1
|
Zhao ZZ, Wei J, Su F, Chen HP, Liu JK. Matsulongifolins A-J: (-)-longifolane-type sesquiterpenoids from the mushroom Tricholoma matsutake (S. Ito & Imai) Singer. PHYTOCHEMISTRY 2025; 235:114483. [PMID: 40090562 DOI: 10.1016/j.phytochem.2025.114483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
The mushroom Tricholoma matsutake is renowned in East Asia for its distinctive flavour and nutritional value. However, its chemical composition remains largely unexplored. This study aimed to identify potential lead compounds from wild mushrooms, with a focus on the specialised metabolite profiles of T. matsutake. As a result, 10 rare (-)-(14-nor)longifolane-type sesquiterpenoids, designated matsulongifolins A-J (1-10), were isolated from the fruiting bodies of T. matsutake collected in the Tibet Autonomous Region, China. Matsulongifolins G (7)/H (8) and I (9)/J (10) were obtained as inseparable mixtures. The structures, including their absolute configurations, were determined through extensive spectroscopic analyses, single-crystal X-ray diffraction and electronic circular dichroism calculations. Matsulongifolin A (1) features a unique, rigid, cage-like 5/6/7/5/5 polycyclic system, while matsulongifolin B (2), an anhydride derivative, contains a 5/6/7/5 tetracyclic ring system. Matsulongifolins I (9) and J (10) are each distinguished by a succinyl group, a rare feature typically found in bacterial natural products. Bioassay results revealed that matsulongifolins B-F (2-6) exhibited weak inhibitory activity against Staphylococcus aureus subsp. aureus. This study represents the first identification of longifolane-type sesquiterpenes from a mushroom source and advances the understanding of the specialised metabolites present in T. matsutake.
Collapse
Affiliation(s)
- Zhen-Zhu Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jinjuan Wei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Facheng Su
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - He-Ping Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
2
|
Wei C, Liu M, Meng G, Wang M, Zhou X, Xu J, Hu J, Zhang L, Dong C. Characterization of Endofungal Bacteria and Their Role in the Ectomycorrhizal Fungus Helvella bachu. J Fungi (Basel) 2024; 10:889. [PMID: 39728385 DOI: 10.3390/jof10120889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024] Open
Abstract
Helvella bachu, an ectomycorrhizal fungus, forms a symbiotic relationship with Populus euphratica, a rare and endangered species crucial to desert riparian ecosystems. In this study, endofungal bacteria (EFBs) within the fruiting bodies of H. bachu were confirmed by a polyphasic approach, including genomic sequencing, real-time quantitative PCR targeting the 16S rRNA gene, full-length and next-generation sequencing (NGS) of the 16S rRNA gene, and culture methods. The genera Stenotrophomonas, Variovorax, Acidovorax, and Pedobacter were abundant in the EFBs of fruiting bodies associated with three Populus hosts and were consistently present across different developmental stages. Notably, S. maltophilia and V. paradoxus were detected in high abundance, as revealed by full-length 16S rRNA sequencing, with S. maltophilia also isolated by culture methods. KO-pathway analysis indicated that pathways related to primary, secondary, and energy metabolism were predominantly enriched, suggesting these bacteria may promote H. bachu growth by producing essential compounds, including sugars, proteins, and vitamins, and secondary metabolites. This study confirmed the presence of EFBs in H. bachu and provided the first comprehensive overview of their structure, functional potential, and dynamic changes throughout fruiting body maturation, offering valuable insights for advancing the artificial domestication of this species.
Collapse
Affiliation(s)
- Caihong Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science and Technology, Tarim University, Alar 843300, China
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Mengqian Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoliang Meng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Miao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianping Xu
- Department of Biology, Institute of Infectious Diseases Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jianwei Hu
- College of Life Science and Technology, Tarim University, Alar 843300, China
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Lili Zhang
- College of Life Science and Technology, Tarim University, Alar 843300, China
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
3
|
Zhang K, Chen X, Shi X, Yang Z, Yang L, Liu D, Yu F. Endophytic Bacterial Community, Core Taxa, and Functional Variations Within the Fruiting Bodies of Laccaria. Microorganisms 2024; 12:2296. [PMID: 39597685 PMCID: PMC11596330 DOI: 10.3390/microorganisms12112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Macrofungi do not exist in isolation but establish symbiotic relationships with microorganisms, particularly bacteria, within their fruiting bodies. Herein, we examined the fruiting bodies' bacteriome of seven species of the genus Laccaria collected from four locations in Yunnan, China. By analyzing bacterial diversity, community structure, and function through 16S rRNA sequencing, we observed the following: (1) In total, 4,840,291 high-quality bacterial sequences obtained from the fruiting bodies were grouped into 16,577 amplicon sequence variants (ASVs), and all samples comprised 23 shared bacterial ASVs. (2) The Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium complex was found to be the most abundant and presumably coexisting bacterium. (3) A network analysis revealed that endophytic bacteria formed functional groups, which were dominated by the genera Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Novosphingobium, and Variovorax. (4) The diversity, community structure, and dominance of ecological functions (chemoheterotrophy and nitrogen cycling) among endophytic bacteria were significantly shaped by geographic location, habitat, and fungal genotype, rather than fruiting body type. (5) A large number of the endophytic bacteria within Laccaria are bacteria that promote plant growth; however, some pathogenic bacteria that pose a threat to human health might also be present. This research advances our understanding of the microbial ecology of Laccaria and the factors shaping its endophytic bacterial communities.
Collapse
Affiliation(s)
- Kaixuan Zhang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xin Chen
- College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, China;
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Zhenyan Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Lian Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Dong Liu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| |
Collapse
|
4
|
Chen FC, Chen FC, Motoda T. A finding of potential coexisting bacteria and characterization of the bacterial communities in the fruiting body of Sarcodon aspratus. Folia Microbiol (Praha) 2024; 69:1137-1144. [PMID: 39160370 DOI: 10.1007/s12223-024-01189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Sarcodon aspratus (Berk.) S. Ito is a Japanese local dish with unique aroma and is effective against allergic diseases. However, its cultivation was still difficult. Recently, coexisting bacteria were regarded as an important factor for mycelium growth and fruiting body formation. Therefore, we performed 16S rRNA amplicon sequencing in the fruiting body of S. aspratus and its adhered soil to understand the bacterial communities in the fruiting body of S. aspratus. The fruiting body group showed lower alpha diversities and a significant difference in the structure of bacterial communities compared to the soil group. In addition, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium had the highest relative abundance in the fruiting body group, and it was also a potential coexisting bacterium in the fruiting body of S. aspratus by linear discriminant analysis effect size (LEfSe) analysis. This highest relative abundance phenomenon in Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium clade was also found in the fruiting body of Cantharellus cibarius. These findings suggested that Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium plays a key role in the bacterial communities in the fruiting body of S. aspratus. Bacteria in the fruit bodies of S. aspratus and C. cibarius probably present a similar coexistence model.
Collapse
Affiliation(s)
- Fu-Chia Chen
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan.
| | - Fu-Chieh Chen
- Jin-Sing Chen's Mushroom Farm, No. 31, Donghu Road, Dali District, Taichung City, Taiwan, ROC
| | - Taichi Motoda
- Institute of Wood Technology, Akita Prefectural University, Akita, Japan
| |
Collapse
|
5
|
Guo H, Liu W, Xie Y, Wang Z, Huang C, Yi J, Yang Z, Zhao J, Yu X, Sibirina LA. Soil microbiome of shiro reveals the symbiotic relationship between Tricholoma bakamatsutake and Quercus mongolica. Front Microbiol 2024; 15:1361117. [PMID: 38601932 PMCID: PMC11004381 DOI: 10.3389/fmicb.2024.1361117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Tricholoma bakamatsutake is a delicious and nutritious ectomycorrhizal fungus. However, its cultivation is hindered owing to limited studies on its symbiotic relationships. The symbiotic relationship between T. bakamatsutake and its host is closely related to the shiro, a complex network composed of mycelium, mycorrhizal roots, and surrounding soil. To explore the symbiotic relationship between T. bakamatsutake and its host, soil samples were collected from T. bakamatsutake shiro (Tb) and corresponding Q. mongolica rhizosphere (CK) in four cities in Liaoning Province, China. The physicochemical properties of all the soil samples were then analyzed, along with the composition and function of the fungal and bacterial communities. The results revealed a significant increase in total potassium, available nitrogen, and sand in Tb soil compared to those in CK soil, while there was a significant decrease in pH, total nitrogen, total phosphorus, available phosphorus, and silt. The fungal community diversity in shiro was diminished, and T. bakamatsutake altered the community structure of its shiro by suppressing other fungi, such as Russula (ectomycorrhizal fungus) and Penicillium (phytopathogenic fungus). The bacterial community diversity in shiro increased, with the aggregation of mycorrhizal-helper bacteria, such as Paenibacillus and Bacillus, and plant growth-promoting bacteria, such as Solirubrobacter and Streptomyces, facilitated by T. bakamatsutake. Microbial functional predictions revealed a significant increase in pathways associated with sugar and fat catabolism within the fungal and bacterial communities of shiro. The relative genetic abundance of carboxylesterase and gibberellin 2-beta-dioxygenase in the fungal community was significantly increased, which suggested a potential symbiotic relationship between T. bakamatsutake and Q. mongolica. These findings elucidate the microbial community and relevant symbiotic environment to better understand the relationship between T. bakamatsutake and Q. mongolica.
Collapse
Affiliation(s)
- Hongbo Guo
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
- Primorye State Agricultural Academy, Ussuriysk, Russia
| | - Weiye Liu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Yuqi Xie
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Zhenyu Wang
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Chentong Huang
- College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Jingfang Yi
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Zhaoqian Yang
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Jiachen Zhao
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Xiaodan Yu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Lidiya Alekseevna Sibirina
- Primorye State Agricultural Academy, Ussuriysk, Russia
- Federal Scientific Center of the East Asia Terrestrial Biodiversity Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
6
|
Angelova G, Stefanova P, Brazkova M, Krastanov A. Molecular and morphological characterization of Xylaria karsticola (Ascomycota) isolated from the fruiting body of Macrolepiota procera (Basidiomycota) from Bulgaria. PLoS One 2023; 18:e0287679. [PMID: 37384635 PMCID: PMC10309620 DOI: 10.1371/journal.pone.0287679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/07/2023] [Indexed: 07/01/2023] Open
Abstract
The present study is the first to report Xylaria karsticola isolated from the basidiocarp of Macrolepiota procera (Basidiomycota), from Stara Planina Mountain, Bulgaria and second report for such species found in Europe. The fungal isolate was in vitro cultivated and the morphology was observed. It was primarily determined as a xylariaceous morphotype at the intragenus level, based on the evaluation of colony growth rate, color, and stromatic structure formation and was confirmed by unique conidiophores and conidia. The molecular identification of the isolate was performed by amplification of ITS1-5.8S-ITS2 region and the strain was identified as Xylaria karsticola with 97.57% of confidence. The obtained sequence was deposited in the GenBank database under the accession number MW996752 and in the National Bank of Industrial Microorganisms and Cell Cultures of Bulgaria under accession number NBIMCC 9097. The phylogenetic analysis of the isolate was also conducted by including 26 sequences obtained from different Xylaria isolates. Considering the phylogenetic data, X. karsticola NBIMCC 9097 was grouped along with other X. karsticola isolates, although the DNA sequence of the novel X. karsticola was rather distantly related to the other X. karsticola sequence data. The results were supported by the bootstrap analysis (100%) and indicated the different origin of the examined X. karsticola NBIMCC 9097.
Collapse
Affiliation(s)
- Galena Angelova
- Department of Biotechnology, University of Food Technology, Plovdiv, Bulgaria
| | - Petya Stefanova
- Department of Biotechnology, University of Food Technology, Plovdiv, Bulgaria
| | - Mariya Brazkova
- Department of Biotechnology, University of Food Technology, Plovdiv, Bulgaria
| | - Albert Krastanov
- Department of Biotechnology, University of Food Technology, Plovdiv, Bulgaria
| |
Collapse
|
7
|
Xiang Q, Arshad M, Li Y, Zhang H, Gu Y, Yu X, Zhao K, Ma M, Zhang L, He M, Chen Q. Transcriptomic profiling revealed important roles of amino acid metabolism in fruiting body formation at different ripening times in Hypsizygus marmoreus. Front Microbiol 2023; 14:1169881. [PMID: 37180258 PMCID: PMC10167310 DOI: 10.3389/fmicb.2023.1169881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/31/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Hypsizygus marmoreus is an industrial mushroom that is widely cultivated in East Asia. Its long postripening stage before fruiting severely limits its industrialized production. Methods Five different mycelial ripening times (30, 50, 70, 90, and 100 d) were chosen and primordia (30P, 50P, 70P, 90P, and 110P) were collected for comparative transcriptomic analyses. The corresponding substrates (30F, 50F, 70F, 90F, and 110F) were used for nutrient content and enzyme activity determination. Results In pairwise comparisons between 110P and other primordia, a total of 1,194, 977, 773, and 697 differentially expressed genes (DEGs) were identified in 30P_110P, 50P_110P, 70P_110P, and 90P_110P, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes Genomes (KEGG) functional enrichment analyses revealed that the DEGs were mainly associated with amino acid metabolism, and lipid and carbohydrate metabolism pathways. Tyrosine, tryptophan, phenylalanine and histidine metabolism were enriched in all groups. Among the main carbon nutrients, the contents of cellulose and hemicellulose were high, and the lignin content decreased with the extension of the ripening time. Laccase had the highest activity, and acid protease activity decreased with the extension of the ripening time. Discussion The highly enrichment for amino acid metabolic pathways in primordia reveals that these pathways are essential for fruiting body formation in H. marmoreus, and these results will provide a basis for the optimization of its cultivation.
Collapse
Affiliation(s)
- Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Muhammad Arshad
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yakun Li
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huijuan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lingzi Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Maolan He
- Qinghai Spring Medicinal Resources Technology Co., Ltd., Chengdu, Sichuan, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Liu D, Herrera M, Zhang P, He X, Perez-Moreno J, Chater CCC, Yu F. Truffle species strongly shape their surrounding soil mycobiota in a Pinus armandii forest. Arch Microbiol 2021; 203:6303-6314. [PMID: 34652507 DOI: 10.1007/s00203-021-02598-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022]
Abstract
Truffles contribute to crucial soil systems dynamics, being involved in plentiful ecological functions important for ecosystems. Despite this, the interactions between truffles and their surrounding mycobiome remain unknown. Here, we investigate soil mycobiome differences between two truffle species, Tuber indicum (Ti) and Tuber pseudohimalayense (Tp), and their relative influence on surrounding soil mycobiota. Using traditional chemical analysis and ITS Illumina sequencing, we compared soil nutrients and the mycobiota, respectively, in soil, gleba, and peridium of the two truffle species inhabiting the same Pinus armandii forest in southwestern China. Tp soil was more acidic (pH 6.42) and had a higher nutrient content (total C, N content) than Ti soil (pH 6.62). Fungal richness and diversity of fruiting bodies (ascomata) and surrounding soils were significantly higher in Tp than in Ti. Truffle species recruited unique soil mycobiota around their ascomata: in Ti soil, fungal taxa, including Suillus, Alternaria, Phacidium, Mycosphaerella, Halokirschsteiniothelia, and Pseudogymnoascus, were abundant, while in Tp soil species of Melanophyllum, Inocybe, Rhizopogon, Rhacidium, and Lecanicillium showed higher abundances. Three dissimilarity tests, including adonis, anosim, and MRPP, showed that differences in fungal community structure between the two truffle species and their surrounding soils were stronger in Tp than in Ti, and these differences extended to truffle tissues (peridium and gleba). Redundancy analysis (RDA) further demonstrated that correlations between soil fungal taxa and soil properties changed from negative (Tp) to positive (Ti) and shifted from a moisture-driven (Tp) to a total N-driven (Ti) relationship. Overall, our results shed light on the influence that truffles have on their surrounding soil mycobiome. However, further studies are required on a broader range of truffle species in different soil conditions in order to determine causal relationships between truffles and their soil mycobiome.
Collapse
Affiliation(s)
- Dong Liu
- Key Laboratory for Fungal Diversity and Green Development, The Germplasm Bank of Wild Species, Kunming, Kunming Institute Botany, Chinese Academy of Sciences, Qingsong Road 21#, Kunming, 650201, Yunnan, China.
| | - Mariana Herrera
- Key Laboratory for Fungal Diversity and Green Development, The Germplasm Bank of Wild Species, Kunming, Kunming Institute Botany, Chinese Academy of Sciences, Qingsong Road 21#, Kunming, 650201, Yunnan, China
| | - Peng Zhang
- Key Laboratory for Fungal Diversity and Green Development, The Germplasm Bank of Wild Species, Kunming, Kunming Institute Botany, Chinese Academy of Sciences, Qingsong Road 21#, Kunming, 650201, Yunnan, China
| | - Xinhua He
- Key Laboratory for Fungal Diversity and Green Development, The Germplasm Bank of Wild Species, Kunming, Kunming Institute Botany, Chinese Academy of Sciences, Qingsong Road 21#, Kunming, 650201, Yunnan, China.,Department of Land, Air and Water Resources, University of California at Davis, Davis, CA, 95616, USA
| | - Jesús Perez-Moreno
- Colegio de Postgraduados, Campus Montecillo, Microbiología, Edafología, 56230, Montecillo, Texcoco, Mexico
| | | | - Fuqiang Yu
- Key Laboratory for Fungal Diversity and Green Development, The Germplasm Bank of Wild Species, Kunming, Kunming Institute Botany, Chinese Academy of Sciences, Qingsong Road 21#, Kunming, 650201, Yunnan, China.
| |
Collapse
|