1
|
Scott J, Valero C, Mato-López Á, Donaldson IJ, Roldán A, Chown H, Van Rhijn N, Lobo-Vega R, Gago S, Furukawa T, Morogovsky A, Ben Ami R, Bowyer P, Osherov N, Fontaine T, Goldman GH, Mellado E, Bromley M, Amich J. Aspergillus fumigatus Can Display Persistence to the Fungicidal Drug Voriconazole. Microbiol Spectr 2023; 11:e0477022. [PMID: 36912663 PMCID: PMC10100717 DOI: 10.1128/spectrum.04770-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/12/2023] [Indexed: 03/14/2023] Open
Abstract
Aspergillus fumigatus is a filamentous fungus that can infect the lungs of patients with immunosuppression and/or underlying lung diseases. The mortality associated with chronic and invasive aspergillosis infections remain very high, despite availability of antifungal treatments. In the last decade, there has been a worrisome emergence and spread of resistance to the first-line antifungals, the azoles. The mortality caused by resistant isolates is even higher, and patient management is complicated as the therapeutic options are reduced. Nevertheless, treatment failure is also common in patients infected with azole-susceptible isolates, which can be due to several non-mutually exclusive reasons, such as poor drug absorption. In addition, the phenomena of tolerance or persistence, where susceptible pathogens can survive the action of an antimicrobial for extended periods, have been associated with treatment failure in bacterial infections, and their occurrence in fungal infections already proposed. Here, we demonstrate that some isolates of A. fumigatus display persistence to voriconazole. A subpopulation of the persister isolates can survive for extended periods and even grow at low rates in the presence of supra-MIC of voriconazole and seemingly other azoles. Persistence cannot be eradicated with adjuvant drugs or antifungal combinations and seemed to reduce the efficacy of treatment for certain individuals in a Galleria mellonella model of infection. Furthermore, persistence implies a distinct transcriptional profile, demonstrating that it is an active response. We propose that azole persistence might be a relevant and underestimated factor that could influence the outcome of infection in human aspergillosis. IMPORTANCE The phenomena of antibacterial tolerance and persistence, where pathogenic microbes can survive for extended periods in the presence of cidal drug concentrations, have received significant attention in the last decade. Several mechanisms of action have been elucidated, and their relevance for treatment failure in bacterial infections demonstrated. In contrast, our knowledge of antifungal tolerance and, in particular, persistence is still very limited. In this study, we have characterized the response of the prominent fungal pathogen Aspergillus fumigatus to the first-line therapy antifungal voriconazole. We comprehensively show that some isolates display persistence to this fungicidal antifungal and propose various potential mechanisms of action. In addition, using an alternative model of infection, we provide initial evidence to suggest that persistence may cause treatment failure in some individuals. Therefore, we propose that azole persistence is an important factor to consider and further investigate in A. fumigatus.
Collapse
Affiliation(s)
- Jennifer Scott
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Clara Valero
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Álvaro Mato-López
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Ian J. Donaldson
- Bioinformatics Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alejandra Roldán
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Harry Chown
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Norman Van Rhijn
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rebeca Lobo-Vega
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Sara Gago
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Takanori Furukawa
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alma Morogovsky
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronen Ben Ami
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paul Bowyer
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Thierry Fontaine
- Institut Pasteur, Université de Paris, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Emilia Mellado
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- CiberInfec ISCIII, CIBER en Enfermedades Infecciosas, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael Bromley
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jorge Amich
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| |
Collapse
|
3
|
Ashton GD, Sang F, Blythe M, Zadik D, Holmes N, Malla S, Camps SMT, Wright V, Melchers WJG, Verweij PE, Dyer PS. Use of Bulk Segregant Analysis for Determining the Genetic Basis of Azole Resistance in the Opportunistic Pathogen Aspergillus fumigatus. Front Cell Infect Microbiol 2022; 12:841138. [PMID: 35531335 PMCID: PMC9069965 DOI: 10.3389/fcimb.2022.841138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/03/2022] [Indexed: 12/19/2022] Open
Abstract
A sexual cycle was described in 2009 for the opportunistic fungal pathogen Aspergillus fumigatus, opening up for the first time the possibility of using techniques reliant on sexual crossing for genetic analysis. The present study was undertaken to evaluate whether the technique 'bulk segregant analysis' (BSA), which involves detection of differences between pools of progeny varying in a particular trait, could be applied in conjunction with next-generation sequencing to investigate the underlying basis of monogenic traits in A. fumigatus. Resistance to the azole antifungal itraconazole was chosen as a model, with a dedicated bioinformatic pipeline developed to allow identification of SNPs that differed between the resistant progeny pool and resistant parent compared to the sensitive progeny pool and parent. A clinical isolate exhibiting monogenic resistance to itraconazole of unknown basis was crossed to a sensitive parent and F1 progeny used in BSA. In addition, the use of backcrossing and increasing the number in progeny pools was evaluated as ways to enhance the efficiency of BSA. Use of F1 pools of 40 progeny led to the identification of 123 candidate genes with SNPs distributed over several contigs when aligned to an A1163 reference genome. Successive rounds of backcrossing enhanced the ability to identify specific genes and a genomic region, with BSA of progeny (using 40 per pool) from a third backcross identifying 46 genes with SNPs, and BSA of progeny from a sixth backcross identifying 20 genes with SNPs in a single 292 kb region of the genome. The use of an increased number of 80 progeny per pool also increased the resolution of BSA, with 29 genes demonstrating SNPs between the different sensitive and resistant groupings detected using progeny from just the second backcross with the majority of variants located on the same 292 kb region. Further bioinformatic analysis of the 292 kb region identified the presence of a cyp51A gene variant resulting in a methionine to lysine (M220K) change in the CYP51A protein, which was concluded to be the causal basis of the observed resistance to itraconazole. The future use of BSA in genetic analysis of A. fumigatus is discussed.
Collapse
Affiliation(s)
- George D. Ashton
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Fei Sang
- DeepSeq, Centre for Genetics and Genomics, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Martin Blythe
- DeepSeq, Centre for Genetics and Genomics, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Daniel Zadik
- DeepSeq, Centre for Genetics and Genomics, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Nadine Holmes
- DeepSeq, Centre for Genetics and Genomics, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Sunir Malla
- DeepSeq, Centre for Genetics and Genomics, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Simone M. T. Camps
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Victoria Wright
- DeepSeq, Centre for Genetics and Genomics, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Willem J. G. Melchers
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Paul E. Verweij
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Paul S. Dyer
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
4
|
Zhang J, Verweij PE, Rijs AJMM, Debets AJM, Snelders E. Flower Bulb Waste Material Is a Natural Niche for the Sexual Cycle in Aspergillus fumigatus. Front Cell Infect Microbiol 2022; 11:785157. [PMID: 35145921 PMCID: PMC8823264 DOI: 10.3389/fcimb.2021.785157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022] Open
Abstract
With population genetic evidence of recombination ongoing in the natural Aspergillus fumigatus population and a sexual cycle demonstrated in the laboratory the question remained what the natural niche for A. fumigatus sex is. Composting plant-waste material is a known substrate of A. fumigatus to thrive and withstand temperatures even up to 70°C. Previous studies have shown indirect evidence for sexual reproduction in these heaps but never directly demonstrated the sexual structures due to technical limitations. Here, we show that flower bulb waste material from stockpiles undergoing composting can provide the conditions for sexual reproduction. Direct detection of ascospore structures was shown in agricultural flower bulb waste material by using a grid-based detection assay. Furthermore, we demonstrate that ascospores can germinate after exposure to 70°C for up to several days in contrast to asexual conidia that are unable to survive a two-hour heat shock. This indicates a sufficient time frame for ascospores to survive and escape composting stockpiles. Finally, sexual crosses with cleistothecium and viable ascospore formation could successfully be performed on flower bulb waste material. Recombination of A. fumigatus can now be explained by active sexual reproduction in nature as we show in this study that flower bulb waste material provides an environmental niche for sex.
Collapse
Affiliation(s)
- Jianhua Zhang
- Laboratory of Genetics, Wageningen University & Research, Wageningen, Netherlands
- *Correspondence: Jianhua Zhang,
| | - Paul E. Verweij
- Radboud University Medical Center (Radboudumc), Nijmegen, Netherlands
- Canisius-Wilhelmina Ziekenhuis (CWZ) Center of Expertise for Mycology, Radboud University Medical Center (Radboudumc), Nijmegen, Netherlands
| | - Antonius J. M. M. Rijs
- Radboud University Medical Center (Radboudumc), Nijmegen, Netherlands
- Canisius-Wilhelmina Ziekenhuis (CWZ) Center of Expertise for Mycology, Radboud University Medical Center (Radboudumc), Nijmegen, Netherlands
| | - Alfons J. M. Debets
- Laboratory of Genetics, Wageningen University & Research, Wageningen, Netherlands
| | - Eveline Snelders
- Laboratory of Genetics, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|