1
|
Souza A, Nobrega G, Neves LB, Barbosa F, Ribeiro J, Ferrera C, Lima RA. Recent Advances of PDMS In Vitro Biomodels for Flow Visualizations and Measurements: From Macro to Nanoscale Applications. MICROMACHINES 2024; 15:1317. [PMID: 39597128 PMCID: PMC11596077 DOI: 10.3390/mi15111317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
Polydimethylsiloxane (PDMS) has become a popular material in microfluidic and macroscale in vitro models due to its elastomeric properties and versatility. PDMS-based biomodels are widely used in blood flow studies, offering a platform for improving flow models and validating numerical simulations. This review highlights recent advances in bioflow studies conducted using both PDMS microfluidic devices and macroscale biomodels, particularly in replicating physiological environments. PDMS microchannels are used in studies of blood cell deformation under confined conditions, demonstrating the potential to distinguish between healthy and diseased cells. PDMS also plays a critical role in fabricating arterial models from real medical images, including pathological conditions such as aneurysms. Cutting-edge applications, such as nanofluid hemodynamic studies and nanoparticle drug delivery in organ-on-a-chip platforms, represent the latest developments in PDMS research. In addition to these applications, this review critically discusses PDMS properties, fabrication methods, and its expanding role in micro- and nanoscale flow studies.
Collapse
Affiliation(s)
- Andrews Souza
- MEtRICs—Mechanical Engineering and Resource Sustainability Center, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (A.S.); (G.N.); (L.B.N.); (F.B.)
- CMEMS-Uminho—Center for Microelectromechanical Systems, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- CIMO—Mountain Research Center, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal;
| | - Glauco Nobrega
- MEtRICs—Mechanical Engineering and Resource Sustainability Center, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (A.S.); (G.N.); (L.B.N.); (F.B.)
- CIMO—Mountain Research Center, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal;
| | - Lucas B. Neves
- MEtRICs—Mechanical Engineering and Resource Sustainability Center, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (A.S.); (G.N.); (L.B.N.); (F.B.)
- Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal
| | - Filipe Barbosa
- MEtRICs—Mechanical Engineering and Resource Sustainability Center, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (A.S.); (G.N.); (L.B.N.); (F.B.)
| | - João Ribeiro
- CIMO—Mountain Research Center, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal;
- Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal
| | - Conrado Ferrera
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, 06006 Badajoz, Spain;
- Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, 06006 Badajoz, Spain
| | - Rui A. Lima
- MEtRICs—Mechanical Engineering and Resource Sustainability Center, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (A.S.); (G.N.); (L.B.N.); (F.B.)
- CEFT—Transport Phenomena Research Center, Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
2
|
Inbody SC, Sinquefield BE, Lewis JP, Horton RE. Biomimetic microsystems for cardiovascular studies. Am J Physiol Cell Physiol 2021; 320:C850-C872. [PMID: 33760660 DOI: 10.1152/ajpcell.00026.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditional tissue culture platforms have been around for several decades and have enabled key findings in the cardiovascular field. However, these platforms failed to recreate the mechanical and dynamic features found within the body. Organs-on-chips (OOCs) are cellularized microfluidic-based devices that can mimic the basic structure, function, and responses of organs. These systems have been successfully utilized in disease, development, and drug studies. OOCs are designed to recapitulate the mechanical, electrical, chemical, and structural features of the in vivo microenvironment. Here, we review cardiovascular-themed OOC studies, design considerations, and techniques used to generate these cellularized devices. Furthermore, we will highlight the advantages of OOC models over traditional cell culture vessels, discuss implementation challenges, and provide perspectives on the state of the field.
Collapse
Affiliation(s)
- Shelby C Inbody
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| | - Bridgett E Sinquefield
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| | - Joshua P Lewis
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| | - Renita E Horton
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| |
Collapse
|
3
|
Carvalho V, Maia I, Souza A, Ribeiro J, Costa P, Puga H, Teixeira S, Lima RA. In vitro
Biomodels in Stenotic Arteries to Perform Blood Analogues Flow Visualizations and Measurements: A Review. Open Biomed Eng J 2020. [DOI: 10.2174/1874120702014010087] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are one of the leading causes of death globally and the most common pathological process is atherosclerosis. Over the years, these cardiovascular complications have been extensively studied by applying in vivo, in vitro and numerical methods (in silico). In vivo studies represent more accurately the physiological conditions and provide the most realistic data. Nevertheless, these approaches are expensive, and it is complex to control several physiological variables. Hence, the continuous effort to find reliable alternative methods has been growing. In the last decades, numerical simulations have been widely used to assess the blood flow behavior in stenotic arteries and, consequently, providing insights into the cardiovascular disease condition, its progression and therapeutic optimization. However, it is necessary to ensure its accuracy and reliability by comparing the numerical simulations with clinical and experimental data. For this reason, with the progress of the in vitro flow measurement techniques and rapid prototyping, experimental investigation of hemodynamics has gained widespread attention. The present work reviews state-of-the-art in vitro macro-scale arterial stenotic biomodels for flow measurements, summarizing the different fabrication methods, blood analogues and highlighting advantages and limitations of the most used techniques.
Collapse
|
4
|
Abstract
The aim of this study was to develop a finite element model to investigate the forces on tendons which ensue due to trigger finger. The model was used to simulate both flexor and extensor tendons within the index finger; two test cases were defined, simulating a “mildly” and “severely” affected tendon by applying constraints. The finger was simulated in three different directions: extension, abduction and hyper-extension. There was increased tension during hyper-extension, with tension in the mildly affected tendon increasing from 1.54 to 2.67 N. Furthermore, there was a consistent relationship between force and displacement, with a substantial change in the gradient of the force when the constraints of the condition were applied for all movements. The intention of this study is that the simulation framework is used to enable the in silico development of novel prosthetic devices to aid with treatment of trigger finger, given that, currently, the non-surgical first line of treatment is a splint.
Collapse
|
5
|
3D Printed Biomodels for Flow Visualization in Stenotic Vessels: An Experimental and Numerical Study. MICROMACHINES 2020; 11:mi11060549. [PMID: 32485816 PMCID: PMC7344925 DOI: 10.3390/mi11060549] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is one of the most serious and common forms of cardiovascular disease and a major cause of death and disability worldwide. It is a multifactorial and complex disease that promoted several hemodynamic studies. Although in vivo studies more accurately represent the physiological conditions, in vitro experiments more reliably control several physiological variables and most adequately validate numerical flow studies. Here, a hemodynamic study in idealized stenotic and healthy coronary arteries is presented by applying both numerical and in vitro approaches through computational fluid dynamics simulations and a high-speed video microscopy technique, respectively. By means of stereolithography 3D printing technology, biomodels with three different resolutions were used to perform experimental flow studies. The results showed that the biomodel printed with a resolution of 50 μm was able to most accurately visualize flow due to its lowest roughness values (Ra = 1.8 μm). The flow experimental results showed a qualitatively good agreement with the blood flow numerical data, providing a clear observation of recirculation regions when the diameter reduction reached 60%.
Collapse
|
6
|
Characterization of Shear Strain on PDMS: Numerical and Experimental Approaches. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polydimethylsiloxane (PDMS) is one of the most popular elastomers and has been used in different fields, especially in biomechanics research. Among the many interesting features of this material, its hyperelastic behavior stands out, which allows the use of PDMS in various applications, like the ones that mimic soft tissues. However, the hyperelastic behavior is not linear and needs detailed analysis, especially the characterization of shear strain. In this work, two approaches, numerical and experimental, were proposed to characterize the effect of shear strain on PDMS. The experimental method was implemented as a simple shear testing associated with 3D digital image correlation and was made using two specimens with two thicknesses of PDMS (2 and 4 mm). A finite element software was used to implement the numerical simulations, in which four different simulations using the Mooney–Rivlin, Yeoh, Gent, and polynomial hyperelastic constitutive models were performed. These approaches showed that the maximum value of shear strain occurred in the central region of the PDMS, and higher values emerged for the 2 mm PDMS thickness. Qualitatively, in the central area of the specimen, the numerical and experimental results have similar behaviors and the values of shear strain are close. For higher values of displacement and thicknesses, the numerical simulation results move further away from experimental values.
Collapse
|
7
|
Burton HE, Cullinan R, Jiang K, Espino DM. Multiscale three-dimensional surface reconstruction and surface roughness of porcine left anterior descending coronary arteries. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190915. [PMID: 31598314 PMCID: PMC6774942 DOI: 10.1098/rsos.190915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/07/2019] [Indexed: 05/11/2023]
Abstract
The aim of this study was to investigate the multiscale surface roughness characteristics of coronary arteries, to aid in the development of novel biomaterials and bioinspired medical devices. Porcine left anterior descending coronary arteries were dissected ex vivo, and specimens were chemically fixed and dehydrated for testing. Surface roughness was calculated from three-dimensional reconstructed surface images obtained by optical, scanning electron and atomic force microscopy, ranging in magnification from 10× to 5500×. Circumferential surface roughness decreased with magnification, and microscopy type was found to influence surface roughness values. Longitudinal surface roughness was not affected by magnification or microscopy types within the parameters of this study. This study found that coronary arteries exhibit multiscale characteristics. It also highlights the importance of ensuring consistent microscopy parameters to provide comparable surface roughness values.
Collapse
Affiliation(s)
- Hanna E. Burton
- PDR – International Centre for Design and Research, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
- Biomedical Engineering Research Group, Department of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Rachael Cullinan
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Kyle Jiang
- Research Centre for Micro/Nanotechnology, Department of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Daniel M. Espino
- Biomedical Engineering Research Group, Department of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
8
|
The Effect of Mechanical Overloading on Surface Roughness of the Coronary Arteries. Appl Bionics Biomech 2019; 2019:2784172. [PMID: 30809272 PMCID: PMC6364105 DOI: 10.1155/2019/2784172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/29/2018] [Accepted: 01/01/2019] [Indexed: 01/03/2023] Open
Abstract
Background Surface roughness can be used to identify disease within biological tissues. Quantifying surface roughness in the coronary arteries aids in developing treatments for coronary heart disease. This study investigates the effect of extreme physiological loading on surface roughness, for example, due to a rupture of an artery. Methods The porcine left anterior descending (LAD) coronary arteries were dissected ex vivo. Mechanical overloading was applied to the arteries in the longitudinal direction to simulate extreme physiological loading. Surface roughness was calculated from three-dimensional reconstructed images. Surface roughness was measured before and after damage and after chemical processing to dehydrate tissue specimens. Results Control specimens confirmed that dehydration alone results in an increase of surface roughness in the circumferential direction only. No variation was noted between the hydrated healthy and damaged specimens, in both the longitudinal (0.91 ± 0.26 and 1.05 ± 0.25 μm) and circumferential (1.46 ± 0.38 and 1.47 ± 0.39 μm) directions. After dehydration, an increase in surface roughness was noted for damaged specimens in both the longitudinal (1.28 ± 0.33 μm) and circumferential (1.95 ± 0.56 μm) directions. Conclusions Mechanical overloading applied in the longitudinal direction did not significantly affect surface roughness. However, when combined with chemical processing, a significant increase in surface roughness was noted in both the circumferential and longitudinal directions. Mechanical overloading causes damage to the internal constituents of the arteries, which is significantly noticeable after dehydration of tissue.
Collapse
|