1
|
Zhang Y, Ji X, Chang K, Yin H, Zhao M, Zhao L. The regulatory effect of chitooligosaccharides on islet inflammation in T2D individuals after islet cell transplantation: the mechanism behind Candida albicans abundance and macrophage polarization. Gut Microbes 2025; 17:2442051. [PMID: 39694919 DOI: 10.1080/19490976.2024.2442051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
Islet cell transplantation (ICT) represents a promising therapeutic approach for addressing diabetes mellitus. However, the islet inflammation during transplantation significantly reduces the surgical outcome rate, which is related to the polarization of macrophages. Chitooligosaccharides (COS) was previously reported which could modulate the immune system, alleviate inflammation, regulate gut microecology, and repair the intestinal barrier. Therefore, we hypothesized COS could relieve pancreatic inflammation by regulating macrophage polarization and gut microbiota. First, 18S rDNA gene sequencing was performed on fecal samples from the ICT population, showing abnormally increased amount of Candida albicans, possibly causing pancreatic inflammation. Functional oligosaccharides responsible for regulating macrophage polarization and inhibiting the growth of Candida albicans were screened. Afterwards, human flora-associated T2D (HMA-T2D) mouse models of gut microbiota were established, and the ability of the selected oligosaccharides were validated in vivo to alleviate inflammation and regulate gut microbiota. The results indicated that ICT significantly decreased the alpha diversity of gut fungal, altered fungal community structures, and increased Candida albicans abundance. Moreover, Candida albicans promoted M1 macrophage polarization, leading to islet inflammation. COS inhibited Candida albicans growth, suppressed the MyD88-NF-κB pathway, activated STAT6, inhibited M1, and promoted M2 macrophage polarization. Furthermore, COS-treated HMA-T2D mice displayed lower M1 macrophage differentiation and higher M2 macrophage numbers. Additionally, COS also enhanced ZO-1 and Occludin mRNA expression, reduced Candida albicans abundance, and balanced gut microecology. This study illustrated that COS modulated macrophage polarization via the MyD88/NF-κB and STAT6 pathways, repaired the intestinal barrier, and reduced Candida albicans abundance to alleviate islet inflammation.
Collapse
Affiliation(s)
- Yayu Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xiaoguo Ji
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
| | - Kunlin Chang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Hao Yin
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
| | - Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai, China
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, China
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai, China
| |
Collapse
|
2
|
Xie J, Liu J, Wang S, Wang G. Improved Enzymatic Properties of Chitosanase CsnMY002 from Bacillus subtilis via Computational Design. Int J Mol Sci 2025; 26:1588. [PMID: 40004057 PMCID: PMC11855910 DOI: 10.3390/ijms26041588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Chitooligosaccharides (COSs) are a class of functional carbohydrates with significant application prospects in food and medicine. Chitosanase CsnMY002 from the GH46 family has been used to prepare COS with controlled degrees of polymerization. To enhance the industrial applicability of CsnMY002, molecular dynamics (MD) simulations were applied to investigate the structure-property relationship. Guided by the simulation results, the beneficial mutants were screened through a synergistic strategy using a residue-folding free energy calculation and consensus sequence analysis. Iterative combinations constructed the mutant Mut6 (A49G/K70A/S84A/N89G/D199R/N221G) with significantly improved thermal stability, which had a half-life (t1/2 value) at 55 °C and 75 °C that was 1.80 and 1.62 times higher than that of the wild type, respectively. A highly active mutant, Mut2, was created, exhibiting a 1.52 times catalytic efficiency of the wild type. An MD simulation analysis of the mutants suggested that the improved enzymatic properties were highly correlated with changes in the dynamic behaviours of the enzyme structure. This study generated more suitable CsnMY002 variants for COS production and provided a comprehensive strategy for the optimization of other industrial enzymes with application potential.
Collapse
Affiliation(s)
- Jie Xie
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (J.X.); (J.L.); (S.W.)
- Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwei Liu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (J.X.); (J.L.); (S.W.)
- Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (J.X.); (J.L.); (S.W.)
- Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ganggang Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (J.X.); (J.L.); (S.W.)
- Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
3
|
Xie J, Zhang L, Yang K, Zhang H, Jiang M, Liao S, Yang D, Shen N. Enhanced chitinase production by Bacillus paralicheniformis GXMU-J23.1: Optimization, genomic insights, and chitin degradation mechanism. BIORESOURCE TECHNOLOGY 2025; 418:131911. [PMID: 39615763 DOI: 10.1016/j.biortech.2024.131911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024]
Abstract
Millions of tons of shrimp and crab waste, rich in chitin, are produced annually worldwide. To efficiently utilize this resource and address the contamination caused by traditional chitin treatment, a high-chitinase-producing strain, GXMU-J23.1, was isolated from the marine environment and identified as Bacillus paralicheniformis. Genome sequencing revealed several chitinolytic enzymes, such as chitinase, chitin deacetylase, and polysaccharide monooxygenases. Under optimal conditions, the chitinase activity increased 9.1-fold to 356.32 ± 1.21 U/mL. The purified chitinase Chi23 exhibited optimal activity at 50 °C and pH 5.0, degrading various chitin substrates. Metal ions such as Ca2+ and reagents such as EDTA increased the activity, whereas Fe2+ and Zn2+ inhibited the activity. Chi23, an endochitinase, converts chitin into chitotriose and diacetylchitobiose. Based on the structural reconstruction and molecular docking of Chi23, the potential enzyme-substrate mode of action was elucidated, which will support subsequent enzyme modification and in-depth development of enzyme systems assisting in chitin degradation.
Collapse
Affiliation(s)
- Junjie Xie
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, No. 158, Daxue Xi Road, Nanning 530008, PR China
| | - Ligang Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, No. 158, Daxue Xi Road, Nanning 530008, PR China
| | - Kexin Yang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, No. 158, Daxue Xi Road, Nanning 530008, PR China
| | - Hongyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, No. 158, Daxue Xi Road, Nanning 530008, PR China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, No. 158, Daxue Xi Road, Nanning 530008, PR China
| | - Siming Liao
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, No. 98, Daxue Road, Nanning 530007, PR China
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, No. 98, Daxue Road, Nanning 530007, PR China
| | - Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, No. 158, Daxue Xi Road, Nanning 530008, PR China.
| |
Collapse
|
4
|
Cao Y, Han M, Ji S. Four-Arm δ-Ornithine-Based Polypeptoids Resensitize Voriconazole against Azole-Resistant C. albicans. ACS Infect Dis 2024; 10:701-714. [PMID: 38241468 DOI: 10.1021/acsinfecdis.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Worldwide Candida albicans infections cause a huge burden in healthcare and the efficacy of traditional antifungals is diminished because of the rapid development of antifungal resistance. It is necessary to develop new antifungals or new strategies to make multidrug-resistant (MDR) C. albicans to resensitize to existing antifungal drugs. In this work, a series of 4-arm polypeptoids (FAPs) were synthesized through grafting linear ε-l-lysine or δ-ornithine-based oligopeptides to a trimeric lysine core. The most potent 4R-O7 exhibited excellent activities toward three sensitive and two MDR C. albicans strains with MIC values as low as 24-48 μg/mL (vs 375 μg/mL for ε-polylysine, ε-PL). The mechanism studies revealed that 4R-O7 penetrated the cell membrane and generated ROS to kill cells. 4R-O7 exhibited a synergistic effect (FICI < 0.5) with voriconazole (VOR) and also assisted VOR to restore its efficacy to MDR C. albicans. In addition, the combined use of 4R-O7 and VOR significantly improved the elimination efficacy of mature C. albicans biofilms and enhanced the potency in a mouse subcutaneous C. albicans infection model.
Collapse
Affiliation(s)
- Yuanqiao Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Miaomiao Han
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin, P. R. China
| | - Shengxiang Ji
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
5
|
Zhang M, Li ZE, Duan MH, Dai Y, Jin YG, Liu Y, Zhang YN, Li XP, Yang F. Effects of chitooligosaccharide on the in vitro antibacterial activity against avian Escherichia coli and the pharmacokinetics of florfenicol in healthy chickens. Poult Sci 2024; 103:103373. [PMID: 38150832 PMCID: PMC10788265 DOI: 10.1016/j.psj.2023.103373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/29/2023] Open
Abstract
This study investigates the combined effects of chitooligosaccharide (COS) and florfenicol (FLO) on the inhibition of Escherichia coli in vitro, as well as the pharmacokinetic interactions between these compounds in healthy chickens. The minimum inhibitory concentration (MIC) of COS and FLO alone and the fractional inhibitory concentration index (FICI) after combined treatment were determined using the broth microdilution method and checkerboard method, respectively. Additionally, we evaluated the pharmacokinetic interactions between the 2 types of COS and FLO in healthy chickens. Thirty chickens were randomly divided into 3 groups: Florfenicol group (30 mg/kg), COS J85 group (COS J85 20 mg/kg + florfenicol 30 mg/kg), COS H85 group (COS H85 20 mg/kg + florfenicol 30 mg/kg). Either FLO or COS was orally administered by gavage. The concentrations of FLO in chicken plasma were measured at different time points after the drug withdrawal using high-performance liquid chromatography (HPLC), and pharmacokinetic parameters were calculated by a compartmental method. The results showed that COS J85 and COS H85, when combined with FLO, had FICI values of 0.1875 to 0.75 and 0.3125 to 1, respectively, indicating good synergistic or additive effects against Escherichia coli. The pharmacokinetics of FLO alone and in combination with COS followed a 1-compartment model with first-order absorption and elimination. Furthermore, the pharmacokinetic analysis revealed that the elimination half-life (t1/2ke) of florfenicol was significantly increased in the COS H85 group compared to oral administration of florfenicol alone (P < 0.05). Other pharmacokinetic parameters did not show significant changes (P > 0.05), except between the 2 combined treatment groups, where statistical differences were observed for various parameters, excluding the area under the concentration-time curve from the time of dosing to infinity (AUC) and peak concentration (Cmax).
Collapse
Affiliation(s)
- Mei Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Ze-En Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Ming-Hui Duan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yan Dai
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yang-Guang Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yue Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yan-Ni Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Xing-Ping Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Fan Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
6
|
Zhao Q, Fan L, Deng C, Ma C, Zhang C, Zhao L. Bioconversion of chitin into chitin oligosaccharides using a novel chitinase with high chitin-binding capacity. Int J Biol Macromol 2023:125241. [PMID: 37301336 DOI: 10.1016/j.ijbiomac.2023.125241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/04/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Chitin is the second largest renewable biomass resource in nature, it can be enzymatically degraded into high-value chitin oligosaccharides (CHOSs) by chitinases. In this study, a chitinase (ChiC8-1) was purified and biochemically characterized, its structure was analyzed by molecular modeling. ChiC8-1 had a molecular mass of approximately 96 kDa, exhibited its optimal activity at pH 6.0 and 50 °C. The Km and Vmax values of ChiC8-1 towards colloidal chitin were 10.17 mg mL-1 and 13.32 U/mg, respectively. Notably, ChiC8-1 showed high chitin-binding capacity, which may be related to the two chitin binding domains in the N-terminal. Based on the unique properties of ChiC8-1, a modified affinity chromatography method, which combines protein purification with chitin hydrolysis process, was developed to purify ChiC8-1 while hydrolyzing chitin. In this way, 9.36 ± 0.18 g CHOSs powder was directly obtained by hydrolyzing 10 g colloidal chitin with crude enzyme solution. The CHOSs were composed of 14.77-2.83 % GlcNAc and 85.23-97.17 % (GlcNAc)2 at different enzyme-substrate ratio. This process simplifies the tedious purification and separation steps, and may enable its potential application in the field of green production of chitin oligosaccharides.
Collapse
Affiliation(s)
- Qiong Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Liqiang Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Chen Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Chunyu Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Chunyue Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China.
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.
| |
Collapse
|
7
|
Kane A, Carter DA. Augmenting Azoles with Drug Synergy to Expand the Antifungal Toolbox. Pharmaceuticals (Basel) 2022; 15:482. [PMID: 35455479 PMCID: PMC9027798 DOI: 10.3390/ph15040482] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/23/2022] Open
Abstract
Fungal infections impact the lives of at least 12 million people every year, killing over 1.5 million. Wide-spread use of fungicides and prophylactic antifungal therapy have driven resistance in many serious fungal pathogens, and there is an urgent need to expand the current antifungal arsenal. Recent research has focused on improving azoles, our most successful class of antifungals, by looking for synergistic interactions with secondary compounds. Synergists can co-operate with azoles by targeting steps in related pathways, or they may act on mechanisms related to resistance such as active efflux or on totally disparate pathways or processes. A variety of sources of potential synergists have been explored, including pre-existing antimicrobials, pharmaceuticals approved for other uses, bioactive natural compounds and phytochemicals, and novel synthetic compounds. Synergy can successfully widen the antifungal spectrum, decrease inhibitory dosages, reduce toxicity, and prevent the development of resistance. This review highlights the diversity of mechanisms that have been exploited for the purposes of azole synergy and demonstrates that synergy remains a promising approach for meeting the urgent need for novel antifungal strategies.
Collapse
Affiliation(s)
| | - Dee A. Carter
- School of Life and Environmental Sciences and Sydney ID, University of Sydney, Camperdown, NSW 2006, Australia;
| |
Collapse
|