1
|
Huang L, Zhou Y, Xiao H, Li Y, Zhou Z, Xiao Z, Tong Y, Hu K, Kuang Y, Shen M, Xiao Y, Chen X. Emerging Contaminants: An Important But Ignored Risk Factor for Psoriasis. Clin Rev Allergy Immunol 2025; 68:33. [PMID: 40121604 DOI: 10.1007/s12016-025-09043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/25/2025]
Abstract
Industrialization and modernization have changed the environment. A group of emerging contaminants (ECs) has been defined recently. Psoriasis, whose incidence has increased in recent years, is a relapsing immune-mediated disease carrying a heavy disease burden. The erythematous scaly plaque is a typical symptom and occurs on several parts of the body. In addition, psoriasis has many comorbidities, such as psoriatic arthritis, diabetes, and depression, damaging the quality of life of patients. IL-17, IL-12, IL-23, and TNF-alpha are important related cytokines. ECs can influence psoriasis through the immune system and inflammatory responses. Specific mechanisms include increasing pro-inflammatory cytokines such as TNF-α and IL-17, and activating immune cells such as macrophages. And for psoriasis patients, it is suggested to reduce the exposure of most ECs. However, the complex mechanisms involved have not been discussed together and concluded. In this review, we summarize the relationship between ECs and psoriasis, focusing on the immune system, especially the immune cells and cytokines. These results can help guide clinical treatment and long-term management of psoriasis.
Collapse
Affiliation(s)
- Leyi Huang
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, China
| | - Yinli Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, China
| | - Hui Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, China
| | - Yajia Li
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, China
| | - Zhiru Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, China
| | - Ziyi Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, China
| | - Yixuan Tong
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, China
| | - Kun Hu
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, China
| | - Yehong Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, China
| | - Minxue Shen
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, 410008, China
| | - Yi Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, China.
| |
Collapse
|
2
|
Maldonado-García JL, Fragozo A, Pavón L. Cytokine release syndrome induced by anti-programmed death-1 treatment in a psoriasis patient: A dark side of immune checkpoint inhibitors. World J Clin Cases 2024; 12:6782-6790. [PMID: 39687650 PMCID: PMC11525914 DOI: 10.12998/wjcc.v12.i35.6782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 10/24/2024] Open
Abstract
In recent years, cancer immunotherapy has introduced novel treatments, such as monoclonal antibodies, which have facilitated targeted therapies against tumor cells. Programmed death-1 (PD-1) is an immune checkpoint expressed in T cells that regulates the immune system's activity to prevent over-activation and tissue damage caused by inflammation. However, PD-1 is also expressed in tumor cells and functions as an immune evasion mechanism, making it a therapeutic target to enhance the immune response and eliminate tumor cells. Consequently, immune checkpoint inhibitors (ICIs) have emerged as an option for certain tumor types. Nevertheless, blocking immune checkpoints can lead to immune-related adverse events (irAEs), such as psoriasis and cytokine release syndrome (CRS), as exemplified in the clinical case presented by Zhou et al involving a patient with advanced gastric cancer who received sintilimab, a monoclonal antibody targeting PD-1. Subsequently, the patient experienced exacerbation of psoriasis and CRS. The objective of this editorial article is to elucidate potential immunologic mechanisms that may contribute to the development of CRS and psoriasis in patients receiving ICIs. It is crucial to acknowledge that while ICIs offer superior safety and efficacy compared to conventional therapies, they can also manifest irAEs affecting the skin, gastrointestinal tract, or respiratory system. In severe cases, these irAEs can lead to life-threatening complications such as circulatory shock or multiorgan failure. Consequently, it is recommended that patients receiving ICIs undergo regular monitoring to identify and manage these adverse events effectively.
Collapse
Affiliation(s)
- José Luis Maldonado-García
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán 04510, Ciudad de México, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Mexico City 1134, Ciudad de México, Mexico
| | - Ana Fragozo
- Unidad de Desarrollo e Investigación en Bioterapéuticos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Ciudad de México, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 11340, Mexico
| |
Collapse
|
3
|
Tao W, Liu Y, Lin X, Song B, Zeng X. Prediction of multi-relational drug-gene interaction via Dynamic hyperGraph Contrastive Learning. Brief Bioinform 2023; 24:bbad371. [PMID: 37864294 DOI: 10.1093/bib/bbad371] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023] Open
Abstract
Drug-gene interaction prediction occupies a crucial position in various areas of drug discovery, such as drug repurposing, lead discovery and off-target detection. Previous studies show good performance, but they are limited to exploring the binding interactions and ignoring the other interaction relationships. Graph neural networks have emerged as promising approaches owing to their powerful capability of modeling correlations under drug-gene bipartite graphs. Despite the widespread adoption of graph neural network-based methods, many of them experience performance degradation in situations where high-quality and sufficient training data are unavailable. Unfortunately, in practical drug discovery scenarios, interaction data are often sparse and noisy, which may lead to unsatisfactory results. To undertake the above challenges, we propose a novel Dynamic hyperGraph Contrastive Learning (DGCL) framework that exploits local and global relationships between drugs and genes. Specifically, graph convolutions are adopted to extract explicit local relations among drugs and genes. Meanwhile, the cooperation of dynamic hypergraph structure learning and hypergraph message passing enables the model to aggregate information in a global region. With flexible global-level messages, a self-augmented contrastive learning component is designed to constrain hypergraph structure learning and enhance the discrimination of drug/gene representations. Experiments conducted on three datasets show that DGCL is superior to eight state-of-the-art methods and notably gains a 7.6% performance improvement on the DGIdb dataset. Further analyses verify the robustness of DGCL for alleviating data sparsity and over-smoothing issues.
Collapse
Affiliation(s)
- Wen Tao
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082 Hunan, China
| | - Yuansheng Liu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082 Hunan, China
| | - Xuan Lin
- School of Computer Science, Xiangtan University, Xiangtan, 411105 Hunan, China
- Key Laboratory of Intelligent Computing and Information Processing, Ministry of Education (Xiangtan University), Xiangtan, 411105 Hunan, China
| | - Bosheng Song
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082 Hunan, China
| | - Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082 Hunan, China
| |
Collapse
|
4
|
Tampa M, Neagu M, Caruntu C, Georgescu SR. Personalized Medicine in the Field of Inflammatory Skin Disorders. J Pers Med 2022; 12:jpm12030426. [PMID: 35330426 PMCID: PMC8950545 DOI: 10.3390/jpm12030426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023] Open
Affiliation(s)
- Mircea Tampa
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Dermatology Department, “Victor Babes” Hospital of Infectious Diseases, 030303 Bucharest, Romania
- Correspondence: (M.T.); (M.N.); (C.C.)
| | - Monica Neagu
- “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Colentina University Hospital, 020125 Bucharest, Romania
- Correspondence: (M.T.); (M.N.); (C.C.)
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (M.T.); (M.N.); (C.C.)
| | - Simona Roxana Georgescu
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Dermatology Department, “Victor Babes” Hospital of Infectious Diseases, 030303 Bucharest, Romania
| |
Collapse
|
5
|
Sobolev VV, Soboleva AG, Denisova EV, Pechatnikova EA, Dvoryankova E, Korsunskaya IM, Mezentsev A. Proteomic Studies of Psoriasis. Biomedicines 2022; 10:biomedicines10030619. [PMID: 35327421 PMCID: PMC8945259 DOI: 10.3390/biomedicines10030619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
In this review paper, we discuss the contribution of proteomic studies to the discovery of disease-specific biomarkers to monitor the disease and evaluate available treatment options for psoriasis. Psoriasis is one of the most prevalent skin disorders driven by a Th17-specific immune response. Although potential patients have a genetic predisposition to psoriasis, the etiology of the disease remains unknown. During the last two decades, proteomics became deeply integrated with psoriatic research. The data obtained in proteomic studies facilitated the discovery of novel mechanisms and the verification of many experimental hypotheses of the disease pathogenesis. The detailed data analysis revealed multiple differentially expressed proteins and significant changes in proteome associated with the disease and drug efficacy. In this respect, there is a need for proteomic studies to characterize the role of the disease-specific biomarkers in the pathogenesis of psoriasis, develop clinical applications to choose the most efficient treatment options and monitor the therapeutic response.
Collapse
Affiliation(s)
- Vladimir V. Sobolev
- Centre of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.G.S.); (E.V.D.); (E.D.); (I.M.K.)
- Correspondence: (V.V.S.); (A.M.)
| | - Anna G. Soboleva
- Centre of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.G.S.); (E.V.D.); (E.D.); (I.M.K.)
- Scientific Research Institute of Human Morphology, 117418 Moscow, Russia
| | - Elena V. Denisova
- Centre of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.G.S.); (E.V.D.); (E.D.); (I.M.K.)
- Moscow Scientific and Practical Center of Dermatovenereology and Cosmetology, 119071 Moscow, Russia
| | - Eva A. Pechatnikova
- Department of Dermatology and Cosmetology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Eugenia Dvoryankova
- Centre of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.G.S.); (E.V.D.); (E.D.); (I.M.K.)
| | - Irina M. Korsunskaya
- Centre of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.G.S.); (E.V.D.); (E.D.); (I.M.K.)
| | - Alexandre Mezentsev
- Centre of Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.G.S.); (E.V.D.); (E.D.); (I.M.K.)
- Correspondence: (V.V.S.); (A.M.)
| |
Collapse
|