diverse strategies that involve feedback regulation, nutrient sensing, intercellular or even inter-organ interactions, yielding new molecules as potential cancer markers or drug targets.
Collapse
Affiliation(s)
- Kenneth Kin Lam Wong
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
11
|
Yin H, Zhang S, Shen M, Zhang Z, Huang H, Zhao Z, Guo X, Wu P. Integrative analysis of circRNA/miRNA/mRNA regulatory network reveals the potential immune function of circRNAs in the Bombyx mori fat body. J Invertebr Pathol 2021; 179:107537. [PMID: 33472087 DOI: 10.1016/j.jip.2021.107537] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Bombyx mori nucleopolyhedrosis virus (BmNPV) is one of the greatest threats to sustainable development of the sericulture industry. Circular RNA (circRNA), a type of non-coding RNA, has been shown to play important roles in gene expression regulation, immune response, and diseases. The fat body is a tissue with both metabolic and immune functions. To explore the potential immune function of circRNAs, we analyzed differentially expressed (DE)circRNAs, microRNAs(miRNAs), and mRNAs in the B. mori fat body in response to BmNPV infection using high-throughput RNA sequencing. A total of 77 DEcircRNAs, 32 DEmiRNAs, and 730 DEmRNAs that are associated with BmNPV infection were identified. We constructed a DEcircRNA/DEmiRNA/DEmRNA and DEcircRNA/DEmiRNA/BmNPV gene regulatory network and validated the differential expression of circ_0001432 and its corresponding miRNA (miR-2774c and miR-3406-5p) and mRNA (778467 and 101745232) in the network. Tissue-specific expression of circ_0001432 and its expression at different time points were also examined. KEGG pathway analysis of DEmRNAs, target genes of DEmiRNAs, and host genes of DEcircRNAs in the network showed that these genes were enriched in several metabolic pathways and signaling pathways, which could play important roles in insect immune responses. Our results suggest that circRNA could be involved in immune responses of the B. mori fat body and help in understanding the molecular mechanisms underlying silkworm-pathogen interactions.
Collapse
Affiliation(s)
- Haotong Yin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Shaolun Zhang
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Manman Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Zhengdong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Haoling Huang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Zhimeng Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Xijie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China.
| |
Collapse
|
12
|
Wan M, Zhuang B, Dai X, Zhang L, Zhao F, You Y. A new metabolic signature contributes to disease progression and predicts worse survival in melanoma. Bioengineered 2020; 11:1099-1111. [PMID: 33084485 PMCID: PMC8291831 DOI: 10.1080/21655979.2020.1822714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Metabolic reprogramming is a common hallmark of tumor cells and is a crucial mediator of resistance toward anticancer therapies. The pattern of a metabolism-related signature in melanoma remains unknown. Here, we explored the role of a multi-metabolism-related gene signature in melanoma.We used the training and validation sets to develop a multi-metabolism-related gene signature. Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) method were used for constructing a model. The predictive role of the metabolic signature with clinicopathological features of melanoma was also analyzed. Functional analysis of this metabolic signature was also investigated.A ten metabolism-related gene signature was identified and can stratify melanoma into high- and low- risk groups. The signature was correlated with progressive T stage, Breslow thickness, Clark level, and worse survival (all Ps< 0.01). This metabolic signature was shown as an independent prognostic factor and was also a predictive indicator for worse survival in various clinical and molecular features of melanoma. Furthermore, the metabolic signature was implicated in immune responses such as the regulation of T cell activation and cytokine activity. The metabolic signaturewas associated with the progression and worse survival of melanoma. Our study offered a valuable metabolism-targeted therapy approach for melanoma.
Collapse
Affiliation(s)
- Mengdi Wan
- Department of Dermatology, The Forth Hospital of Harbin Medical University , Harbin, China
| | - Binyu Zhuang
- Department of Dermatology, The Forth Hospital of Harbin Medical University , Harbin, China
| | - Xiao Dai
- Department of Dermatology, The Forth Hospital of Harbin Medical University , Harbin, China
| | - Liang Zhang
- Department of Dermatology, The Forth Hospital of Harbin Medical University , Harbin, China
| | - Fangqing Zhao
- Department of Dermatology, The Forth Hospital of Harbin Medical University , Harbin, China
| | - Yan You
- Department of Dermatology, The Forth Hospital of Harbin Medical University , Harbin, China
| |
Collapse
|
13
|
RhoBTB Proteins Regulate the Hippo Pathway by Antagonizing Ubiquitination of LKB1. G3-GENES GENOMES GENETICS 2020; 10:1319-1325. [PMID: 32111652 PMCID: PMC7144079 DOI: 10.1534/g3.120.401038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Hippo pathway regulates growth and apoptosis. We identify RhoBTB proteins as novel regulators of Hippo signaling. RhoBTB depletion in the Drosophila wing disc epithelium cooperated with Yki to drive hyperplasia into neoplasia. Depletion of RhoBTB2 caused elevated YAP activity in human cells. RhoBTB2 deficiency resulted in increased colony formation in assays for anchorage-independent growth. We provide evidence that RhoBTBs acts on Hippo signaling through regulation of the kinase LKB1. LKB1 protein levels were reduced upon RhoBTB2 depletion, which correlated with increased LKB1 ubiquitination. Restoring LKB1 levels rescued loss of RhoBTB in Drosophila. Our results suggest that RhoBTB-dependent LKB1 regulation may contribute to its tumor-suppressive function.
Collapse
|
14
|
Krejčová G, Danielová A, Nedbalová P, Kazek M, Strych L, Chawla G, Tennessen JM, Lieskovská J, Jindra M, Doležal T, Bajgar A. Drosophila macrophages switch to aerobic glycolysis to mount effective antibacterial defense. eLife 2019; 8:50414. [PMID: 31609200 PMCID: PMC6867711 DOI: 10.7554/elife.50414] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/12/2019] [Indexed: 12/13/2022] Open
Abstract
Macrophage-mediated phagocytosis and cytokine production represent the front lines of resistance to bacterial invaders. A key feature of this pro-inflammatory response in mammals is the complex remodeling of cellular metabolism towards aerobic glycolysis. Although the function of bactericidal macrophages is highly conserved, the metabolic remodeling of insect macrophages remains poorly understood. Here, we used adults of the fruit fly Drosophila melanogaster to investigate the metabolic changes that occur in macrophages during the acute and resolution phases of Streptococcus-induced sepsis. Our studies revealed that orthologs of Hypoxia inducible factor 1α (HIF1α) and Lactate dehydrogenase (LDH) are required for macrophage activation, their bactericidal function, and resistance to infection, thus documenting the conservation of this cellular response between insects and mammals. Further, we show that macrophages employing aerobic glycolysis induce changes in systemic metabolism that are necessary to meet the biosynthetic and energetic demands of their function and resistance to bacterial infection. Macrophages are the immune system's first line of defense against infection. These immune cells can be found in all tissues and organs, watching for signs of disease-causing agents and targeting them for destruction. Maintaining macrophages costs energy, so to minimize waste, these cells spend most of their lives in 'low power mode'. When macrophages sense harmful bacteria, they rapidly awaken and trigger a series of immune events that protect the body from infection. However, to perform these protective tasks macrophages need a sudden surge in energy. In mammals, activated macrophages get their energy from aerobic glycolysis – a series of chemical reactions normally reserved for low oxygen environments. Switching on this metabolic process requires a protein called hypoxia inducible factor 1α (HIF-1 α), which switches on the genes that macrophages need to generate energy as quickly as possible. Macrophages then maintain their energy supply by sending out chemical signals which divert glucose away from the rest of the body. Fruit flies are regularly used as a model system for studying human disease, as the mechanisms they use to defend themselves from infections are similar to human immune cells. However, it remains unclear whether their macrophages undergo the same metabolic changes during an infection. To address this question, Krejčová et al. isolated macrophages from fruit flies that had been infected with bacteria. Experiments studying the metabolism of these cells revealed that, just like human macrophages, they responded to bacteria by taking in more glucose and generating energy via aerobic glycolysis. The macrophages of these flies were also found to draw in energy from the rest of the body by raising blood sugar levels and depleting stores of glucose. Similar to human macrophages, these metabolic changes depended on HIF1α, and flies without this protein were unable to secure the level of energy needed to effectively fight off the bacteria. These findings suggest that this metabolic switch to aerobic glycolysis is a conserved mechanism that both insects and mammals use to fight off infections. This means in the future fruit flies could be used as a model organism for studying diseases associated with macrophage mis-activation, such as chronic inflammation and autoimmune diseases.
Collapse
Affiliation(s)
- Gabriela Krejčová
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Adéla Danielová
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Pavla Nedbalová
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Michalina Kazek
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Lukáš Strych
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Geetanjali Chawla
- Department of Biology, Indiana University, Bloomington, United States
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, United States
| | - Jaroslava Lieskovská
- Department of Medical Biology, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech Republic
| | - Marek Jindra
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Entomology, Biology Centre CAS, Ceske Budejovice, Czech Republic
| | - Tomáš Doležal
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Adam Bajgar
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Entomology, Biology Centre CAS, Ceske Budejovice, Czech Republic
| |
Collapse
|
15
|
Villegas SN, Ferres-Marco D, Domínguez M. Using Drosophila Models and Tools to Understand the Mechanisms of Novel Human Cancer Driver Gene Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:15-35. [PMID: 31520347 DOI: 10.1007/978-3-030-23629-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The formation, overgrowth and metastasis of tumors comprise a complex series of cellular and molecular events resulting from the combined effects of a variety of aberrant signaling pathways, mutations, and epigenetic alterations. Modeling this complexity in vivo requires multiple genes to be manipulated simultaneously, which is technically challenging. Here, we analyze how Drosophila research can further contribute to identifying pathways and elucidating mechanisms underlying novel cancer driver (risk) genes associated with tumor growth and metastasis in humans.
Collapse
Affiliation(s)
- Santiago Nahuel Villegas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC) and Universidad Miguel Hernández (UMH), Alicante, Spain.
| | - Dolors Ferres-Marco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC) and Universidad Miguel Hernández (UMH), Alicante, Spain.
| | - María Domínguez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC) and Universidad Miguel Hernández (UMH), Alicante, Spain
| |
Collapse
|
16
|
Wong KKL, Liao JZ, Verheyen EM. A positive feedback loop between Myc and aerobic glycolysis sustains tumor growth in a Drosophila tumor model. eLife 2019; 8:46315. [PMID: 31259690 PMCID: PMC6636907 DOI: 10.7554/elife.46315] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer cells usually exhibit aberrant cell signaling and metabolic reprogramming. However, mechanisms of crosstalk between these processes remain elusive. Here, we show that in an in vivo tumor model expressing oncogenic Drosophila Homeodomain-interacting protein kinase (Hipk), tumor cells display elevated aerobic glycolysis. Mechanistically, elevated Hipk drives transcriptional upregulation of Drosophila Myc (dMyc; MYC in vertebrates) likely through convergence of multiple perturbed signaling cascades. dMyc induces robust expression of pfk2 (encoding 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase; PFKFB in vertebrates) among other glycolytic genes. Pfk2 catalyzes the synthesis of fructose-2,6-bisphosphate, which acts as a potent allosteric activator of Phosphofructokinase (Pfk) and thus stimulates glycolysis. Pfk2 and Pfk in turn are required to sustain dMyc protein accumulation post-transcriptionally, establishing a positive feedback loop. Disruption of the loop abrogates tumorous growth. Together, our study demonstrates a reciprocal stimulation of Myc and aerobic glycolysis and identifies the Pfk2-Pfk governed committed step of glycolysis as a metabolic vulnerability during tumorigenesis. Cancer arises when cells in the body divide and grow excessively. These cells will often also take up more glucose than normal cells and break it down into another chemical known as lactate faster. This change to the chemical reactions happening within the cell, also called a metabolic change, is required to help produce the extra DNA, proteins and fatty molecules that it needs to grow. Elevated levels of certain proteins can trigger the changes that lead to the growth of tumors. MYC (called dMyc in fruit flies) is one of these proteins. It controls cell division and increases the production of enzymes that break down glucose. Hipk is another protein that can induce tumor growth in fruit flies, but how it does so was unknown. Here, Wong et al. show that high levels of Hipk boost glucose metabolism and accumulation of dMyc protein in fruit fly cells. They also describe the link between increased glucose metabolism and uncontrolled cell division. First, fruit fly cells were fed a fluorescent molecule similar to glucose that cannot be broken down by the cells. This experiment established that glucose uptake increases in cells with too much Hipk. These cells also break down glucose faster, confirming that they have increased glucose metabolism. Cells with high levels of Hipk also activate the genes that generate the enzymes involved in glucose breakdown, and increase the activity of the gene coding for dMyc. Levels of the dMyc protein are higher in these cells, which was shown by staining the cells with fluorescent molecules that specifically bind the dMyc protein. It is this buildup of dMyc protein that activates the genes coding for the enzymes responsible for glucose breakdown. PFK2 is one of these enzymes. Finally, Wong et al. inhibited the production of the enzymes that are elevated in cells with high Hipk. Stopping the production of PFK2 prevents both tumor growth and the accumulation of dMyc protein. This shows that high levels of dMyc increase PFK2 levels, leading to further dMyc buildup, and creating a loop that links the uncontrolled cell division caused by too much dMyc and the shift to higher glucose metabolism. These results highlight new potential targets for cancer therapy, showing that targeting glucose metabolism may reduce, or even stop, tumor growth.
Collapse
Affiliation(s)
- Kenneth Kin Lam Wong
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada.,Centre for Cell Biology Development and Disease, Simon Fraser University, Burnaby, Canada
| | - Jenny Zhe Liao
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada.,Centre for Cell Biology Development and Disease, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
17
|
The multifaceted contribution of α-ketoglutarate to tumor progression: An opportunity to exploit? Semin Cell Dev Biol 2019; 98:26-33. [PMID: 31175937 DOI: 10.1016/j.semcdb.2019.05.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 01/25/2023]
Abstract
The thriving field that constitutes cancer metabolism has unveiled some groundbreaking facts over the past two decades, at the heart of which is the TCA cycle and its intermediates. As such and besides its metabolic role, α-ketoglutarate was shown to withstand a wide range of physiological reactions from protection against oxidative stress, collagen and bone maintenance to development and immunity. Most importantly, it constitutes the rate-limiting substrate of 2-oxoglutarate-dependent dioxygenases family enzymes, which are involved in hypoxia sensing and in the shaping of cellular epigenetic landscape, two major drivers of oncogenic transformation. Based on literature reports, we hereby review the benefits of this metabolite as a possible novel adjuvant therapeutic opportunity to target tumor progression. This article is part of the special issue "Mitochondrial metabolic alterations in cancer cells and related therapeutic targets".
Collapse
|
18
|
Dolezal T, Krejcova G, Bajgar A, Nedbalova P, Strasser P. Molecular regulations of metabolism during immune response in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:31-42. [PMID: 30959109 DOI: 10.1016/j.ibmb.2019.04.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/12/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Mounting an immune response is an energy-consuming process. Activating immune functions requires the synthesis of many new molecules and the undertaking of numerous cellular tasks and it must happen rapidly. Therefore, immune cells undergo a metabolic switch, which enables the rapid production of ATP and new biomolecules. Such metabolism is very nutrient-demanding, especially of glucose and glutamine, and thus the immune response is associated with a systemic metabolic switch, redirecting nutrient flow towards immunity and away from storage and consumption by non-immune processes. The immune system during its activation becomes privileged in terms of using organismal resources and the activated immune cells usurp nutrients by producing signals which reduce the metabolism of non-immune tissues. The insect fat body plays a dual role in which it is both a metabolic organ, storing energy and providing energy to the rest of the organism, but also an organ important for humoral immunity. Therefore, the internal switch from anabolism to the production of antimicrobial peptides occurs in the fat body during infection. The mechanisms regulating metabolism during the immune response ensure adequate energy for an effective response (resistance) but they must be properly regulated because energy is not unlimited and the energy needs of the immune system thus interfere with the needs of other physiological traits. If not properly regulated, the immune response may in the end decrease fitness via decreasing disease tolerance.
Collapse
Affiliation(s)
- Tomas Dolezal
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.
| | - Gabriela Krejcova
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Adam Bajgar
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Pavla Nedbalova
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Paul Strasser
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| |
Collapse
|
19
|
Cagan RL, Zon LI, White RM. Modeling Cancer with Flies and Fish. Dev Cell 2019; 49:317-324. [PMID: 31063751 PMCID: PMC6506185 DOI: 10.1016/j.devcel.2019.04.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022]
Abstract
Cancer has joined heart disease as the leading source of mortality in the US. In an era of organoids, patient-derived xenografts, and organs on a chip, model organisms continue to thrive with a combination of powerful genetic tools, rapid pace of discovery, and affordability. Model organisms enable the analysis of both the tumor and its associated microenvironment, aspects that are particularly relevant to our understanding of metastasis and drug resistance. In this Perspective, we explore some of the strengths of fruit flies and zebrafish for addressing fundamental cancer questions and how these two organisms can contribute to identifying promising therapeutic candidates.
Collapse
Affiliation(s)
- Ross L Cagan
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Leonard I Zon
- Children's Hospital Boston, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA.
| | - Richard M White
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
20
|
Gáliková M, Klepsatel P. Obesity and Aging in the Drosophila Model. Int J Mol Sci 2018; 19:ijms19071896. [PMID: 29954158 PMCID: PMC6073435 DOI: 10.3390/ijms19071896] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
Being overweight increases the risk of many metabolic disorders, but how it affects lifespan is not completely clear. Not all obese people become ill, and the exact mechanism that turns excessive fat storage into a health-threatening state remains unknown. Drosophila melanogaster has served as an excellent model for many diseases, including obesity, diabetes, and hyperglycemia-associated disorders, such as cardiomyopathy or nephropathy. Here, we review the connections between fat storage and aging in different types of fly obesity. Whereas obesity induced by high-fat or high-sugar diet is associated with hyperglycemia, cardiomyopathy, and in some cases, shortening of lifespan, there are also examples in which obesity correlates with longevity. Transgenic lines with downregulations of the insulin/insulin-like growth factor (IIS) and target of rapamycin (TOR) signaling pathways, flies reared under dietary restriction, and even certain longevity selection lines are obese, yet long-lived. The mechanisms that underlie the differential lifespans in distinct types of obesity remain to be elucidated, but fat turnover, inflammatory pathways, and dysregulations of glucose metabolism may play key roles. Altogether, Drosophila is an excellent model to study the physiology of adiposity in both health and disease.
Collapse
Affiliation(s)
- Martina Gáliková
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, S-106 91 Stockholm, Sweden.
| | - Peter Klepsatel
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia.
| |
Collapse
|
21
|
Metabolomics: State-of-the-Art Technologies and Applications on Drosophila melanogaster. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:257-276. [PMID: 29951824 DOI: 10.1007/978-981-13-0529-0_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabolomics is one of the latest "omics" technology concerned with the high-throughput identification and quantification of metabolites, the final products of cellular processes. The revealed data provide an instantaneous snapshot of an organism's metabolic pathways, which can be used to explain its phenotype or physiology. On the other hand, Drosophila has shown its power in studying metabolism and related diseases. At this stage, we have the state-of-the-art knowledge in place: a potential candidate to study cellular metabolism (Drosophila melanogaster) and a powerful methodology for metabolic network decipherer (metabolomics). Yet missing is advanced metabolomics technologies like isotope-assisted metabolomics optimized for Drosophila. In this chapter, we will discuss on the current status and future perspectives in technologies and applications of Drosophila metabolomics.
Collapse
|