1
|
Fakher S, Westenberg D. Properties and antibacterial effectiveness of metal-ion doped borate-based bioactive glasses. Future Microbiol 2025; 20:315-331. [PMID: 40079871 PMCID: PMC11938980 DOI: 10.1080/17460913.2025.2470029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Bioactive glasses (BGs) are physiologically reactive surface biomaterials widely used in biomedical applications and various treatments. Borate bioactive glasses (BBGs) are third-generation BGs, and they exhibit superior biodegradable, bioactive, osteoconductive, antibacterial, and biocompatible properties compared to other types of BGs. Certain concentrations of dopant ions can be incorporated into the chemical structure of BBGs to enhance their biological functionalities and antimicrobial properties. It was demonstrated that those ions play a crucial role in the biological responsiveness in vitro and in vivo once in contact with a physiological environment. The dissolution products of ion-doped BBGs were noted in their ability to stimulate gene expression related to cell differentiation and proliferation, promote angiogenesis, display anti-inflammatory effects, and inhibit bacterial growth within a few hours. Thus, metal-ion-doped BBGs address several limitations encountered by biomedical, tissue engineering, and infection control applications. Considering the research studies on BBGs to date, this review aims to analyze metal-ion-doped BBGs based on their primary antibacterial properties and effectiveness.
Collapse
Affiliation(s)
- Sarah Fakher
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, USA
| | - David Westenberg
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, USA
| |
Collapse
|
2
|
Zheng R, Zhang N, Mao S, Li J, Yan X, Zhang G, Zhang Y, Yue X. Fast bone regeneration using injectable fully biomimetic organoids with biomineralized and organic microenvironments. Biomater Sci 2025; 13:486-495. [PMID: 39625403 DOI: 10.1039/d4bm01181c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Bone defects and congenital bone deficiencies are common clinical conditions. However, conventional non-degradable artificial materials often lead to serious complications, such as severe infections and material displacement. The emergence of tissue engineering and the organoid concept presents a promising approach for the repair of bone defects, facilitating physiological reconstruction while minimizing complications. Nevertheless, previous studies have not developed injectable organoids that incorporate fully mineralized and organic microenvironments to achieve rapid osteogenesis and convenient application in bone regeneration. Therefore, it is imperative to devise an effective strategy to address these challenges. This study first prepared injectable GL scaffolds with varying concentrations and identified the optimal GL concentration (0.8%) for osteogenesis through systematic evaluation of the osteogenic efficiency. Subsequently, 30% mixture of inorganic salts of native bone (NBIS) and extracellular matrix from the periosteum (pECM) was integrated into the optimal GL scaffold at a ratio of NBIS : pECM = 7 : 3 to create an injectable scaffold featuring biomimetic mineralized and organic microenvironments. This scaffold was further utilized for in vitro analysis of osteogenic mechanisms and injected subcutaneously into rabbits for only four weeks to assess its osteogenic efficacy in vivo. The results indicated that the incorporation of NBIS and pECM significantly enhanced the osteogenic efficacy by actively regulating ossification and ECM-receptor interaction signaling pathways, as well as upregulating RUNX2, ALP, COL1, and LAMA. This study introduces a promising injectable strategy for rapid osteogenesis using fully mineralized and organic biomimetic organoids.
Collapse
Affiliation(s)
- Runquan Zheng
- Bone Trauma Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China.
| | - Ning Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan 250031, China
| | - Songbo Mao
- Bone Trauma Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China.
| | - Jiawei Li
- Bone Trauma Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China.
| | - Xuesong Yan
- Bone Trauma Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China.
| | - Guichun Zhang
- Bone Trauma Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China.
| | - Yongxian Zhang
- Bone Trauma Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China.
| | - Xianhu Yue
- Bone Trauma Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China.
| |
Collapse
|
3
|
Bider F, Gunnella C, Reh JT, Clejanu CE, Kuth S, Beltrán AM, Boccaccini AR. Enhancing alginate dialdehyde-gelatin (ADA-GEL) based hydrogels for biofabrication by addition of phytotherapeutics and mesoporous bioactive glass nanoparticles (MBGNs). J Biomater Appl 2025; 39:524-556. [PMID: 39305217 PMCID: PMC11707976 DOI: 10.1177/08853282241280768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
This study explores the 3D printing of alginate dialdehyde-gelatin (ADA-GEL) inks incorporating phytotherapeutic agents, such as ferulic acid (FA), and silicate mesoporous bioactive glass nanoparticles (MBGNs) at two different concentrations. 3D scaffolds with bioactive properties suitable for bone tissue engineering (TE) were obtained. The degradation and swelling behaviour of films and 3D printed scaffolds indicated an accelerated trend with increasing MBGN content, while FA appeared to stabilize the samples. Determination of the degree of crosslinking validated the increased stability of hydrogels due to the addition of FA and 0.1% (w/v) MBGNs. The incorporation of MBGNs not only improved the effective moduli and conferred bioactive properties through the formation of hydroxyapatite (HAp) on the surface of ADA-GEL-based samples but also enhanced VEGF-A expression of MC3T3-E1 cells. The beneficial impact of FA and low concentrations of MBGNs in ADA-GEL-based inks for 3D (bio)printing applications was corroborated through various printing experiments, resulting in higher printing resolution, as also confirmed by rheological measurements. Cytocompatibility investigations revealed enhanced MC3T3-E1 cell activity and viability. Furthermore, the presence of mineral phases, as confirmed by an in vitro biomineralization assay, and increased ALP activity after 21 days, attributed to the addition of FA and MBGNs, were demonstrated. Considering the acquired structural and biological properties, along with efficient drug delivery capability, enhanced biological activity, and improved 3D printability, the newly developed inks exhibit promising potential for biofabrication and bone TE.
Collapse
Affiliation(s)
- Faina Bider
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Chiara Gunnella
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Jana T Reh
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Corina-Elena Clejanu
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sonja Kuth
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ana M Beltrán
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte. Escuela Politécnica Superior, Virgen de África 7, Universidad de Sevilla, Seville (Spain)
| | - Aldo R Boccaccini
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
4
|
Yu C, Chen J, Wang T, Wang Y, Zhang X, Zhang Z, Wang Y, Yu T, Wu T. GelMA hydrogels reinforced by PCL@GelMA nanofibers and bioactive glass induce bone regeneration in critical size cranial defects. J Nanobiotechnology 2024; 22:696. [PMID: 39529025 PMCID: PMC11552337 DOI: 10.1186/s12951-024-02980-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The process of bone healing is complex and involves the participation of osteogenic stem cells, extracellular matrix, and angiogenesis. The advancement of bone regeneration materials provides a promising opportunity to tackle bone defects. This study introduces a composite hydrogel that can be injected and cured using UV light. RESULTS Hydrogels comprise bioactive glass (BG) and PCL@GelMA coaxial nanofibers. The addition of BG and PCL@GelMA coaxial nanofibers improves the hydrogel's mechanical capabilities (353.22 ± 36.13 kPa) and stability while decreasing its swelling (258.78 ± 17.56%) and hydration (72.07 ± 1.44%) characteristics. This hydrogel composite demonstrates exceptional biocompatibility and angiogenesis, enhances osteogenic development in bone marrow mesenchymal stem cells (BMSCs), and dramatically increases the expression of critical osteogenic markers such as ALP, RUNX2, and OPN. The composite hydrogel significantly improves bone regeneration (25.08 ± 1.08%) in non-healing calvaria defects and promotes the increased expression of both osteogenic marker (OPN) and angiogenic marker (CD31) in vivo. The expression of OPN and CD31 in the composite hydrogel was up to 5 and 1.87 times higher than that of the control group at 12 weeks. CONCLUSION We successfully prepared a novel injectable composite hydrogel, and the design of the composite hydrogels shows significant potential for enhancing biocompatibility, angiogenesis, and improving osteogenic and angiogenic marker expression, and has a beneficial effect on producing an optimal microenvironment that promotes bone repair.
Collapse
Affiliation(s)
- Chenghao Yu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
| | - Jinli Chen
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
| | - Tianrui Wang
- Department of Traumatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
| | - Yawen Wang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Qingdao University, Qingdao, 266071, China
| | - Xiaopei Zhang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Qingdao University, Qingdao, 266071, China
| | - Zhuoli Zhang
- Radiology, Pathology, and BME, University of California Irvine, Irvine, 92617, USA
| | - Yuanfei Wang
- Central Laboratory, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China.
| | - Tengbo Yu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| | - Tong Wu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
5
|
de A Cruz M, Sousa KSJ, Avanzi IR, de Souza A, Martignago CCS, Delpupo FVB, Simões MC, Parisi JR, Assis L, De Oliveira F, Granito RN, Laakso EL, Renno A. In Vivo Effects of Biosilica and Spongin-Like Collagen Scaffolds on the Healing Process in Osteoporotic Rats. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1053-1066. [PMID: 39153015 DOI: 10.1007/s10126-024-10356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Due to bioactive properties, introducing spongin-like collagen (SPG) into the biosilica (BS) extracted from marine sponges would present an enhanced biological material for improving osteoporotic fracture healing by increasing bone formation rate. Our aim was to characterize the morphology of the BS/SPG scaffolds by scanning electron microscopy (SEM), the chemical bonds of the material by Fourier transform infrared spectroscopy (FTIR), and evaluating the orthotopic in vivo response of BS/SPG scaffolds in tibial defects of osteoporotic fractures in rats (histology, histomorphometry, and immunohistochemistry) in two experimental periods (15 and 30 days). SEM showed that scaffolds were porous, showing the spicules of BS and fibrous aspect of SPG. FTIR showed characteristic peaks of BS and SPG. For the in vivo studies, after 30 days, BS and BS/SPG showed a higher amount of newly formed bone compared to the first experimental period, observed both in the periphery and in the central region of the bone defect. For histomorphometry, BS/SPG presented higher %BV/TV compared to the other experimental groups. After 15 days, BS presented higher volumes of collagen type I. After 30 days, all groups demonstrated higher volumes of collagen type III compared to volumes at 15 days. After 30 days, BS/SPG presented higher immunostaining of osteoprotegerin compared to the other experimental groups at the same experimental period. The results showed that BS and BS/SPG scaffolds were able to improve bone healing. Future research should focus on the effects of BS/SPG on longer periods in vivo studies.
Collapse
Affiliation(s)
- Matheus de A Cruz
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| | - Karolyne S J Sousa
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| | - Ingrid R Avanzi
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil.
| | - Amanda de Souza
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| | - Cintia C S Martignago
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| | - Fernanda V B Delpupo
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| | - Mariana C Simões
- Department of Physiotherapy, Metropolitan University of Santos - UNIMES, Santos, São Paulo, Brazil
| | - Julia R Parisi
- Department of Physiotherapy, Metropolitan University of Santos - UNIMES, Santos, São Paulo, Brazil
| | - Livia Assis
- Post-Graduate Program in Biomedical Engineering, Brasil University, São Paulo, São Paulo, Brazil
| | - Flávia De Oliveira
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| | - Renata N Granito
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| | - Eeva-Liisa Laakso
- Mater Research Institute, University of Queensland, South Brisbane, QLD, Australia
| | - Ana Renno
- Department of Biosciences, Federal University of São Paulo - UNIFESP, Santos, São Paulo, Brazil
| |
Collapse
|
6
|
Wei Y, Zhang F, Li J, Qi Z, Wang JH, Wang Z. Composition Tuning of Semi-Open Cell Carriers via Phase Freeze-Shrink Self-Molding. ACS NANO 2024; 18:26872-26881. [PMID: 39299910 DOI: 10.1021/acsnano.4c08148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Extracellular matrix (ECM)-mimicking microsized cell carriers featuring a semi-isolated chamber facilitate the study of cellular heterogeneity as well as intercellular communication. However, the semiopen shaping of the designated gel mixture remains unattainable with current methods. We report an oil-phase freeze-shrink self-molding mechanism for generating size- and composition-tunable cradle-shaped microgels (microcradles) from water-in-oil droplets. The universality of this shape transition principle is demonstrated with six types of polysaccharides dispersed in a poly(ethylene glycol) diacrylate (PEGDA) or methacrylate gelatin (GelMA) matrix. By doping the microcradles with the major ECM component, hyaluronic acid sodium, we demonstrate a label-free selective culture of CD44 receptor-rich cells and the formation of cell spheroids within 3 days. This cryo-induced cradle-shaping strategy enables the functionalization of microcarriers for selective cell culture, thereby allowing them to be used for intercellular communication, drug delivery, and the construction of structural units for osteogenesis and 3D printing.
Collapse
Affiliation(s)
- Yanan Wei
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Fei Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jiaqi Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zhijie Qi
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zejun Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
7
|
Tariq S, Shah SA, Hameed F, Mutahir Z, Khalid H, Tufail A, Akhtar H, Chaudhry AA, Khan AF. Tissue engineered periosteum: Fabrication of a gelatin basedtrilayer composite scaffold with biomimetic properties for enhanced bone healing. Int J Biol Macromol 2024; 263:130371. [PMID: 38423439 DOI: 10.1016/j.ijbiomac.2024.130371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
The periosteum, a vascularized tissue membrane, is essential in bone regeneration following fractures and bone loss due to some other reasons, yet there exist several research gaps concerning its regeneration. These gaps encompass reduced cellular proliferation and bioactivity, potential toxicity, heightened stiffness of scaffold materials, unfavorable porosity, expensive materials and procedures, and suboptimal survivability or inappropriate degradation rates of the implanted materials. This research used an interdisciplinary approach by forming a new material fabricated through electrospinning for the proposed application as a layer-by-layer tissue-engineered periosteum (TEP). TEP comprises poly(ε-caprolactone) (PCL), PCL/gelatin/magnesium-doped zinc oxide (vascular layer), and gelatin/bioactive glass/COD liver oil (osteoconductive layer). These materials were selected for their diverse properties, when integrated into the scaffold formation, successfully mimic the characteristics of native periosteum. Scanning electron microscopy (SEM) was employed to confirm the trilayer structure of the scaffold and determine the average fiber diameter. In-vitro degradation and swelling studies demonstrated a uniform degradation rate that matches the typical recovery time of periosteum. The scaffold exhibited excellent mechanical properties comparable to natural periosteum. Furthermore, the sustained release kinetics of COD liver oil were observed in the trilayer scaffold. Cell culture results indicated that the three-dimensional topography of the scaffold promoted cell growth, proliferation, and attachment, confirming its non-toxicity, biocompatibility, and bioactivity. This study suggests that the fabricated scaffold holds promise as a potential artificial periosteum for treating periostitis and bone fractures.
Collapse
Affiliation(s)
- Sana Tariq
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Saqlain A Shah
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Fareeha Hameed
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Zeeshan Mutahir
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Hamad Khalid
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Asma Tufail
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Hafsah Akhtar
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Ather Farooq Khan
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Pakistan.
| |
Collapse
|
8
|
Liu B, Liu J, Wang C, Wang Z, Min S, Wang C, Zheng Y, Wen P, Tian Y. High temperature oxidation treated 3D printed anatomical WE43 alloy scaffolds for repairing periarticular bone defects: In vitro and in vivo studies. Bioact Mater 2024; 32:177-189. [PMID: 37859690 PMCID: PMC10582357 DOI: 10.1016/j.bioactmat.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/06/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023] Open
Abstract
Reconstruction of subarticular bone defects is an intractable challenge in orthopedics. The simultaneous repair of cancellous defects, fractures, and cartilage damage is an ideal surgical outcome. 3D printed porous anatomical WE43 (magnesium with 4 wt% yttrium and 3 wt% rare earths) scaffolds have many advantages for repairing such bone defects, including good biocompatibility, appropriate mechanical strength, customizable shape and structure, and biodegradability. In a previous investigation, we successfully enhanced the corrosion resistance of WE43 samples via high temperature oxidation (HTO). In the present study, we explored the feasibility and effectiveness of HTO-treated 3D printed porous anatomical WE43 scaffolds for repairing the cancellous bone defects accompanied by split fractures via in vitro and in vivo experiments. After HTO treatment, a dense oxidation layer mainly composed of Y2O3 and Nd2O3 formed on the surface of scaffolds. In addition, the majority of the grains were equiaxed, with an average grain size of 7.4 μm. Cell and rabbit experiments confirmed the non-cytotoxicity and biocompatibility of the HTO-treated WE43 scaffolds. After the implantation of scaffolds inside bone defects, their porous structures could be maintained for more than 12 weeks without penetration and for more than 6 weeks with penetration. During the postoperative follow-up period for up to 48 weeks, radiographic examinations and histological analysis revealed that abundant bone gradually regenerated along with scaffold degradation, and stable osseointegration formed between new bone and scaffold residues. MRI images further demonstrated no evidence of any obvious damage to the cartilage, ligaments, or menisci, confirming the absence of traumatic osteoarthritis. Moreover, finite element analysis and biomechanical tests further verified that the scaffolds was conducive to a uniform mechanical distribution. In conclusion, applying the HTO-treated 3D printed porous anatomical WE43 scaffolds exhibited favorable repairing effects for subarticular cancellous bone defects, possessing great potential for clinical application.
Collapse
Affiliation(s)
- Bingchuan Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Jinge Liu
- The State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Chaoxin Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Zhengguang Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Shuyuan Min
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Caimei Wang
- Beijing AKEC Medical Co., Ltd., Beijing, 102200, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Peng Wen
- The State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yun Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| |
Collapse
|