1
|
Becker JN, Fischer M, Christiansen H, Schwake M, Stummer W, Ewelt C, Pepper NB, Eich HT, Müther M. Radiation Treatment Planning After Minimum Metallic Instrumentation for Patients with Spinal Metastases: A Case Series. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:269. [PMID: 40005386 PMCID: PMC11857767 DOI: 10.3390/medicina61020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/19/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025]
Abstract
Background and Objectives: The utilization of non-metallic pedicle screws and rods has become a favored approach in the management of spinal tumors. An abundance of metal artifacts improves postoperative imaging and allows for precise radiation treatment planning. Under certain conditions, a vertebral body replacement (VBR) is necessary in addition to dorsal fixation. For a long time, VBR hardware was available as titanium implants only. Recently, other non-titanium products were introduced into the market. This study compares radiotherapy planning after VBR with titanium and non-titanium materials. Materials and Methods: This is a retrospective cohort study in a single academic center setting. VBR was performed for thoracic spinal metastatic disease. Radiation plan quality was evaluated according to the criteria of the International Commission on Radiation Units and Measurements, based on postoperative CT imaging. Results: Six patients with dorsal fixation and VBR were included, half of which were treated with titanium VBR and the other half with a minimum metallic implant. In addition, patients received different dorsal fixation hardware. No difference was found in terms of radiation plan quality. With non-titanium materials, visual demarcation during radiation planning was superior. Conclusions: This is the first study in the field to comprehensively compare radiation treatment planning after VBR using different materials. With minimum metallic implants, radiotherapy planning is equal in terms of planning but superior in terms of visual demarcation in comparison to standard titanium VBR, potentially enabling more precise radiotherapy approaches.
Collapse
Affiliation(s)
- Jan-Niklas Becker
- Department of Radiation Therapy, Hannover Medical School, 30625 Hannover, Germany (M.F.)
| | - Mirko Fischer
- Department of Radiation Therapy, Hannover Medical School, 30625 Hannover, Germany (M.F.)
| | - Hans Christiansen
- Department of Radiation Therapy, Hannover Medical School, 30625 Hannover, Germany (M.F.)
| | - Michael Schwake
- Department of Neurosurgery, University Hospital Münster, 48149 Münster, Germany; (M.S.); (W.S.)
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, 48149 Münster, Germany; (M.S.); (W.S.)
| | - Christian Ewelt
- Department of Neurosurgery, St. Barbara-Klinik Hamm-Heessen, 59073 Hamm, Germany;
| | - Niklas Benedikt Pepper
- Department of Radiation Therapy, University Hospital Münster, 48149 Münster, Germany; (N.B.P.); (H.T.E.)
| | - Hans Theodor Eich
- Department of Radiation Therapy, University Hospital Münster, 48149 Münster, Germany; (N.B.P.); (H.T.E.)
| | - Michael Müther
- Department of Neurosurgery, University Hospital Münster, 48149 Münster, Germany; (M.S.); (W.S.)
| |
Collapse
|
2
|
Elfiky T, El Mansy Y, Stienen MN, Alabsi AS, Nafady M. Vertebral Endplate Cavities with Titanium Cages in Posterior Lumbar Interbody Fusion. J Neurol Surg A Cent Eur Neurosurg 2024. [PMID: 39151912 DOI: 10.1055/a-2389-7682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
BACKGROUND Vertebral endplate cavities (VECs) have been reported with the use of titanium (Ti) cages. Only few articles have recently demonstrated unfavorable radiographic changes in the form of cysts or cavities, which may predispose to nonunion. METHODS The aim was to assess the prevalence of VEC in posterior lumbar interbody fusion (PLIF) using Ti cages and to estimate their impact on fusion. The term "cavity" was used to describe the endplate changes. Computed tomography (CT) analysis of the VECs and fusion status following PLIFs with Ti cages was conducted by two observers. VECs were assessed according to the size, multiplicity, location, and presence of sclerosis. RESULTS Forty-two consecutive patients with surgeries conducted on 52 levels were enrolled. There were 20 males and 22 females. The mean age was 43.6 ± 10.89 years. The mean follow-up was 20.85 ± 8.49 months. Definite union was seen in 48 levels (92.3%) by observer 1 and in 40 levels (76.9%) by observer 2. The strength of agreement was moderate. The presence of VEC was observed in 9 levels (17.3%) by observer 1 and in 12 levels (23.1%) by observer 2. The strength of agreement was moderate. The majority of VECs in the endplates were less than 5 mm. The strength of agreement was high. The strength of agreement for location and multiplicity were moderate. The VEC was significantly correlated with the fusion status. CONCLUSIONS Our study confirmed that VECs were observed following Ti cage placement after PLIF procedures. They tend to be small and might be associated with nonunion. Furthermore, it reflected the limited inter-rater reliability of the assessment of both the fusion status and VEC morphology after Ti PLIF cage placement.
Collapse
Affiliation(s)
- Tarek Elfiky
- Spine Unit, Department of Orthopedic, Elhadra University Hospital, Amprozo, Alexandria, Egypt
| | - Yaser El Mansy
- Spine Unit, Department of Orthopedic, Elhadra University Hospital, Amprozo, Alexandria, Egypt
| | - Martin N Stienen
- Department of Neurosurgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | - Mahmoud Nafady
- Spine Unit, Department of Orthopedic, Elhadra University Hospital, Amprozo, Alexandria, Egypt
| |
Collapse
|
3
|
Yamagishi A, Ishii M, Sakaura H, Yamasaki R, Ohnishi A, Tsukazaki H, Ohwada T, Ando W. The Influence of Titanium-coated Poryetheretherketone Cages in Fusion Status after Posterior Lumbar Interbody Fusion with Cortical Bone Trajectory Screw Fixation. World Neurosurg 2024; 183:e201-e209. [PMID: 38101540 DOI: 10.1016/j.wneu.2023.12.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
OBJECTIVE Posterior lumbar interbody fusion (PLIF) with cortical bone trajectory (CBT) screw fixation (CBT-PLIF) shows potential for reducing adjacent segmental disease. Previously, our investigations revealed a relatively lower fusion rate with the use of carbon fiber-reinforced polyetheretherketone (CP) cages in CBT-PLIF compared with traditional pedicle screw fixation (PS-PLIF) using CP cages. This study aims to evaluate whether the implementation of titanium-coated polyetheretherketone (TP) cages can enhance fusion outcomes in CBT-PLIF. METHODS A retrospective analysis was conducted on 68 consecutive patients who underwent CBT-PLIF with TP cages (TP group) and 89 patients who underwent CBT-PLIF with CP cages (CP group). Fusion status was assessed using computed tomography at 1 year postoperatively and dynamic plain radiographs at 2 years postoperatively. RESULTS No statistically significant differences in fusion rates were observed at 1 and 2 years postoperatively between the TP group (86.8% and 89.7%, respectively) and the CP group (77.5% and 88.8%, respectively). Notably, the CP group exhibited a significant improvement in fusion rate from 1 to 2 years postoperatively (P = 0.002), while no significant improvement was observed in the TP group. CONCLUSIONS Examination of temporal changes in fusion rates reveals that only the TP group achieved a peak fusion rate 1 year postoperatively. This implies that TP cages may enhance the fusion process even after CBT-PLIF. Nevertheless, the definitive efficacy of TP cages for CBT-PLIF remains uncertain in the context of overall fusion rates.
Collapse
Affiliation(s)
- Akira Yamagishi
- Department of Orthopaedic Surgery, Kansai Rosai Hospital, Amagasaki, Hyogo, Japan.
| | - Masayoshi Ishii
- Department of Orthopaedic Surgery, Sakai City Medical Center, Sakai, Osaka, Japan
| | - Hironobu Sakaura
- Department of Orthopaedic Surgery, Suita Municipal Hospital, Suita, Osaka, Japan
| | - Ryoji Yamasaki
- Department of Orthopaedic Surgery, Kansai Rosai Hospital, Amagasaki, Hyogo, Japan
| | - Atsunori Ohnishi
- Department of Orthopaedic Surgery, Itami City Hospital, Itami, Hyogo, Japan
| | - Hiroyuki Tsukazaki
- Department of Orthopaedic Surgery, Kansai Rosai Hospital, Amagasaki, Hyogo, Japan
| | - Tetsuo Ohwada
- Department of Orthopaedic Surgery, Kansai Rosai Hospital, Amagasaki, Hyogo, Japan
| | - Wataru Ando
- Department of Orthopaedic Surgery, Kansai Rosai Hospital, Amagasaki, Hyogo, Japan
| |
Collapse
|
4
|
Croft AJ, Chanbour H, Chen JW, Young MW, Stephens BF. Implant Surface Technologies to Promote Spinal Fusion: A Narrative Review. Int J Spine Surg 2023; 17:S35-S43. [PMID: 38050045 PMCID: PMC10753326 DOI: 10.14444/8559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
The technology surrounding spinal fusion surgery has continuously evolved in tandem with advancements made in bioengineering. Over the past several decades, developments in biomechanics, surgical techniques, and materials science have expanded innovation in the spinal implant industry. This narrative review explores the current state of implant surface technologies utilized in spinal fusion surgery. This review covers various types of implant surface materials, focusing on interbody spacers composed of modified titanium, polyetheretherketone, hydroxyapatite, and other materials, as well as pedicle screw surface modifications. Advantages and disadvantages of the different surface materials are discussed, including their biocompatibility, mechanical properties, and radiographic visibility. In addition, this review examines the role of surface modifications in enhancing osseointegration and reducing implant-related complications and, hopefully, improving patient outcomes. The findings suggest that while each material has its potential advantages, further research is needed to determine the optimal surface properties for enhancing spinal fusion outcomes.
Collapse
Affiliation(s)
- Andrew J Croft
- Department of Orthopedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hani Chanbour
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey W Chen
- Department of Neurological Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mason W Young
- Department of Orthopedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Byron F Stephens
- Department of Orthopedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Scott-Young M, Nielsen D, Riar S. Fundamentals of Mechanobiology and Potential Applications in Spinal Fusion. Int J Spine Surg 2023; 17:S61-S74. [PMID: 38135446 PMCID: PMC10753328 DOI: 10.14444/8562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Mechanobiology can help optimize spinal fusion by providing insights into the mechanical environment required for bone healing and fusion. This includes understanding the optimal loading conditions, the mechanical properties of implanted materials, and the effects of mechanical stimuli on the cells involved in bone formation. The present article reviews the evidence for surface technologies and implant modification of spinal cages in enhancing spinal fusion. METHODS Databases used included Embase, MEDLINE, Springer, and Cochrane Library. Relevant articles were identified using specific keywords and search fields. Only systematic reviews, meta-analyses, review articles, and original research articles in English were included. Two researchers independently performed the search and selection process. A flowchart of the search strategy and study selection method is provided in the article. RESULTS The studies indicate that surface modification can significantly enhance osseointegration and interbody fusion by promoting cellular adhesion, proliferation, differentiation, and mineralization. Various surface modification techniques such as coating, etching, nanotopography, and functionalization achieve this. Similarly, implant material modification can improve implant stability, biocompatibility, and bioactivity, leading to better fusion outcomes. Mechanobiology plays a vital role in this process by influencing the cellular response to mechanical cues and promoting bone formation. CONCLUSIONS The studies reviewed indicate that surface technologies and implant material modification are promising approaches for improving the success of spinal cage fusion. Mechanobiology is critical in this process by influencing the cellular response to mechanical signals and promoting bone growth.
Collapse
Affiliation(s)
- Matthew Scott-Young
- Faculty of Health Science and Medicine, Bond University, Gold Coast, Queensland, Australia
- Gold Coast Spine, Bond University, Gold Coast, Queensland, Australia
| | - David Nielsen
- Gold Coast Spine, Bond University, Gold Coast, Queensland, Australia
| | - Sukhman Riar
- Faculty of Health Science and Medicine, Bond University, Gold Coast, Queensland, Australia
- Gold Coast Spine, Bond University, Gold Coast, Queensland, Australia
| |
Collapse
|
6
|
Pu F, Yu Y, Zhang Z, Wu W, Shao Z, Li C, Feng J, Xue L, Chen F. Research and Application of Medical Polyetheretherketone as Bone Repair Material. Macromol Biosci 2023; 23:e2300032. [PMID: 37088909 DOI: 10.1002/mabi.202300032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/01/2023] [Indexed: 04/25/2023]
Abstract
Polyetheretherketone (PEEK) can potentially be used for bone repair because its elastic modulus is similar to that of human natural bone and good biocompatibility and chemical stability. However, its hydrophobicity and biological inertness limit its application in the biomedical field. Inspired by the composition, structure, and function of bone tissue, many strategies are proposed to change the structure and functionality of the PEEK surface. In this review, the applications of PEEK in bone repair and the optimization strategy for PEEK's biological activity are reviewed, which provides a direction for the development of multifunctional bone repair materials in the future.
Collapse
Affiliation(s)
- Feifei Pu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of Wuhan (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yihan Yu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Wei Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Chao Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Jing Feng
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of Wuhan (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Longjian Xue
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Fengxia Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
| |
Collapse
|
7
|
Chai H, Wang W, Yuan X, Zhu C. Bio-Activated PEEK: Promising Platforms for Improving Osteogenesis through Modulating Macrophage Polarization. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120747. [PMID: 36550953 PMCID: PMC9774947 DOI: 10.3390/bioengineering9120747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/30/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
The attention on orthopedic biomaterials has shifted from their direct osteogenic properties to their osteoimmunomodulation, especially the modulation of macrophage polarization. Presently, advanced technologies endow polyetheretherketone (PEEK) with good osteoimmunomodulation by modifying PEEK surface characteristics or incorporating bioactive substances with regulating macrophage polarization. Recent studies have demonstrated that the fabrication of a hydrophilic surface and the incorporation of bioactive substances into PEEK (e.g., zinc, calcium, and phosphate) are good strategies to promote osteogenesis by enhancing the polarization of M2 macrophages. Furthermore, the modification by other osteoimmunomodulatory composites (e.g., lncRNA-MM2P, IL-4, IL-10, and chitosan) and their controlled and desired release may make PEEK an optimal bio-activated implant for regulating and balancing the osteogenic system and immune system. The purpose of this review is to comprehensively evaluate the potential of bio-activated PEEK in polarizing macrophages into M2 phenotype to improve osteogenesis. For this objective, we retrieved and discussed different kinds of bio-activated PEEK regarding improving osteogenesis through modulating macrophage polarization. Meanwhile, the relevant challenges and outlook were presented. We hope that this review can shed light on the development of bio-activated PEEK with more favorable osteoimmunomodulation.
Collapse
Affiliation(s)
- Haobu Chai
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China
| | - Wenzhi Wang
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China
| | - Xiangwei Yuan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
- Correspondence: (X.Y.); (C.Z.)
| | - Chen Zhu
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei 230001, China
- Correspondence: (X.Y.); (C.Z.)
| |
Collapse
|
8
|
Schwake M, Maragno E, Gallus M, Schipmann S, Spille D, Al Barim B, Stummer W, Müther M. Minimally Invasive Facetectomy and Fusion for Resection of Extensive Dumbbell Tumors in the Lumbar Spine. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1613. [PMID: 36363570 PMCID: PMC9694687 DOI: 10.3390/medicina58111613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/03/2022] [Indexed: 08/18/2024]
Abstract
Background and Objectives: Resection of dumbbell tumors can be challenging, and facet joint sparing approaches carry the risk of incomplete resection. In contrast, additional facetectomy may allow better surgical exposure at the cost of spinal stability. The aim of this study is to compare facet-sparing and facetectomy approaches for the treatment of lumbar spine dumbbell tumors. Materials and Methods: In a cohort study setting, we analyzed Eden type 2 and 3 tumors operated in our department. Conventional facet-sparing microsurgical or facetectomy approaches with minimally invasive fusions were performed according to individual surgeons' preference. Primary outcomes were extent of resection and tumor progression over time. Secondary outcomes were perioperative adverse events. Results: Nineteen patients were included. Nine patients were operated on using a facet-sparing technique. Ten patients underwent facetectomy and fusion. While only one patient (11%) in the facet-sparing group experienced gross total resection (GTR), this was achieved for all patients in the facetectomy group (100%). The relative risk (RR) for incomplete resection in the facet-sparing cohort was 18.7 (95% CI 1.23-284.047; p = 0.035). In addition, time to progression was shorter in the facet-sparing cohort (p = 0.022) and all patients with a residual tumor underwent a second resection after a median follow-up time of 42 months (IQR 25-66). Conclusions: Minimally invasive resection of lumbar Eden type 2 and 3 dumbbell tumors including facetectomy in combination with instrumentation appears to be safe and superior to the facet-sparing approach in terms of local tumor control.
Collapse
Affiliation(s)
- Michael Schwake
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 28149 Münster, Germany
| | - Emanuele Maragno
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 28149 Münster, Germany
| | - Marco Gallus
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 28149 Münster, Germany
| | - Stephanie Schipmann
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 28149 Münster, Germany
- Department of Neurosurgery, Haukeland University Hospital, 5021 Bergen, Norway
| | - Dorothee Spille
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 28149 Münster, Germany
| | - Bilal Al Barim
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 28149 Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 28149 Münster, Germany
| | - Michael Müther
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 28149 Münster, Germany
| |
Collapse
|
9
|
Singhatanadgige W, Tangchitcharoen N, Kerr SJ, Tanasansomboon T, Yingsakmongkol W, Kotheeranurak V, Limthongkul W. A Comparison of Polyetheretherketone and Titanium-Coated Polyetheretherketone in Minimally Invasive Transforaminal Lumbar Interbody Fusion: A Randomized Clinical Trial. World Neurosurg 2022; 168:e471-e479. [DOI: 10.1016/j.wneu.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
|
10
|
Luo X, Xiao D, Zhang C, Wang G. The Roles of Exosomes upon Metallic Ions Stimulation in Bone Regeneration. J Funct Biomater 2022; 13:jfb13030126. [PMID: 36135561 PMCID: PMC9506099 DOI: 10.3390/jfb13030126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Metallic ions have been widely investigated and incorporated into bone substitutes for bone regeneration owing to their superior capacity to induce angiogenesis and osteogenesis. Exosomes are key paracrine mediators that play a crucial role in cell-to-cell communication. However, the role of exosomes in metallic ion-induced bone formation and their underlying mechanisms remain unclear. Thus, this review systematically analyzes the effects of metallic ions and metallic ion-incorporated biomaterials on exosome secretion from mesenchymal stem cells (MSCs) and macrophages, as well as the effects of secreted exosomes on inflammation, angiogenesis, and osteogenesis. In addition, possible signaling pathways involved in metallic ion-mediated exosomes, followed by bone regeneration, are discussed. Despite limited investigation, metallic ions have been confirmed to regulate exosome production and function, affecting immune response, angiogenesis, and osteogenesis. Although the underlying mechanism is not yet clear, these insights enrich our understanding of the mechanisms of the metallic ion-induced microenvironment for bone regeneration, benefiting the design of metallic ion-incorporated implants.
Collapse
Affiliation(s)
- Xuwei Luo
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong 637000, China
| | - Dongqin Xiao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong 637000, China
- Correspondence: (D.X.); (G.W.)
| | - Chengdong Zhang
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong 637000, China
| | - Guanglin Wang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (D.X.); (G.W.)
| |
Collapse
|
11
|
Muthiah N, Yolcu YU, Alan N, Agarwal N, Hamilton DK, Ozpinar A. Evolution of polyetheretherketone (PEEK) and titanium interbody devices for spinal procedures: a comprehensive review of the literature. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:2547-2556. [PMID: 35689111 DOI: 10.1007/s00586-022-07272-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/22/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Interbody fusion is commonly utilized for arthrodesis and stability among patients undergoing spine surgery. Over the last few decades, interbody device materials, such as titanium and polyetheretherketone (PEEK), have been replacing traditional autografts and allografts for interbody fusion. As such, with the exponential growth of bioengineering, a large variety cage surface technologies exist. Different combinations of cage component materials and surface modifications have been created to optimize interbody constructs for surgical use. This review aims to provide a comprehensive overview of common surface technologies, their performance in the clinical setting, and recent modifications and material combinations. MATERIALS AND METHODS We performed a comprehensive review of the literature on titanium and PEEK as medical devices between 1964 and 2021. We searched five major databases, resulting in 4974 records. Articles were screened for inclusion manually by two independent reviewers, resulting in 237 articles included for review. CONCLUSION Interbody devices have rapidly evolved over the last few decades. Biomaterial and biomechanical modifications have allowed for continued design optimization. While titanium has a high osseointegrative capacity, it also has a high elastic modulus and is radio-opaque. PEEK, on the other hand, has a lower elastic modulus and is radiolucent, though PEEK has poor osseointegrative capacity. Surface modifications, material development advancements, and hybrid material devices have been utilized in search of an optimal spinal implant which maximizes the advantages and minimizes the disadvantages of each interbody material.
Collapse
Affiliation(s)
- Nallammai Muthiah
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Neurosurgery, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | | | - Nima Alan
- Department of Neurosurgery, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Nitin Agarwal
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - David Kojo Hamilton
- Department of Neurosurgery, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Alp Ozpinar
- Department of Neurosurgery, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
12
|
Zhu C, He M, Mao L, Yang H, Hu B, Zhang L, Feng G, Liu L, Song Y. Titanium interlayer-mediated hydroxyapatite-coated polyetheretherketone cage in transforaminal lumbar interbody fusion surgery. BMC Musculoskelet Disord 2021; 22:918. [PMID: 34724952 PMCID: PMC8561990 DOI: 10.1186/s12891-021-04803-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023] Open
Abstract
Background The variance in clinical responses to polyetheretherketone (PEEK) cages with titanium (Ti) and hydroxyapatite (HA) coatings (PEEK-Ti-HA cages) is still not clear. In this study, we aimed to evaluate the radiographic and clinical outcomes of patients undergoing TLIF using PEEK-Ti-HA cages with a particular focus on fusion rate. Methods A prospective and nonrandomized study was conducted to compare the outcomes of PEEK-Ti-HA cages (group A, n = 32) and uncoated PEEK cages (group B, n = 32). The follow up time was at least 2 years. The radiographic assessments included the regional lordosis (RL), disc height (DH), and fusion rate. The clinical indexes included the Japanese Orthopedic Association (JOA) scores and visual analog scale (VAS) scores (back and leg). Results No significant differences were found in the pre- and postoperative RL and DH between Group A and Group B. And RL and DH, even if there were any variance initially, were restored not long after surgery in both groups. Though Group A had a significantly higher fusion rate than group B at 3 months post-surgery (93.7% vs. 75.0%), the fusion rates for the two groups reached the same level (100%) when it comes to the final follow-up. Additionally, differences of VAS and JOA scores for the two groups in general approximate. Conclusions PEEK-Ti-HA cages, in contrast with uncoated PEEK cages, produced a better fusion rate at 3 months after single-level TLIF. The fusion rates of both groups could get 100% at the final follow-up. PEEK-Ti-HA cages could achieve similar RL, DH, JOA scores and VAS scores in comparison with uncoated PEEK cages post-surgery.
Collapse
Affiliation(s)
- Ce Zhu
- Department of Orthopedics Surgery and Orthopedics Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China.,Department of Spine Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Miaomiao He
- Analytical & Testing Center, Sichuan University, Chengdu, China
| | - Lili Mao
- Department of Ultrasound, Hospital of Traditional Chinese Medicine Affiliated to Southwest Medical University, Luzhou, China
| | - Huiliang Yang
- Department of Orthopedics Surgery and Orthopedics Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China
| | - Bowen Hu
- Department of Orthopedics Surgery and Orthopedics Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China
| | - Li Zhang
- Analytical & Testing Center, Sichuan University, Chengdu, China
| | - Ganjun Feng
- Department of Orthopedics Surgery and Orthopedics Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China
| | - Limin Liu
- Department of Orthopedics Surgery and Orthopedics Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China.
| | - Yueming Song
- Department of Orthopedics Surgery and Orthopedics Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
13
|
Enhancement of the bone-implant interface by applying a plasma-sprayed titanium coating on nanohydroxyapatite/polyamide66 implants in a rabbit model. Sci Rep 2021; 11:19971. [PMID: 34620967 PMCID: PMC8497622 DOI: 10.1038/s41598-021-99494-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/27/2021] [Indexed: 12/05/2022] Open
Abstract
Solid fusion at the bone-implant interface (BII) is considered one of the indicators of a satisfactory clinical outcome for spine surgery. Although the mechanical and physical properties of nanohydroxyapatite/polyamide66 (n-HA/PA66) offers many advantages, the results of long-term follow-up for BIIs remain limited. This study aimed to improve the BII of n-HA/PA66 by applying plasma-sprayed titanium (PST) and assessing the mechanical and histological properties. After the PST coating was applied to n-HA/PA66 implants, the coating had uneven, porous surfaces. The compression results were not significantly different between the two groups. The micro-CT results demonstrated that at 6 weeks and 12 weeks, the bone volume (BV), BV/tissue volume (TV) and trabecular number (Tb.N) values of the n-HA/PA66-PST group were significantly higher than those of the n-HA/PA66 group. The results of undecalcified bone slicing showed that more new bone appeared to form around n-HA/PA66-PST implant than around n-HA/PA66 implant. The bone-implant contact (BIC) and push-out test results of the n-HA/PA66-PST group were better than those of the n-HA/PA66 group. In conclusion, after PST coating, direct and additional new bone-to-implant bonding could be achieved, improving the BII of n-HA/PA66 implants. The n-HA/PA66-PST implants could be promising for repair purposes.
Collapse
|
14
|
Mobbs RJ, Amin T, Ho D, McEvoy A, Lovric V, Walsh WR. Integral fixation titanium/polyetheretherketone cages for cervical arthrodesis: Two-year clinical outcomes and fusion rates using β-tricalcium phosphate or supercritical carbon dioxide treated allograft. JOURNAL OF CRANIOVERTEBRAL JUNCTION AND SPINE 2021; 12:368-375. [PMID: 35068818 PMCID: PMC8740808 DOI: 10.4103/jcvjs.jcvjs_129_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/06/2021] [Indexed: 11/13/2022] Open
Abstract
Context: Despite increasing promising reports regarding composite titanium (Ti)/PolyEtherEtherKetone (PEEK) cages, further longer-term, quality research is required. Synthetic bone graft substitutes are another rapidly developing area of spinal surgical research. Aims: The purpose of this study is to evaluate the outcomes of an integral fixation composite Ti/PEEK cage for anterior cervical discectomy and fusion (ACDF) and compare a synthetic bone graft substitute (β-tricalcium phosphate; [βTCP]) with allograft processed using supercritical fluid technology. Methods and Design: Data from 195 consecutive patients were prospectively collected from a single centre. Indications were largely degenerative. Allograft and βTCP were used in a 3:1 randomization protocol. Patients were followed up for a minimum of 6 months and up to 48 months. Clinical outcomes included visual analogue scale and neck oswestry disability index. Radiographic outcomes included fusion rates, subsidence rates and implant complications. Results: Graft sub-cohorts were largely comparable and included 133 and 52 patients in the allograft and βTCP sub-cohorts, respectively. Clinical outcomes overall significantly improved (P < 0.001), with no significant inter-cohort differences. There were no implant-related complications. Overall fusion rate was 94.1% (175/186). The allograft cohort produced a significantly greater fusion rate of 97.7% (126/129) compared to 77.6% (38/49) for the βTCP cohort (P = 0.001). Conclusions: This study demonstrates the viability of an integral fixation composite Ti/PEEK ACDF device in effectively and safely improving patient outcomes and achieving fusion. Allograft is more effective in achieving fusion compared to βTCP, though both were similarly efficacious in improving clinical outcomes.
Collapse
Affiliation(s)
- Ralph J Mobbs
- NeuroSpine Surgery Research Group (NSURG), Sydney, Australia.,Neuro Spine Clinic, Prince of Wales Private Hospital, Randwick, UNSW Sydney, Australia.,Prince of Wales Clinical School, UNSW Sydney, Australia.,Surgical and Orthopaedic Research Labs (SORL), Prince of Wales Clinical School, UNSW Sydney, Sydney, Australia
| | - Tajrian Amin
- NeuroSpine Surgery Research Group (NSURG), Sydney, Australia.,Neuro Spine Clinic, Prince of Wales Private Hospital, Randwick, UNSW Sydney, Australia.,Prince of Wales Clinical School, UNSW Sydney, Australia
| | - Daniel Ho
- NeuroSpine Surgery Research Group (NSURG), Sydney, Australia.,Neuro Spine Clinic, Prince of Wales Private Hospital, Randwick, UNSW Sydney, Australia.,Prince of Wales Clinical School, UNSW Sydney, Australia
| | - Aidan McEvoy
- Matrix Medical Innovations, Randwick, Sydney, Australia
| | - Vedran Lovric
- NeuroSpine Surgery Research Group (NSURG), Sydney, Australia.,Surgical and Orthopaedic Research Labs (SORL), Prince of Wales Clinical School, UNSW Sydney, Sydney, Australia
| | - William R Walsh
- NeuroSpine Surgery Research Group (NSURG), Sydney, Australia.,Surgical and Orthopaedic Research Labs (SORL), Prince of Wales Clinical School, UNSW Sydney, Sydney, Australia
| |
Collapse
|
15
|
Wang TY, Mehta VA, Sankey EW, Shaffrey CI, Abd-El-Barr MM, Than KD. The Impact of Instrumentation and Implant Surface Technology on Cervical and Thoracolumbar Fusion. Oper Neurosurg (Hagerstown) 2021; 21:S12-S22. [PMID: 34128071 DOI: 10.1093/ons/opaa321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/23/2020] [Indexed: 11/12/2022] Open
Abstract
Spinal fusion has undergone significant evolution and improvement over the past 50 yr. Historically, spine fusion was noninstrumented and arthrodesis was based entirely on autograft. Improved understanding of spinal anatomy and materials science ushered in a new era of spinal fusion equipped with screw-based technologies and various interbody devices. Osteobiologics is another important realm of spine fusion, and the evolution of various osteobiologics has perhaps undergone the most change within the past 20 yr. A new element to spinal instrumentation has recently gained traction-namely, surface technology. New data suggest that surface treatments play an increasingly well-recognized role in inducing osteogenesis and successful fusion. Until now, however, there has yet to be a unified resource summarizing the existing data and a lack of consensus exists on superior technology. Here, authors provide an in-depth review on surface technology and its impact on spinal arthrodesis.
Collapse
Affiliation(s)
- Timothy Y Wang
- Duke University Medical Center Department of Neurological Surgery, Durham, North Carolina, USA
| | - Vikram A Mehta
- Duke University Medical Center Department of Neurological Surgery, Durham, North Carolina, USA
| | - Eric W Sankey
- Duke University Medical Center Department of Neurological Surgery, Durham, North Carolina, USA
| | - Christopher I Shaffrey
- Duke University Medical Center Department of Neurological Surgery, Durham, North Carolina, USA
| | - Muhammad M Abd-El-Barr
- Duke University Medical Center Department of Neurological Surgery, Durham, North Carolina, USA
| | - Khoi D Than
- Duke University Medical Center Department of Neurological Surgery, Durham, North Carolina, USA
| |
Collapse
|
16
|
Müther M, Lüthge S, Gerwing M, Stummer W, Schwake M. Management of Spinal Dumbbell Tumors via a Minimally Invasive Posterolateral Approach and Carbon Fiber-Reinforced Polyether Ether Ketone Instrumentation: Technical Note and Surgical Case Series. World Neurosurg 2021; 151:277-283.e1. [PMID: 33915306 DOI: 10.1016/j.wneu.2021.04.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Stand-alone minimally invasive approaches for the surgical management of spinal dumbbell tumors carry the risk of incomplete resections and impaired hemostasis. More-extensive approaches require subsequent instrumentation with metal artifacts impairing follow-up imaging. Here, we present a technical note on percutaneous instrumentation using carbon fiber-reinforced polyether ether ketone (CFR-PEEK) hardware combined with a minimally invasive posterolateral approach for tumor resection. METHODS We present a Technical Note and according case series of 7 patients with dumbbell tumors in the lumbar and thoracolumbar spine operated on between 2017 and 2020. CFR-PEEK pedicle screws and rods were inserted percutaneously. Afterwards, a dedicated self-standing retractor for posterolateral approaches was connected to the screws. Following a unilateral facetectomy, the tumor was resected in a microsurgical fashion. Clinical data are reported with respect to the Preferred Reporting Of CasE Series in Surgery (PROCESS) guidelines. RESULTS Four patients presented with de novo tumors. Three patients were treated for residual tumor mass after previous surgeries. Gross total resection was achieved in all 7 cases, as demonstrated by early postoperative magnetic resonance imaging. Histopathology demonstrated 5 World Health Organization grade I schwannomas, 1 grade II hemangiopericytoma, and 1 cavernous hemangioma. No postoperative complications were observed. CFR-PEEK hardware allowed unambiguous visualization of the resection cavity on follow-up imaging. CONCLUSIONS Resection of dumbbell tumors via a minimally invasive posterolateral approach and instrumentation with CFR-PEEK hardware allows maximal and safe resection. Due to lack of major metal artifacts, carbon fiber hardware improves the interpretation of follow-up imaging as well as planning of radiation if required for tumor recurrence.
Collapse
Affiliation(s)
- Michael Müther
- Department of Neurosurgery, University Hospital Münster, Münster, Germany.
| | - Swenja Lüthge
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Mirjam Gerwing
- Department of Radiology, University Hospital Münster, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Michael Schwake
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| |
Collapse
|
17
|
Kumar N, Ramakrishnan SA, Lopez KG, Madhu S, Ramos MRD, Fuh JYH, Hallinan J, Nolan CP, Benneker LM, Vellayappan BA. Can Polyether Ether Ketone Dethrone Titanium as the Choice Implant Material for Metastatic Spine Tumor Surgery? World Neurosurg 2021; 148:94-109. [PMID: 33508491 DOI: 10.1016/j.wneu.2021.01.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 01/08/2023]
Abstract
Instrumentation during metastatic spine tumor surgery (MSTS) provides stability to the spinal column in patients with pathologic fracture or iatrogenic instability produced while undergoing extensive decompression. Titanium is the current implant material of choice in MSTS. However, it hinders radiotherapy planning and generates artifacts, with magnetic resonance imaging and computed tomography scans used for postoperative evaluation of tumor recurrence and/or complications. The high modulus of elasticity of titanium (110 GPa) results in stress shielding, which may lead to construct failure at the bone-implant interface. Polyether ether ketone (PEEK), a thermoplastic polymer, is an emerging alternative to titanium for use in MSTS. The modulus of elasticity of PEEK (3.6 GPa) is close to that of cortical bone (17-21 GPa), resulting in minimal stress shielding. Its radiolucent and nonmetallic properties cause minimal interference with magnetic resonance imaging and computed tomography scans. PEEK also causes low-dose perturbation for radiotherapy planning. However, PEEK has reduced bioactivity with bone and lacks sufficient rigidity to be used as rods in MSTS. The reduced bioactivity of PEEK may be addressed by 1) surface modification (introducing porosity or bioactive coating with hydroxyapatite [HA] or titanium) and 2) forming composites with HA/titanium. The mechanical properties of PEEK may be improved by forming composites with HA or carbon fiber. Despite these modifications, all PEEK and PEEK-based implants are difficult to handle and contour intraoperatively. Our review provides a comprehensive overview of PEEK and modified PEEK implants, with a description of their properties and limitations, potentially serving as a basis for their future development and use in MSTS.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Orthopaedic Surgery, National University Health System, Singapore.
| | | | - Keith Gerard Lopez
- Department of Orthopaedic Surgery, National University Health System, Singapore
| | - Sirisha Madhu
- Department of Orthopaedic Surgery, National University Health System, Singapore
| | | | - Jerry Ying Hsi Fuh
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | - James Hallinan
- Department of Diagnostic Imaging, National University Hospital, Singapore
| | - Colum P Nolan
- Department of Neurosurgery, National Neuroscience Institute, Singapore
| | - Lorin M Benneker
- Department of Orthopaedics, Spine Surgery, Sonnenhofspital, Bern, Switzerland
| | | |
Collapse
|
18
|
Liao C, Li Y, Tjong SC. Polyetheretherketone and Its Composites for Bone Replacement and Regeneration. Polymers (Basel) 2020; 12:E2858. [PMID: 33260490 PMCID: PMC7760052 DOI: 10.3390/polym12122858] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022] Open
Abstract
In this article, recent advances in the development, preparation, biocompatibility and mechanical properties of polyetheretherketone (PEEK) and its composites for hard and soft tissue engineering are reviewed. PEEK has been widely employed for fabricating spinal fusions due to its radiolucency, chemical stability and superior sterilization resistance at high temperatures. PEEK can also be tailored into patient-specific implants for treating orbital and craniofacial defects in combination with additive manufacturing process. However, PEEK is bioinert, lacking osseointegration after implantation. Accordingly, several approaches including surface roughening, thin film coating technology, and addition of bioactive hydroxyapatite (HA) micro-/nanofillers have been adopted to improve osseointegration performance. The elastic modulus of PEEK is 3.7-4.0 GPa, being considerably lower than that of human cortical bone ranging from 7-30 GPa. Thus, PEEK is not stiff enough to sustain applied stress in load-bearing orthopedic implants. Therefore, HA micro-/nanofillers, continuous and discontinuous carbon fibers are incorporated into PEEK for enhancing its stiffness for load-bearing applications. Among these, carbon fibers are more effective than HA micro-/nanofillers in providing additional stiffness and load-bearing capabilities. In particular, the tensile properties of PEEK composite with 30wt% short carbon fibers resemble those of cortical bone. Hydrophobic PEEK shows no degradation behavior, thus hampering its use for making porous bone scaffolds. PEEK can be blended with hydrophilic polymers such as polyglycolic acid and polyvinyl alcohol to produce biodegradable scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
19
|
Park PJ, Lehman RA. Optimizing the Spinal Interbody Implant: Current Advances in Material Modification and Surface Treatment Technologies. Curr Rev Musculoskelet Med 2020; 13:688-695. [PMID: 32816234 DOI: 10.1007/s12178-020-09673-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Interbody implants allow for fusion of the anterior column of the spine between vertebral body endplates. As rates of spinal fusion surgery have increased over the past several years, significant research has been devoted to optimizing both the mechanical and biologic properties of the interbody implant in order to promote bony fusion. The first interbody implants used decades ago were fashioned from cortical autograft. Currently, titanium alloy and polyetheretherketone (PEEK) are the most widely used and studied materials for this purpose. This review focuses on recent innovations in material modification and surface treatment techniques for both titanium and PEEK implants to maximize fusion rates in spinal surgery. RECENT FINDINGS Titanium has an elastic modulus much higher than native bone and however has better osseointegrative properties than PEEK. PEEK, however, has an elastic modulus closer to that of bone without any of the advantageous biologic properties that titanium has. Increasing porosity and surface roughness of titanium implants have been shown to improve the mechanical properties of titanium implants, while the biologic properties of PEEK have been enhanced using surface coating technology, either with titanium or with hydroxyapatite (HA). Techniques such as increasing porosity, surface roughening, and surface coating are just some of the recent innovations aimed at optimizing both mechanical and biologic properties of interbody implants to promote spinal fusion. The future of interbody implant design will rely on continued improvements of PEEK and titanium implants as well as exploring new implant materials altogether.
Collapse
Affiliation(s)
- Paul J Park
- The Spine Hospital, NewYork-Presbyterian/Columbia University Irving Medical Center, 5141 Broadway, 3 Field West-022, New York, NY, 10034, USA.
| | - Ronald A Lehman
- The Spine Hospital, NewYork-Presbyterian/Columbia University Irving Medical Center, 5141 Broadway, 3 Field West-022, New York, NY, 10034, USA
| |
Collapse
|
20
|
Zhu S, Zhu Y, Wang Z, Liang C, Cao N, Yan M, Gao F, Liu J, Wang W. Bioinformatics analysis and identification of circular RNAs promoting the osteogenic differentiation of human bone marrow mesenchymal stem cells on titanium treated by surface mechanical attrition. PeerJ 2020; 8:e9292. [PMID: 32742764 PMCID: PMC7365136 DOI: 10.7717/peerj.9292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND To analyze and identify the circular RNAs (circRNAs) involved in promoting the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs) on titanium by surface mechanical attrition treatment (SMAT). METHODS The experimental material was SMAT titanium and the control material was annealed titanium. Cell Counting Kits-8 (CCK-8) was used to detect the proliferation of hBMSCs, and alkaline phosphatase (ALP) activity and alizarin red staining were used to detect the osteogenic differentiation of hBMSCs on the sample surfaces. The bioinformatics prediction software miwalk3.0 was used to construct competing endogenous RNA (ceRNA) networks by predicting circRNAs with osteogenesis-related messenger RNAs (mRNAs) and microRNAs (miRNAs). The circRNAs located at the key positions in the networks were selected and analyzed by quantitative real-time PCR (QRT-PCR). RESULTS Compared with annealed titanium, SMAT titanium could promote the proliferation and osteogenic differentiation of hBMSCs. The total number of predicted circRNAs was 51. Among these, 30 circRNAs and 8 miRNAs constituted 6 ceRNA networks. Circ-LTBP2 was selected for verification. QRT-PCR results showed that the expression levels of hsa_circ_0032599, hsa_circ_0032600 and hsa_circ_0032601 were upregulated in the experimental group compared with those in the control group; the differential expression of hsa_circ_0032600 was the most obvious and statistically significant, with a fold change (FC) = 4.25 ± 1.60, p-values (p) < 0.05.
Collapse
Affiliation(s)
- Shanshan Zhu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Yuhe Zhu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Zhenbo Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Chen Liang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Nanjue Cao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Ming Yan
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Fei Gao
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Jie Liu
- Department 1 of Science Experiment Center, China Medical University, Shenyang, Liaoning, China
| | - Wei Wang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| |
Collapse
|
21
|
Kashii M, Kitaguchi K, Makino T, Kaito T. Comparison in the same intervertebral space between titanium-coated and uncoated PEEK cages in lumbar interbody fusion surgery. J Orthop Sci 2020; 25:565-570. [PMID: 31375363 DOI: 10.1016/j.jos.2019.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/19/2019] [Accepted: 07/09/2019] [Indexed: 02/09/2023]
Abstract
BACKGROUNDS Disadvantages of polyetheretherketone (PEEK) cages are their smooth and hydrophobic surfaces and their lack of osteoconductivity. Titanium (Ti) coated PEEK cage has been innovated to overcome these potential concerns. However, few well-designed studies have investigated the efficacy of Ti-coated PEEK cage on interbody fusion in humans. This study aimed to evaluate the efficacy of Ti coating on bone ongrowth at bone-implant surface by simultaneously comparing Ti-coated and uncoated PEEK cages in the same intervertebral space. METHODS This study is a prospective comparative study for the two different cages. Twenty-six subjects who underwent one-level instrumented posterior lumbar interbody fusion (PLIF) were included. Two PEEK cages [a plasma-sprayed Ti-coated (PTC-PEEK) and an uncoated PEEK cage] were inserted in the same intervertebral space. Fusion rates, cage subsidence, and vertebral cancellous condensation (VCC) around the cage, which indicates bone growth on the surface of each cage, were assessed by thin-slice computed tomography (CT) immediately (within 1 week) and at 3 months postoperatively. A functional radiograph was obtained at 3 and 12 months postoperatively. RESULTS Twenty-three subjects showed solid fusion at 3 months postoperatively (fusion rate, 88%). Cage subsidence was not observed. VCC was often observed around the PTC-PEEK cage as evaluated by completely synchronized CT images between immediately and at 3 months postoperatively. Quantified VCC around the cage was significantly larger in the PTC-PEEK cage than in the uncoated PEEK cage (P = 0.01). CONCLUSIONS The Ti-coated PEEK cage exhibits radiographic signs, suggesting bone ongrowth, as represented by VCC around the cage compared with that around the uncoated PEEK cage. The Ti-coated PEEK cage has the potential to promote solid fusion and to improve clinical outcomes in lumbar interbody fusion surgery.
Collapse
Affiliation(s)
- Masafumi Kashii
- Department of Orthopedic Surgery, Toyonaka Municipal Hospital, 4-14-1 Shibaharacho, Toyonaka, Osaka, 560-8565, Japan; Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Kazuma Kitaguchi
- Department of Orthopedic Surgery, Toyonaka Municipal Hospital, 4-14-1 Shibaharacho, Toyonaka, Osaka, 560-8565, Japan
| | - Takahiro Makino
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takashi Kaito
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
22
|
Buck E, Li H, Cerruti M. Surface Modification Strategies to Improve the Osseointegration of Poly(etheretherketone) and Its Composites. Macromol Biosci 2019; 20:e1900271. [DOI: 10.1002/mabi.201900271] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/18/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Emily Buck
- Department of Mining and Materials EngineeringMcGill University 3610 University Street Montreal QC H3A 0C5 Canada
| | - Hao Li
- Department of Mining and Materials EngineeringMcGill University 3610 University Street Montreal QC H3A 0C5 Canada
| | - Marta Cerruti
- Department of Mining and Materials EngineeringMcGill University 3610 University Street Montreal QC H3A 0C5 Canada
| |
Collapse
|
23
|
Abstract
Patients with symptomatic instability of the spine may be treated surgically with interbody fusion. Cost and complexity in this procedure arises owing to the implanted materials involved with facilitating fusion such as titanium or polyetheretherketone. Surface modifications have been developed to augment these base materials such as plasma-spraying polyetheretherketone with titanium or coating implants with hydroxyapatite. Although some evidence has been gathered on these novel materials, additional study is needed to establish the true efficacy of surface modifications for interbody fusion devices in improving long-term patient outcomes.
Collapse
Affiliation(s)
- Jacob J Enders
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Daniel Coughlin
- Center for Spine Health, Cleveland Clinic, Desk S40, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Thomas E Mroz
- Center for Spine Health, Cleveland Clinic, Desk S40, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Shaleen Vira
- Center for Spine Health, Cleveland Clinic, Desk S40, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
24
|
Elfiky TA, Patil ND, Allam Y, Ragab R. Endplate Changes with Polyetheretherketone Cages in Posterior Lumbar Interbody Fusion. Asian Spine J 2019; 14:229-237. [PMID: 31711063 PMCID: PMC7113474 DOI: 10.31616/asj.2019.0124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/12/2019] [Indexed: 11/23/2022] Open
Abstract
Study Design A retrospective radiographic analysis. Purpose The aim of the current study is to assess endplate changes after the use of polyetheretherketone (PEEK) cages in posterior lumbar interbody fusion (PLIF). Overview of Literature A few recent reports had revealed endplate abnormalities due to PEEK cages, which may lead to nonunions. Methods A retrospective computed tomography (CT)-based analysis of the endplate cavities and fusion status following PLIFs with PEEK cages was conducted by two independent observers. The term “cavity” was used to describe the endplate changes. The vertebral endplate cavities were assessed according to the size, multiplicity, location, and presence or absence of sclerosis. Results There were 86 fixed levels in 65 consecutive patients, with a mean age of 35.44±19.60 years. The mean follow-up was 16.5±10.1 months (range, 6–57 months). Definite fusion was seen in 56 levels (65.12%) by observer 1 versus 44 levels (51.16) by observer 2. The strength of agreement was moderate. Endplate cavities were observed in 42 levels (48.84%) by observer 1 versus 47 levels (54.65%) by observer 2, with fair agreement. The strengths of agreement for the locations, multiplicity, and size were moderate, fair, and poor, respectively. Neither age, sex, etiology, levels, nor follow-up period was significantly associated with the presence of cavities. With regard to fusions, the nonunions detected by observer 1 were significantly associated with the presence of cavities (p<0.0001). However, those detected by observer 2 were nearly significant (p=0.05). Conclusions There was a high rate of unfavorable radiographic findings in the form of endplate cavities in PLIF cases with PEEK cages. A more comprehensive classification for the assessment of fusions and endplate cavities should be formulated. We strongly recommend further CT-based studies with larger sample size and longer follow-up periods.
Collapse
Affiliation(s)
| | | | - Yasser Allam
- Spine Unit, Al-Hadra University Hospital, Alexandria, Egypt
| | - Raafat Ragab
- Spine Unit, Al-Hadra University Hospital, Alexandria, Egypt
| |
Collapse
|