1
|
Böning P, Lötters S, Barzaghi B, Bock M, Bok B, Bonato L, Ficetola GF, Glaser F, Griese J, Grabher M, Leroux C, Munimanda G, Manenti R, Ludwig G, Preininger D, Rödel MO, Seibold S, Smith S, Tiemann L, Thein J, Veith M, Plewnia A. Alpine salamanders at risk? The current status of an emerging fungal pathogen. PLoS One 2024; 19:e0298591. [PMID: 38758948 PMCID: PMC11101120 DOI: 10.1371/journal.pone.0298591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/28/2024] [Indexed: 05/19/2024] Open
Abstract
Amphibians globally suffer from emerging infectious diseases like chytridiomycosis caused by the continuously spreading chytrid fungi. One is Batrachochytrium salamandrivorans (Bsal) and its disease ‒ the 'salamander plague' ‒ which is lethal to several caudate taxa. Recently introduced into Western Europe, long distance dispersal of Bsal, likely through human mediation, has been reported. Herein we study if Alpine salamanders (Salamandra atra and S. lanzai) are yet affected by the salamander plague in the wild. Members of the genus Salamandra are highly susceptible to Bsal leading to the lethal disease. Moreover, ecological modelling has shown that the Alps and Dinarides, where Alpine salamanders occur, are generally suitable for Bsal. We analysed skin swabs of 818 individuals of Alpine salamanders and syntopic amphibians at 40 sites between 2017 to 2022. Further, we compiled those with published data from 319 individuals from 13 sites concluding that Bsal infections were not detected. Our results suggest that the salamander plague so far is absent from the geographic ranges of Alpine salamanders. That means that there is still a chance to timely implement surveillance strategies. Among others, we recommend prevention measures, citizen science approaches, and ex situ conservation breeding of endemic salamandrid lineages.
Collapse
Affiliation(s)
- Philipp Böning
- Department of Biogeography, Trier University, Trier, Germany
| | - Stefan Lötters
- Department of Biogeography, Trier University, Trier, Germany
| | - Benedetta Barzaghi
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Marvin Bock
- Department of Biogeography, Trier University, Trier, Germany
| | - Bobby Bok
- St. Michael College, Zaandam, Netherlands
| | - Lucio Bonato
- Department of Biology, University of Padova, Padova, Italy
- National Biodiversity Future Center, Palermo, Italy
| | | | | | | | | | - Camille Leroux
- Centre d’Ecologie et des Sciences de la Conservation (CESCO), Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, Paris, France
- Auddicé Biodiversité–ZAC du Chevalement, Roost-Warendin, France
- Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Gopikrishna Munimanda
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Raoul Manenti
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | | | | | - Mark-Oliver Rödel
- Museum für Naturkunde–Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Sebastian Seibold
- Forest Zoology, Technische Universität Dresden, Tharandt, Germany
- Berchtesgaden National Park, Berchtesgaden, Germany
- Ecosystem Dynamics and Forest Management, Technical University of Munich, Freising, Germany
| | - Steve Smith
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Laura Tiemann
- Department of Neurology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Jürgen Thein
- Büro für Faunistik und Umweltbildung, Haßfurt, Germany
| | - Michael Veith
- Department of Biogeography, Trier University, Trier, Germany
| | - Amadeus Plewnia
- Department of Biogeography, Trier University, Trier, Germany
| |
Collapse
|
2
|
Poonlaphdecha S, Ribas A, Martínez-Silvestre A, Villa M. New Data on the Larval Stages of Leptophallus nigrovenosus (Digenea, Plagiorchiata). Animals (Basel) 2024; 14:1154. [PMID: 38672302 PMCID: PMC11047363 DOI: 10.3390/ani14081154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: Leptophallus nigrovenosus, an esophageal parasite that primarily affects water snakes of the genus Natrix, has a known life cycle that involves snail and amphibian hosts. However, the biological aspects, chaetotaxic patterns, and pathogeny of this parasite in its hosts have not been fully elucidated. (2) Methods: Snails (Planorbarius metidjensis) were collected in Spain and examined for cercaria emergence. The larvae were used to experimentally infect Salamandra salamandra, and metacercariae were isolated. Their chaetotaxy was studied using microscopy and scanning electron microscopy. The eye histology was also examined. (3) Results: The cercariae displayed distinctive morphological characteristics. The results of this study revealed three types of ciliated sensory papillae on the cercarial teguments, suggesting an adaptation for host detection and orientation. The metacercariae isolated from subcutaneous tissues showed oval bodies covered in spines. The chaetotaxy patterns matched those of Leptophallinae species. This is the first report of the presence of L. nigrovenosus in the snail P. metidjensis. Additionally, this study detected metacercariae in the eyes of S. salamandra, emphasizing the need for further research on trematode infections in amphibian eyes. (4) Conclusions: Members of the genus Salamandra can serve as secondary intermediate hosts for L. nigrovenosus, and the presence of metacercariae in amphibian eyes may have implications for the survival and habitat management of these amphibians. Understanding this parasite's prevalence, transmission dynamics, and impacts on host populations is crucial for conservation strategies.
Collapse
Affiliation(s)
- Srisupaph Poonlaphdecha
- Parasitology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (S.P.); (M.V.)
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alexis Ribas
- Parasitology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (S.P.); (M.V.)
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Spain
| | | | - Mercedes Villa
- Parasitology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (S.P.); (M.V.)
| |
Collapse
|
3
|
Erens J, Preissler K, Speybroeck J, Beukema W, Spitzen-van der Sluijs A, Stark T, Laudelout A, Kinet T, Schmidt BR, Martel A, Steinfartz S, Pasmans F. Divergent population responses following salamander mass mortalities and declines driven by the emerging pathogen Batrachochytrium salamandrivorans. Proc Biol Sci 2023; 290:20230510. [PMID: 37752840 PMCID: PMC10523083 DOI: 10.1098/rspb.2023.0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Understanding wildlife responses to novel threats is vital in counteracting biodiversity loss. The emerging pathogen Batrachochytrium salamandrivorans (Bsal) causes dramatic declines in European salamander populations, and is considered an imminent threat to global amphibian biodiversity. However, real-life disease outcomes remain largely uncharacterized. We performed a multidisciplinary assessment of the longer-term impacts of Bsal on highly susceptible fire salamander (Salamandra salamandra) populations, by comparing four of the earliest known outbreak sites to uninfected sites. Based on large-scale monitoring efforts, we found population persistence in strongly reduced abundances to over a decade after Bsal invasion, but also the extinction of an initially small-sized population. In turn, we found that host responses varied, and Bsal detection remained low, within surviving populations. Demographic analyses indicated an ongoing scarcity of large reproductive adults with potential for recruitment failure, while spatial comparisons indicated a population remnant persisting within aberrant habitat. Additionally, we detected no early signs of severe genetic deterioration, yet nor of increased host resistance. Beyond offering additional context to Bsal-driven salamander declines, results highlight how the impacts of emerging hypervirulent pathogens can be unpredictable and vary across different levels of biological complexity, and how limited pathogen detectability after population declines may complicate surveillance efforts.
Collapse
Affiliation(s)
- Jesse Erens
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | | | | | - Wouter Beukema
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Reptile, Amphibian & Fish Conservation Netherlands (RAVON), Nijmegen, the Netherlands
| | - Annemarieke Spitzen-van der Sluijs
- Reptile, Amphibian & Fish Conservation Netherlands (RAVON), Nijmegen, the Netherlands
- Institute for Water and Wetland Research, Animal Ecology and Physiology, Radboud University, Nijmegen, the Netherlands
| | - Tariq Stark
- Reptile, Amphibian & Fish Conservation Netherlands (RAVON), Nijmegen, the Netherlands
| | | | | | - Benedikt R. Schmidt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Info fauna karch, Neuchâtel, Switzerland
| | - An Martel
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | | | - Frank Pasmans
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Schilliger L, Paillusseau C, François C, Bonwitt J. Major Emerging Fungal Diseases of Reptiles and Amphibians. Pathogens 2023; 12:pathogens12030429. [PMID: 36986351 PMCID: PMC10053826 DOI: 10.3390/pathogens12030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Emerging infectious diseases (EIDs) are caused by pathogens that have undergone recent changes in terms of geographic spread, increasing incidence, or expanding host range. In this narrative review, we describe three important fungal EIDs with keratin trophism that are relevant to reptile and amphibian conservation and veterinary practice. Nannizziopsis spp. have been mainly described in saurians; infection results in thickened, discolored skin crusting, with eventual progression to deep tissues. Previously only reported in captive populations, it was first described in wild animals in Australia in 2020. Ophidiomyces ophidiicola (formely O. ophiodiicola) is only known to infect snakes; clinical signs include ulcerating lesions in the cranial, ventral, and pericloacal regions. It has been associated with mortality events in wild populations in North America. Batrachochytrium spp. cause ulceration, hyperkeratosis, and erythema in amphibians. They are a major cause of catastrophic amphibian declines worldwide. In general, infection and clinical course are determined by host-related characteristics (e.g., nutritional, metabolic, and immune status), pathogens (e.g., virulence and environmental survival), and environment (e.g., temperature, hygrometry, and water quality). The animal trade is thought to be an important cause of worldwide spread, with global modifications in temperature, hygrometry, and water quality further affecting fungal pathogenicity and host immune response.
Collapse
Affiliation(s)
- Lionel Schilliger
- Argos Veterinary Clinic of Paris Auteuil, 35 Rue Leconte de Lisle, 75016 Paris, France
- SpéNac Referral Center, 100 Boulevard de la Tour Maubourg, 75007 Paris, France
- Correspondence: ; Tel.: +33-188-616-831
| | - Clément Paillusseau
- Argos Veterinary Clinic of Paris Auteuil, 35 Rue Leconte de Lisle, 75016 Paris, France
- SpéNac Referral Center, 100 Boulevard de la Tour Maubourg, 75007 Paris, France
| | - Camille François
- Argos Veterinary Clinic of Paris Auteuil, 35 Rue Leconte de Lisle, 75016 Paris, France
- SpéNac Referral Center, 100 Boulevard de la Tour Maubourg, 75007 Paris, France
| | - Jesse Bonwitt
- Department of Anthropology, Durham University, South Rd., Durham DH1 3LE, UK
| |
Collapse
|
5
|
Afonso M, Coelho L, Jesus F, Campos I, Abrantes N, Gonçalves FJM, Marques S, Serpa D. Effects of Pine and Eucalypt ashes on bacterial isolates from the skin microbiome of the fire salamander (Salamandra salamandra). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156677. [PMID: 35710008 DOI: 10.1016/j.scitotenv.2022.156677] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Environmental contamination influences the diversity of the resident skin microbial community of amphibians, ultimately affecting the individual's immune system. Wildfires are expected to impact the skin microbiome, since post-fire runoff typically transports hazardous substances, that can affect terrestrial and aquatic ecosystems. The present study is the first to assess the effects of Eucalypt and Pine wildfire ash on cultivable bacterial isolates from the skin microbiome of amphibians, in particular the fire salamander (Salamandra salamandra), a common species in fire-prone Mediterranean ecosystems. To achieve this goal, samples of skin bacteria of adult individuals of S. salamandra were collected at a site without influence of wildfires. The bacterial isolates were tested against the pathogenic agent Aeromonas salmonicida for assessing their antimicrobial activity, before exposing them to a series of dilutions of aqueous extracts of Eucalypt and Pine ashes (AAEs) from high severity wildfires. From the 80 bacterial isolates collected, 48 (mostly Pseudomonas spp.) showed antimicrobial activity. Exposure of bacteria with antimicrobial activity to the Eucalypt and Pine AAEs at concentrations of 0, 6.25, 12.5, 25, 50, 75, and 100%, revealed that bacterial growth could be significantly inhibited, stimulated or unaffected by ash. Growth inhibition was found for Pine and Eucalypt AAEs at concentrations as low as 6.25% and 12.5%, respectively, but were more expressive at concentrations equal or above 50%. Eucalypt AAEs had a higher negative impact on bacterial growth than Pine AAEs, likely due to differences in metal concentrations between ash types. These findings raise concern about the future of amphibians in fire-prone regions since the foreseen increase in fire frequency and severity owing to climate changes are likely to alter the skin microbiome of amphibians, weaken the immune system and consequently increasing the incidence of infections or diseases, further contributing to the decline of the populations.
Collapse
Affiliation(s)
- Mariana Afonso
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Laura Coelho
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Fátima Jesus
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel Campos
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Nelson Abrantes
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Fernando J M Gonçalves
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sérgio Marques
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Dalila Serpa
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
Palomar G, Jakóbik J, Bosch J, Kolenda K, Kaczmarski M, Jośko P, Roces-Díaz JV, Stachyra P, Thumsová B, Zieliński P, Pabijan M. Emerging infectious diseases of amphibians in Poland: distribution and environmental drivers. DISEASES OF AQUATIC ORGANISMS 2021; 147:1-12. [PMID: 34734569 DOI: 10.3354/dao03631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Emerging infectious diseases are a threat to biodiversity and have taken a large toll on amphibian populations worldwide. The chytrid fungi Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), and the iridovirus Ranavirus (Rv), are of concern as all have contributed to amphibian declines. In central and eastern Europe, their geographical and host distributions and main environmental drivers determining prevalence are poorly known. We screened over 1000 amphibians from natural and captive populations in Poland for the presence of Bd, Bsal and Rv. In wild amphibian populations, we found that Bd is widespread, present in 46 out of 115 sampled localities as well as 2 captive colonies, and relatively common with overall prevalence at 14.4% in 9 species. We found lower prevalence of Rv at 2.4%, present in 11 out of 92 sampling sites, with a taxonomic breadth of 8 different amphibian species. Bsal infection was not detected in any individuals. In natural populations, Pelophylax esculentus and Bombina variegata accounted for 75% of all Bd infections, suggesting a major role for these 2 species as pathogen reservoirs in Central European freshwater habitats. General linear models showed that climatic as well as landscape features are associated with Bd infection in Poland. We found that higher average annual temperature constrains Bd infection, while landscapes with numerous water bodies or artificial elements (a surrogate for urbanization) increase the chances of infection. Our results show that a combination of climatic and landscape variables may drive regional and local pathogen emergence.
Collapse
Affiliation(s)
- Gemma Palomar
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|