1
|
Tian J, Yang X, Fan S, Peng X, Su H, Bi H, Qiu M. Highly oxygenated lanostane triterpenoids from Ganoderma applanatum and their anti-liver fibrosis effects. Bioorg Chem 2025; 161:108497. [PMID: 40288012 DOI: 10.1016/j.bioorg.2025.108497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 04/08/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Inspired by the intriguing structures and significant activities of Ganoderma triterpenoids (GTs), the EtOAc extract of Ganoderma applanatum was phytochemically investigated, leading to the isolation of 11 GTs, including 10 new one (1-10). Their structures including absolute configurations, were elucidated through IR, UV, HRESIMS, 1D NMR and 2D NMR data analyses. Notably, applanoids J (1) and K (2) represent the first example of GTs with an unprecedented B-seco-lanostane architecture featuring 1,4-cyclohexanedione motif. Meanwhile, compounds 1-7 and 9-11 were evaluated for their hepatoprotective activity using TGF-β1-induced liver fibrosis model, and some of them such as compounds 2, 4, 6, 7 and 10 significantly suppressed the abnormal upregulation of fibrosis-related genes FN, ACTA2 (encode α-SMA) and COL1A1. Mechanistic studies suggested that the anti-liver fibrosis effect of compound 7 may be mediated through inhibition of the TGF-β/Smad signaling pathway. This study not only illustrates the structural diversity of GTs but also highlights their potential as promising anti-liver fibrosis agents.
Collapse
Affiliation(s)
- Jianing Tian
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Shicheng Fan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Xingrong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Haiguo Su
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
2
|
Feunaing RT, Gbaweng Yaya JA, Nyemb JN, Bassigue NI, Ketsemen HL, Henoumont C, Kandeda AK, Venditti A, Laurent S, Talla E. Antiradical and anti-acethylcholinesterase constituents from the methylene chloride extract of Ganoderma applanatum (Pers.) Pat (Ganodermataceae) and molecular docking study. Nat Prod Res 2025:1-13. [PMID: 40255072 DOI: 10.1080/14786419.2025.2491113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/06/2025] [Indexed: 04/22/2025]
Abstract
Alzheimer's disease (AD) is a non-communicable disease with global impact. Inhibitors of acetylcholinesterase (AChE) are suitable therapies for AD. In this work, we report the isolation of antiacetylcholinesterase compounds from the methylene chloride (DCM) extract of the medical fungus Ganoderma applanatum (Pers.) Pat (Ganodermataceae). Chemical evaluation of this extract using chromatographic technics led to the isolation of a (1:1) mixture of ergosterol (1) and stellasterol (2), palmitic acid (3), ganodermanondiol (4), lucidumol B (5) and lupeol (6). Structures of these compounds were determined using spectroscopic analysis such as IR, MS, 1D & 2D NMR and literature. The acetylation reaction has been performed on the mixture (1 + 2) and compound 4, leading to the obtention the mixture of 3-acetyl-ergosterol (7) and 3-acetylstellasterol (8) along with 24-acetyl-ganodermanondiol (9) respectively. Total phenolic content was determined for DCM, Ethyl acetate and n-butanol extracts. To assess their antiradical scavenging potential, DPPH was used as free radical. The Inhibition power of acetylcholinesterase was evaluated in vitro using the Ellman reagent. Amongst all tested extracts, the DCM extract showed the high amount of total phenolic compounds with a value of 133.9512 mg EAG/g EX. The same extract showed a very good antiradical scavenging potential with an IC50 of 0.0021 mg/mL. The mixture (1 + 2) showed the highest antiradical scavenging activity with IC50 of 0.0770 mg/mL. The results obtained demonstrated that the acetylation has reduced the antiradical scavenging potential. Concerning the acetylcholinesterase inhibition power, the DCM extract and the mixture (1 + 2) showed a very good power with an inhibition percentage of 89%. The acetylation has also reduced the activity of the obtained derivative. The results provide insights into the potential efficacy of these compounds as acetylcholinesterase inhibitors. The binding interactions of the isolated and acetylated derivatives against acetylcholinesterase protein (PBP 3i6m) of Torpedo californica were studied using Autodock software. Ergosterol (-11.9 kcal/mol) binds better to the protein biding site through significant pi-sigma interactions.
Collapse
Affiliation(s)
- Roméo Toko Feunaing
- Department of Chemistry, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
| | - Joël Abel Gbaweng Yaya
- Department of Chemistry, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - Jean Noël Nyemb
- Department of Refining and Petrochemistry, National Advanced School of Mines and Petroleum Industries, The University of Maroua, Kaele, Cameroon
| | - Noël Issa Bassigue
- Department of Chemistry, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
| | - Hervé Landry Ketsemen
- Department of Organic Chemistry, Faculty of Science, The University of Yaounde 1, Yaounde, Cameroon
| | - Céline Henoumont
- Department of General Organic and Biomedical Chemistry, Faculty of Medicine and Pharmacy, University of Mons, Belgium, Avenue Maistriau, Mons, Belgium
| | - Antoine Kavaye Kandeda
- Department of Biology and Animal Physiology, Faculty of Science, The University of Yaounde 1, Yaounde, Cameroon
| | | | - Sophie Laurent
- Department of Organic Chemistry, Faculty of Science, The University of Yaounde 1, Yaounde, Cameroon
| | - Emmanuel Talla
- Department of Chemistry, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
| |
Collapse
|
3
|
Rijia A, Krishnamoorthi R, Rasmi M, Mahalingam PU, Kim KS. Comprehensive Analysis of Bioactive Compounds in Wild Ganoderma applanatum Mushroom from Kerala, South India: Insights into Dietary Nutritional, Mineral, Antimicrobial, and Antioxidant Activities. Pharmaceuticals (Basel) 2024; 17:509. [PMID: 38675473 PMCID: PMC11054536 DOI: 10.3390/ph17040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The present study focused on the mushroom Ganoderma, which has been used in Eastern countries for centuries as a food and medicinal source. Specifically, the fruiting bodies of Ganoderma applanatum from the Kerala Forest Research Institute in Thirussur, Kerala, India, were analyzed for their nutritional and medicinal properties. The methanolic extracts of G. applanatum were used to examine secondary metabolites and proximate profiles, revealing the presence of various phytochemicals such as terpenoids, phenolics, glycosides, alkaloids, flavonoids, and saponins. Further analysis revealed the presence of significant amounts of calcium, sodium, phosphorus, and manganese. The compounds were characterized using chromatographic analysis, FTIR, and GC-MS, which revealed potential therapeutic compounds with C-H and C-O bonds in the amide group, β-glycosides, and C-C/C-O vibrations of phenolic substances. Mushroom extract at a concentration of 100 µg mL-1 exhibited potent antimicrobial activity against various pathogens. This study suggests that G. applanatum has a rich biochemical composition and pharmacological potential, making it a promising candidate for drug development and traditional medicine, and contributes valuable insights into its diverse therapeutic applications.
Collapse
Affiliation(s)
- Akbar Rijia
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, Dindigul 624302, Tamil Nadu, India;
| | - Raman Krishnamoorthi
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan;
| | - Madhusoodhanan Rasmi
- Department of Microbiology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Pambayan Ulagan Mahalingam
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, Dindigul 624302, Tamil Nadu, India;
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
4
|
Cheng M, Zhang L, Wang J, Sun X, Qi Y, Chen L, Han C. The Artist's Conk Medicinal Mushroom Ganoderma applanatum (Agaricomycetes): Mycological, Mycochemical, and Pharmacological Properties: A Review. Int J Med Mushrooms 2024; 26:13-66. [PMID: 38884263 DOI: 10.1615/intjmedmushrooms.2024053900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
As a commonly used Chinese herbal medicine, Ganoderma applanatum (Pers.) Pat., also known as flat-ling Ganoderma (Chinese name bianlingzhi), old mother fungus (laomujun), and old ox liver (laoniugan), has high medicinal value. It is used as an anti-cancer drug in China and Japan. Besides, it can treat rheumatic tuberculosis and has the effect of relieving pain, clearing away heat, eliminating accumulation, stopping bleeding and eliminating phlegm. The purpose of this review is to analyze the research progress systematically and comprehensively in mycology, mycochemistry and pharmacological activities of G. applanatum, and discuss the prospect of prospective research and implementation of this medicinal material. A comprehensive literature search was performed on G. applanatum using scientific databases including Web of Science, PubMed, Google Scholar, CNKI, Elsevier. Collected data from different sources was comprehensively summarized for mycology, mycochemistry and pharmacology of G. applanatum. A total of 324 compounds were recorded, the main components of which were triterpenoids, meroterpenoids, steroids, and polysaccharides. G. applanatum and its active ingredients have a variety of pharmacological effects, including anti-tumor, liver protection, hypoglycemic, anti-fat, anti-oxidation, antibacterial and other activities. Although G. applanatum is widely used in traditional medicine and has diverse chemical constituents, more studies should be carried out in animals and humans to evaluate the cellular and molecular mechanisms involved in its biological activity.
Collapse
Affiliation(s)
- Mengtao Cheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Liying Zhang
- Pharmacy Intravenous Admixture Services, Jinan Zhangqiu District Hospital of TCM, Jinan, 250299, People's Republic of China
| | - Jing Wang
- Research and Development Center, Shandong Phoenix Biotechnology Co. Ltd., Taian, Shandong, 271000, P.R. China
| | - Xiaomei Sun
- Shandong University of Traditional Chinese Medicine
| | - Yitong Qi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Lijing Chen
- Department of Pharmacy, The Second Affiliated Hospital of Shandong University of TCM, Jinan 250000, P.R. China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| |
Collapse
|
5
|
Gafforov Y, Rašeta M, Rapior S, Yarasheva M, Wang X, Zhou L, Wan-Mohtar WAAQI, Zafar M, Lim YW, Wang M, Abdullaev B, Bussmann RW, Zengin G, Chen J. Macrofungi as Medicinal Resources in Uzbekistan: Biodiversity, Ethnomycology, and Ethnomedicinal Practices. J Fungi (Basel) 2023; 9:922. [PMID: 37755030 PMCID: PMC10532728 DOI: 10.3390/jof9090922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Interest in edible and medicinal macrofungi is millennial in terms of their uses in health and food products in Central Asia, while interest in inedible and medicinal macrofungi has grown in popularity in recent years. Edible and inedible medicinal basidiomycetes were collected during field surveys from different regions of Uzbekistan. The morphological characters and similarity assessment of rDNA-Internal Transcribed Spacer sequence data were used to measure diversity and habitat associations. A number of 17 species of medicinal macrofungi of ethnomycological and medicinal interest was found associated with 23 species of trees and shrubs belonging to 11 families and 14 genera. Polyporaceae and Hymenochaetaceae were represented by the highest number of species followed by Ganodermataceae, Fomitopsidaceae, Auriculariaceae, Cerrenaceae, Grifolaceae, Phanerochaetaceae, Laetiporaceae, Schizophyllaceae, and Stereaceae. The highest number of medicinal basidiomycete species was reported in the following host genera: Acer, Betula, Celtis, Crataegus, Juglans, Juniperus, Lonicera, Malus, Morus, Platanus, Populus, Prunus, Quercus, and Salix. An updated list of edible and inedible medicinal mushrooms identified in Uzbekistan, their morphological characteristics, and phylogenetic placement are given for the first time. Information is provided on their uses in traditional and modern medicine. Their bioactive compounds and extracts can be applied as medicines, as well as food and cosmetic ingredients.
Collapse
Affiliation(s)
- Yusufjon Gafforov
- New Uzbekistan University, Tashkent 100007, Uzbekistan
- Central Asian University, Tashkent 111221, Uzbekistan
- Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent 100125, Uzbekistan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Milena Rašeta
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Sylvie Rapior
- CEFE, CNRS, University of Montpellier, EPHE, IRD, 15 Avenue Charles Flahault, CS 14491, CEDEX 5, 34093 Montpellier, France
- Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, 15 Avenue Charles Flahault, CS 14491, CEDEX 5, 34093 Montpellier, France
| | - Manzura Yarasheva
- Tashkent International University of Education, Tashkent 100207, Uzbekistan
| | - Xuewei Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Liwei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Muhammad Zafar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Young Woon Lim
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul 08826, Republic of Korea
| | - Mengcen Wang
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | | | - Rainer W. Bussmann
- Department of Ethnobotany, State Museum of Natural History, 76133 Karlsruhe, Germany;
- Department of Ethnobotany, Institute of Botany and Bakuriani Alpine Botanical Garden, Ilia State University, Botanical Street 1, 0105 Tbilisi, Georgia
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selçuk University, Konya 42130, Turkey
| | - Jiajia Chen
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China
| |
Collapse
|
6
|
Peng XR, Unsicker SB, Gershenzon J, Qiu MH. Structural diversity, hypothetical biosynthesis, chemical synthesis, and biological activity of Ganoderma meroterpenoids. Nat Prod Rep 2023; 40:1354-1392. [PMID: 37051770 DOI: 10.1039/d3np00006k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Covering: 2018 to 2022Meroterpenoids found in fungal species of the genus Ganoderma and known as Ganoderma meroterpenoids (GMs) are substances composed of a 1,2,4-trisubstituted benzene and a polyunsaturated side chain. These substances have attracted the attention of chemists and pharmacologists due to their diverse structures and significant bioactivity. In this review, we present the structures and possible biosynthesis of representative GMs newly found from 2018 to 2022, as well as chemical synthesis and biological activity of some interesting GMs. We propose for the first time a plausible biosynthetic pathway for GMs, which will certainly motivate further research on the biosynthetic pathway in Ganoderma species, as well as on chemical synthesis of GMs as important bioactive compounds for the purpose of drug development.
Collapse
Affiliation(s)
- Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Sybille B Unsicker
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| |
Collapse
|
7
|
Peng X, Luo R, Ran X, Guo Y, Yao YG, Qiu M. Ganoapplins A and B with an unprecedented 6/6/6/5/6-fused pentacyclic skeleton from Ganoderma inhibit Tau pathology through activating autophagy. Bioorg Chem 2023; 132:106375. [PMID: 36682148 DOI: 10.1016/j.bioorg.2023.106375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/28/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Ganoapplins A and B (1 and 2) with a 6/6/6/5/6-fused pentacyclic skeleton containing an aromatic E ring, were obtained from Ganoderma applanatum. Their structures were established through extensive spectroscopic analyses, quantum chemical calculations, including calculated chemical shifts with DP4 + analysis and electronic circular dichroism (ECD). A plausible biosynthetic pathway for 1 and 2 was proposed. Furthermore, their roles in activating autophagy were investigated and the cellular assays showed that 1 and 2 can inhibit tau pathology by inducing autophagy, suggesting their potential against Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Xingrong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Rongcan Luo
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China
| | - Xiaoqian Ran
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China
| | - Yarong Guo
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yong-Gang Yao
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China.
| |
Collapse
|
8
|
Badalyan SM, Hayrapetyan SS. Sterols Content of Fruiting Bodies of Medicinal Artist's Bracket Mushroom Ganoderma applanatum (Agaricomycetes) Collected in Armenia. Int J Med Mushrooms 2023; 25:65-74. [PMID: 37585317 DOI: 10.1615/intjmedmushrooms.2023048520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The qualitative analysis of hexane extracts obtained from different trama layers (WT, T1-T4) of dried fruiting bodies of medicinal bracket fungus Ganoderma applanatum collected in the Tavoush region of North-East Armenia was performed by GC-MS analysis. Three sterols [(7.22-ergostadienon, ergosterol and ergosta-14.22-diene-3-ol (3β, 5α, 22E)] have been identified. The results have shown that the content and ratio of sterols differ in analyzed trama samples. The highest amount of sterols was detected in middle parts of T2 and T3 layers, while content of sterols gradually decreased to the upper cortical (T4) and lower hymenial (T1) layers. The chromatographic profiles of identified compounds indicate that different sterols dominated in each layer: 7.22-ergostadienon in T4, ergosterol in T3, T2, and T1. The average weight loss of analyzed trama samples during six days of drying was about 40 wt.% (37.0-43.49 wt.%) of the total weight of basidiome, which decreased up to 5 wt.% in the next two days. The complete extraction of sterols lasted six days. Its further prolongation leads to stationary phase without an increase in the amount of extracted sterols.
Collapse
Affiliation(s)
- Susanna M Badalyan
- Laboratory of Fungal Biology and Biotechnology, Institute of Pharmacy, Yerevan State University, 1 A. Manoogian St., 0025 Yerevan, Armenia
| | - Sergey S Hayrapetyan
- Department of Analytical and Inorganic Chemistry, Yerevan State University, Armenia
| |
Collapse
|
9
|
Galappaththi MCA, Patabendige NM, Premarathne BM, Hapuarachchi KK, Tibpromma S, Dai DQ, Suwannarach N, Rapior S, Karunarathna SC. A Review of Ganoderma Triterpenoids and Their Bioactivities. Biomolecules 2022; 13:24. [PMID: 36671409 PMCID: PMC9856212 DOI: 10.3390/biom13010024] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
For centuries, Ganoderma has been used as a traditional medicine in Asian countries to prevent and treat various diseases. Numerous publications are stating that Ganoderma species have a variety of beneficial medicinal properties, and investigations on different metabolic regulations of Ganoderma species, extracts or isolated compounds have been performed both in vitro and in vivo. However, it has frequently been questioned whether Ganoderma is simply a dietary supplement for health or just a useful "medication" for restorative purposes. More than 600 chemical compounds including alkaloids, meroterpenoids, nucleobases, nucleosides, polysaccharides, proteins, steroids and triterpenes were extracted and identified from Ganoderma, with triterpenes serving as the primary components. In recent years, Ganoderma triterpenes and other small molecular constituents have aroused the interest of chemists and pharmacologists. Meanwhile, considering the significance of the triterpene constituents in the development of new drugs, this review describes 495 compounds from 25 Ganoderma species published between 1984 and 2022, commenting on their source, biosynthetic pathway, identification, biological activities and biosynthesis, together with applications of advanced analytical techniques to the characterization of Ganoderma triterpenoids.
Collapse
Affiliation(s)
- Mahesh C. A. Galappaththi
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- Postgraduate Institute of Science (PGIS), University of Peradeniya, Peradeniya 20400, Sri Lanka
| | | | | | - Kalani K. Hapuarachchi
- The Engineering Research Center of Southwest Bio-Pharmaceutical Resource Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sylvie Rapior
- Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, Univ Montpellier, 15 Avenue Charles Flahault, CS 14491, CEDEX 5, 34093 Montpellier, France
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Natural Substances and Chemical Mediation Team, 15 Avenue Charles Flahault, CS 14491, CEDEX 5, 34093 Montpellier, France
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
10
|
Secondary Metabolites from Fungi-In Honor of Prof. Dr. Ji-Kai Liu's 60th Birthday. J Fungi (Basel) 2022; 8:jof8121271. [PMID: 36547604 PMCID: PMC9782213 DOI: 10.3390/jof8121271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
It is our pleasure and privilege to serve as Guest Editors for this Special Issue of the Journal of Fungi in honor of Professor Ji-Kai Liu's 60th birthday [...].
Collapse
|
11
|
Zhou L, Guo LL, Isaka M, Li ZH, Chen HP. [20(22) E]-Lanostane Triterpenes from the Fungus Ganoderma australe. J Fungi (Basel) 2022; 8:503. [PMID: 35628758 PMCID: PMC9145439 DOI: 10.3390/jof8050503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/15/2022] Open
Abstract
Twelve new lanostane triterpenoids (1-5, 7-13) were isolated from the fruiting bodies of the fungus Ganoderma australe. The structures of the new compounds were elucidated by extensive 1D and 2D NMR, and HRESIMS spectroscopic analysis. All the triterpenes are featured by 20(22)E configurations which are uncommon in the Ganoderma triterpene family. The absolute configuration of the C-25 of compounds 1, 2, and 6 were determined by the phenylglycine methyl ester (PGME) method. A postulated biosynthetic pathway for compound 1 was discussed. This study opens new insights into the secondary metabolites of the chemically underinvestigated fungus G. australe.
Collapse
Affiliation(s)
- Lin Zhou
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (L.Z.); (L.-L.G.)
| | - Li-Li Guo
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (L.Z.); (L.-L.G.)
| | - Masahiko Isaka
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand;
| | - Zheng-Hui Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (L.Z.); (L.-L.G.)
| | - He-Ping Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; (L.Z.); (L.-L.G.)
| |
Collapse
|