1
|
Wang SS, Peng Y, Fan PL, Ye JR, Ma WY, Wu QL, Wang HY, Tian YJ, He WB, Yan X, Zhang Z, Chu SF, Chen NH. Ginsenoside Rg1 ameliorates stress-exacerbated Parkinson's disease in mice by eliminating RTP801 and α-synuclein autophagic degradation obstacle. Acta Pharmacol Sin 2025; 46:308-325. [PMID: 39227736 PMCID: PMC11747340 DOI: 10.1038/s41401-024-01374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024]
Abstract
Emerging evidence shows that psychological stress promotes the progression of Parkinson's disease (PD) and the onset of dyskinesia in non-PD individuals, highlighting a potential avenue for therapeutic intervention. We previously reported that chronic restraint-induced psychological stress precipitated the onset of parkinsonism in 10-month-old transgenic mice expressing mutant human α-synuclein (αSyn) (hαSyn A53T). We refer to these as chronic stress-genetic susceptibility (CSGS) PD model mice. In this study we investigated whether ginsenoside Rg1, a principal compound in ginseng notable for soothing the mind, could alleviate PD deterioration induced by psychological stress. Ten-month-old transgenic hαSyn A53T mice were subjected to 4 weeks' restraint stress to simulate chronic stress conditions that worsen PD, meanwhile the mice were treated with Rg1 (40 mg· kg-1 ·d-1, i.g.), and followed by functional magnetic resonance imaging (fMRI) and a variety of neurobehavioral tests. We showed that treatment with Rg1 significantly alleviated both motor and non-motor symptoms associated with PD. Functional MRI revealed that Rg1 treatment enhanced connectivity between brain regions implicated in PD, and in vivo multi-channel electrophysiological assay showed improvements in dyskinesia-related electrical activity. In addition, Rg1 treatment significantly attenuated the degeneration of dopaminergic neurons and reduced the pathological aggregation of αSyn in the striatum and SNc. We revealed that Rg1 treatment selectively reduced the level of the stress-sensitive protein RTP801 in SNc under chronic stress conditions, without impacting the acute stress response. HPLC-MS/MS analysis coupled with site-directed mutation showed that Rg1 promoted the ubiquitination and subsequent degradation of RTP801 at residues K188 and K218, a process mediated by the Parkin RING2 domain. Utilizing αSyn A53T+; RTP801-/- mice, we confirmed the critical role of RTP801 in stress-aggravated PD and its necessity for Rg1's protective effects. Moreover, Rg1 alleviated obstacles in αSyn autophagic degradation by ameliorating the RTP801-TXNIP-mediated deficiency of ATP13A2. Collectively, our results suggest that ginsenoside Rg1 holds promise as a therapeutic choice for treating PD-sensitive individuals who especially experience high levels of stress and self-imposed expectations.
Collapse
Affiliation(s)
- Sha-Sha Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ye Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Ping-Long Fan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jun-Rui Ye
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wen-Yu Ma
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qing-Lin Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Hong-Yun Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ya-Juan Tian
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Wen-Bin He
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Xu Yan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
2
|
Sedhom S, Hammond N, Thanos KZ, Blum K, Elman I, Bowirrat A, Dennen CA, Thanos PK. Potential Link Between Exercise and N-Methyl-D-Aspartate Glutamate Receptors in Alcohol Use Disorder: Implications for Therapeutic Strategies. Psychol Res Behav Manag 2024; 17:2363-2376. [PMID: 38895648 PMCID: PMC11185169 DOI: 10.2147/prbm.s462403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Alcohol use disorder (AUD) is a significant risk factor, accounting for approximately 13% of all deaths in the US. AUD not only destroys families but also causes economic losses due to reduced productivity, absenteeism, and healthcare expenses. Statistics revealing the sustained number of individuals affected by AUD over the years underscore the need for further understanding of the underlying pathophysiology to advance novel therapeutic strategies. Previous research has implicated the limbic brain regions N-methyl-D-aspartate glutamate receptors (NMDAR) in the emotional and behavioral effects of AUD. Given that aerobic exercise can modulate NMDAR activity and sensitivity to alcohol, this review presents a summary of clinical and basic science studies on NMDAR levels induced by alcohol consumption, as well as acute and protracted withdrawal, highlighting the potential role of aerobic exercise as an adjunctive therapy for AUD. Based on our findings, the utility of exercise in the modulation of reward-linked receptors and AUD may be mediated by its effects on NMDA signaling. These data support further consideration of the potential of aerobic exercise as a promising adjunctive therapy for AUD.
Collapse
Affiliation(s)
- Susan Sedhom
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Nikki Hammond
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kyriaki Z Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Sports, Exercise & Global Mental Health, Western University Health Sciences, Pomona, CA, USA
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Igor Elman
- Department of Psychiatry, Harvard School of Medicine, Cambridge Health Alliance, Cambridge, MA, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | | | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
3
|
Powell A, Hanna C, Sajjad M, Yao R, Blum K, Gold MS, Quattrin T, Thanos PK. Exercise Influences the Brain's Metabolic Response to Chronic Cocaine Exposure in Male Rats. J Pers Med 2024; 14:500. [PMID: 38793082 PMCID: PMC11122626 DOI: 10.3390/jpm14050500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Cocaine use is associated with negative health outcomes: cocaine use disorders, speedballing, and overdose deaths. Currently, treatments for cocaine use disorders and overdose are non-existent when compared to opioid use disorders, and current standard cocaine use disorder treatments have high dropout and recidivism rates. Physical exercise has been shown to attenuate addiction behavior as well as modulate brain activity. This study examined the differential effects of chronic cocaine use between exercised and sedentary rats. The effects of exercise on brain glucose metabolism (BGluM) following chronic cocaine exposure were assessed using Positron Emission Tomography (PET) and [18F]-Fluorodeoxyglucose (FDG). Compared to sedentary animals, exercise decreased metabolism in the SIBF primary somatosensory cortex. Activation occurred in the amygdalopiriform and piriform cortex, trigeminothalamic tract, rhinal and perirhinal cortex, and visual cortex. BGluM changes may help ameliorate various aspects of cocaine abuse and reinstatement. Further investigation is needed into the underlying neuronal circuits involved in BGluM changes and their association with addiction behaviors.
Collapse
Affiliation(s)
- Aidan Powell
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY 14203, USA; (A.P.); (C.H.)
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY 14203, USA; (A.P.); (C.H.)
| | - Munawwar Sajjad
- Department of Nuclear Medicine, University at Buffalo, Buffalo, NY 14214, USA; (M.S.); (R.Y.)
| | - Rutao Yao
- Department of Nuclear Medicine, University at Buffalo, Buffalo, NY 14214, USA; (M.S.); (R.Y.)
| | - Kenneth Blum
- Center for Sports, Exercise, and Mental Health, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Teresa Quattrin
- UBMD Pediatrics, JR Oishei Children’s Hospital, University at Buffalo, Buffalo, NY 14203, USA;
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biomedical Science, State University of New York at Buffalo, Buffalo, NY 14203, USA; (A.P.); (C.H.)
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| |
Collapse
|
4
|
Mohr P, Hanna C, Powell A, Penman S, Blum K, Sharafshah A, Lewandrowski KU, Badgaiyan RD, Bowirrat A, Pinhasov A, Thanos PK. Selenoprotein P in a Rodent Model of Exercise; Theorizing Its Interaction with Brain Reward Dysregulation, Addictive Behavior, and Aging. J Pers Med 2024; 14:489. [PMID: 38793071 PMCID: PMC11122084 DOI: 10.3390/jpm14050489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Exercise promotes health and wellness, including its operation as a protective factor against a variety of psychological, neurological, and chronic diseases. Selenium and its biomarker, selenoprotein P (SEPP1), have been implicated in health, including cancer prevention, neurological function, and dopamine signaling. SEPP1 blood serum levels were compared with a one-way ANOVA between sedentary (SED), moderately exercised (MOD) [10 m/min starting at 10 min, increasing to 60 min], and high-intensity interval training (HIIT) exercised rats [30 min in intervals of 2-min followed by a 1-min break, speed progressively increased from 10 to 21 m/min]. HIIT rats showed significantly higher serum SEPP1 concentrations compared to MOD and SED. More specifically, HIIT exercise showed an 84% increase in SEPP1 levels compared to sedentary controls. MOD rats had greater serum SEPP1 concentrations compared to SED, a 33% increase. The results indicated that increased exercise intensity increases SEPP1 levels. Exercise-induced increases in SEPP1 may indicate an adaptive response to the heightened oxidative stress. Previous studies found a significant increase in dopamine D2 receptor (D2R) binding in these same rats, suggesting a potential association between SEPP1 and dopamine signaling during exercise. Modulating antioxidants like SEPP1 through personalized therapies, including exercise, has broad implications for health, disease, and addiction.
Collapse
Affiliation(s)
- Patrick Mohr
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203-1014, USA
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203-1014, USA
| | - Aidan Powell
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203-1014, USA
| | - Samantha Penman
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203-1014, USA
| | - Kenneth Blum
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Division of Addiction Research & Education, Center for Sports, Exercise, and Mental Health, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Alireza Sharafshah
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht 8813833435, Iran
| | - Kai-Uwe Lewandrowski
- Department of Orthopaedics, Universitaria Sanitas, Fundación, Bogotá P.O. Box 011, Colombia
| | | | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Albert Pinhasov
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203-1014, USA
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Department of Psychology, University at Buffalo, Buffalo, NY 14260-4110, USA
| |
Collapse
|
5
|
Jalo A, Helin JS, Hentilä J, Nissinen TA, Honkala SM, Heiskanen MA, Löyttyniemi E, Malm T, Hannukainen JC. Mechanisms Leading to Increased Insulin-Stimulated Cerebral Glucose Uptake in Obesity and Insulin Resistance: A High-Fat Diet and Exercise Training Intervention PET Study with Rats (CROSRAT). J Funct Morphol Kinesiol 2024; 9:58. [PMID: 38651416 PMCID: PMC11036253 DOI: 10.3390/jfmk9020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
Recent studies have shown that obesity and insulin resistance are associated with increased insulin-stimulated glucose uptake (GU) in the brain. Thus, insulin sensitivity seems to work differently in the brain compared to the peripheral tissues like skeletal muscles, but the underlying mechanisms remain unknown. Regular exercise training improves skeletal muscle and whole-body insulin sensitivity. However, the effect of exercise on glucose metabolism in the brain and internal organs is less well understood. The CROSRAT study aims to investigate the effects of exercise training on brain glucose metabolism and inflammation in a high-fat diet-induced rat model of obesity and insulin resistance. Male Sprague Dawley rats (n = 144) are divided into nine study groups that undergo different dietary and/or exercise training interventions lasting 12 to 24 weeks. Insulin-stimulated GU from various tissues and brain inflammation are investigated using [18F]FDG-PET/CT and [11C]PK11195-PET/CT, respectively. In addition, peripheral tissue, brain, and fecal samples are collected to study the underlying mechanisms. The strength of this study design is that it allows examining the effects of both diet and exercise training on obesity-induced insulin resistance and inflammation. As the pathophysiological changes are studied simultaneously in many tissues and organs at several time points, the study provides insight into when and where these pathophysiological changes occur.
Collapse
Affiliation(s)
- Anna Jalo
- MediCity Research Laboratory, University of Turku, Tykistökatu 6 A, FI-20520 Turku, Finland
- Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6 A, FI-20520 Turku, Finland
- Doctoral Programme in Clinical Research, University of Turku, FI-20520 Turku, Finland
| | - Jatta S. Helin
- MediCity Research Laboratory, University of Turku, Tykistökatu 6 A, FI-20520 Turku, Finland
- Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6 A, FI-20520 Turku, Finland
| | - Jaakko Hentilä
- Turku PET Centre, University of Turku, P.O. Box 52, FI-20521 Turku, Finland
| | - Tuuli A. Nissinen
- MediCity Research Laboratory, University of Turku, Tykistökatu 6 A, FI-20520 Turku, Finland
- Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6 A, FI-20520 Turku, Finland
| | - Sanna M. Honkala
- Turku PET Centre, University of Turku, P.O. Box 52, FI-20521 Turku, Finland
| | - Marja A. Heiskanen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 8, FI-70210 Kuopio, Finland
| | | |
Collapse
|
6
|
Hanna C, Yao R, Sajjad M, Gold M, Blum K, Thanos PK. Exercise Modifies the Brain Metabolic Response to Chronic Cocaine Exposure Inhibiting the Stria Terminalis. Brain Sci 2023; 13:1705. [PMID: 38137153 PMCID: PMC10742065 DOI: 10.3390/brainsci13121705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
It is well known that exercise promotes health and wellness, both mentally and physiologically. It has been shown to play a protective role in many diseases, including cardiovascular, neurological, and psychiatric diseases. The present study examined the effects of aerobic exercise on brain glucose metabolic activity in response to chronic cocaine exposure in female Lewis rats. Rats were divided into exercise and sedentary groups. Exercised rats underwent treadmill running for six weeks and were compared to the sedentary rats. Using positron emission tomography (PET) and [18F]-Fluorodeoxyglucose (FDG), metabolic changes in distinct brain regions were observed when comparing cocaine-exposed exercised rats to cocaine-exposed sedentary rats. This included activation of the secondary visual cortex and inhibition in the cerebellum, stria terminalis, thalamus, caudate putamen, and primary somatosensory cortex. The functional network of this brain circuit is involved in sensory processing, fear and stress responses, reward/addiction, and movement. These results show that chronic exercise can alter the brain metabolic response to cocaine treatment in regions associated with emotion, behavior, and the brain reward cascade. This supports previous findings of the potential for aerobic exercise to alter the brain's response to drugs of abuse, providing targets for future investigation. These results can provide insights into the fields of exercise neuroscience, psychiatry, and addiction research.
Collapse
Affiliation(s)
- Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Rutao Yao
- Department of Nuclear Medicine, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Munawwar Sajjad
- Department of Nuclear Medicine, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Mark Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth Blum
- Division of Addiction Research and Education, Center for Sports, Exercise and Global Mental Health, Western University Health Sciences, Pomona, CA 91766, USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
7
|
Blum K, Mclaughlin T, Gold MS, Gondre-Lewis MC, Thanos PK, Elman I, Baron D, Bowirrat A, Barh D, Khalsa J, Hanna C, Jafari N, Zeine F, Braverman ER, Dennen C, Makale MT, Makale M, Sunder K, Murphy KT, Badgaiyan RD. Are We Getting High Cause the Thrill is Gone? JOURNAL OF ADDICTION PSYCHIATRY 2023; 7:5-516. [PMID: 38164471 PMCID: PMC10758019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
In the USA alone, opioid use disorder (OUD) affects approximately 27 million people. While the number of prescriptions may be declining due to increased CDC guidance and prescriber education, fatalities due to fentanyl-laced street heroin are still rising. Our laboratory has extended the overall concept of both substance and non-substance addictive behaviors, calling it "Reward Deficiency Syndrome (RDS)." Who are its victims, and how do we get this unwanted disorder? Is RDS caused by genes (Nature), environment (Neuro-epigenetics, Nurture), or both? Recent research identifies resting-state functional connectivity in the brain reward circuitry as a crucial factor. Analogously, it is of importance to acknowledge that the cumulative discharge of dopamine, governed by the nucleus accumbens (NAc) and modulated by an array of additional neurotransmitters, constitutes a cornerstone of an individual's overall well-being. Neuroimaging reveals that high-risk individuals exhibit a blunted response to stimuli, potentially due to DNA polymorphisms or epigenetic alterations. This discovery has given rise to the idea of a diminished 'thrill,' though we must consider whether this 'thrill' may have been absent from birth due to high-risk genetic predispositions for addiction. This article reviews this issue and suggests the general concept of the importance of "induction of dopamine homeostasis." We suggest coupling a validated genetic assessment (e.g., GARS) with pro-dopamine regulation (KB220) as one possible frontline modality in place of prescribing potent addictive opioids for OUD except for short time harm reduction. Could gene editing offer a 'cure' for this undesirable genetic modification at birth, influenced by the environment and carried over generations, leading to impaired dopamine and other neurotransmitter imbalances, as seen in RDS? Through dedicated global scientific exploration, we hope for a future where individuals are liberated from pain and disease, achieving an optimal state of well-being akin to the proverbial 'Garden of Eden'.
Collapse
Affiliation(s)
- Kenneth Blum
- The Kenneth Blum Behavioral and Neurogenetic Institute, LLC., Austin, TX, USA
- Center for Sports, Exercise, Psychiatry, Western University Health Sciences, Pomona, CA, USA
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
- The Sunder Foundation, Palm Springs, CA, USA
- Department of Psychiatry, University of Vermont School of Medicine, Burlington, VY, USA
- Department of Psychiatry, Wright University, Boonshoff School of Medicine, Dayton, OH, USA
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, CA, USA
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India
| | - Thomas Mclaughlin
- The Kenneth Blum Behavioral and Neurogenetic Institute, LLC., Austin, TX, USA
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addiction, Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY, USA
| | - Igor Elman
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - David Baron
- Center for Sports, Exercise, Psychiatry, Western University Health Sciences, Pomona, CA, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Debamyla Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India
| | - Jag Khalsa
- Division of Therapeutics and Medical Consequences, Medical Consequences of Drug Abuse and Infections Branch, NIDA-NIH, Special Volunteer, Gaithersburg, MD, USA
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addiction, Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY, USA
| | - Nicole Jafari
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, CA, USA
- Department of Applied Clinical Psychology, The Chicago School of Professional Psychology, Los Angeles, CA, USA
| | - Foojan Zeine
- Department of Health Science, California State University at Long Beach, Long Beach, CA, USA
- Awareness Integration Institute, San Clemente, CA, USA
| | - Eric R. Braverman
- The Kenneth Blum Behavioral and Neurogenetic Institute, LLC., Austin, TX, USA
| | - Catherine Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USA
| | - Milan T. Makale
- Department of Radiation Medicine and Applied Sciences, UC San Diego, La Jolla, CA, USA
| | - Miles Makale
- Department of Psychology, UC San Diego, La Jolla, CA, USA
| | - Keerthy Sunder
- The Sunder Foundation, Palm Springs, CA, USA
- Department of Psychiatry, University of California Riverside, Riverside, CA, USA
| | - Kevin T. Murphy
- Department of Radiation Oncology, University of California, San Diego, La Jolla, USA
| | | |
Collapse
|
8
|
Peng Y, Ye JR, Wang SS, He WB, Feng ZP, Sun HS, Chu SF, Zhang Z, Chen NH. A small molecule 20C from Gastrodia elata inhibits α-synuclein aggregation and prevents progression of Parkinson's disease. Cell Death Dis 2023; 14:594. [PMID: 37673867 PMCID: PMC10482970 DOI: 10.1038/s41419-023-06116-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Parkinson's disease (PD) is pathologically manifested by the aggregation of α-synuclein, which has been envisioned as a promising disease-modifying target for PD. Here, we identified 20C, a bibenzyl compound derived from Gastrodia elata, able to inhibit the aggregation of A53T variants of α-synuclein directly in vitro. Computational analysis revealed that 20C binds to cavities in mature α-synuclein fibrils, and it indeed displays a strong interaction with α-synuclein and reduced their β-sheet structure by microscale thermophoresis and circular dichroism, respectively. Moreover, incubating neural cells with 20C reduced the amounts of α-synuclein inclusions significantly. The treatment of A53T α-Syn transgenic mice with 20C significantly reduces the toxic α-synuclein levels, improves behavioral performance, rescues dopaminergic neuron, and enhances functional connections between SNc and PD associated brain areas. The transcriptome analysis of SNc demonstrated that 20C improves mitochondrial dynamics, which protects mitochondrial morphology and function against α-synuclein induced degeneration. Overall, 20C appears to be a promising candidate for the treatment of PD.
Collapse
Affiliation(s)
- Ye Peng
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Jun-Rui Ye
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Sha-Sha Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wen-Bin He
- Shanxi University of Chinese Medicine, National International Joint Research Center for Molecular Chinese Medicine, Taiyuan, 030024, China
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- School of Pharmacy, Minzu University of China, Beijing, 100081, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
9
|
Exercise Modulates Brain Glucose Utilization Response to Acute Cocaine. J Pers Med 2022; 12:jpm12121976. [PMID: 36556197 PMCID: PMC9788493 DOI: 10.3390/jpm12121976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Exercise, a proven method of boosting health and wellness, is thought to act as a protective factor against many neurological and psychological diseases. Recent studies on exercise and drug exposure have pinpointed some of the neurological mechanisms that may characterize this protective factor. Using positron emission tomography (PET) imaging techniques and the glucose analog [18F]-Fluorodeoxyglucose (18F-FDG), our team sought to identify how chronic aerobic exercise modulates brain glucose metabolism (BGluM) after drug-naïve rats were exposed to an acute dose of cocaine. Using sedentary rats as a control group, we observed significant differences in regional BGluM. Chronic treadmill exercise treatment coupled with acute cocaine exposure induced responses in BGluM activity in the following brain regions: postsubiculum (Post), parasubiculum (PaS), granular and dysgranular insular cortex (GI and DI, respectively), substantia nigra reticular (SNR) and compact part dorsal tier (SNCD), temporal association cortex (TeA), entopenduncular nucleus (EP), and crus 1 of the ansiform lobule (crus 1). Inhibition, characterized by decreased responses due to our exercise, was found in the ventral endopiriform nucleus (VEn). These areas are associated with memory and various motor functions. They also include and share connections with densely dopaminergic areas of the mesolimbic system. In conclusion, these findings suggest that treadmill exercise in rats mediates brain glucose response to an acute dose of cocaine differently as compared to sedentary rats. The modulated brain glucose utilization occurs in brain regions responsible for memory and association, spatial navigation, and motor control as well as corticomesolimbic regions related to reward, emotion, and movement.
Collapse
|
10
|
Liu Y, Zhu L, Cai K, Dong X, Xiong X, Liu Z, Chen A. Relationship between Cardiorespiratory Fitness and Executive Function in Young Adults: Mediating Effects of Gray Matter Volume. Brain Sci 2022; 12:1441. [PMID: 36358366 PMCID: PMC9688695 DOI: 10.3390/brainsci12111441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 08/01/2023] Open
Abstract
We evaluated the association between cardiorespiratory fitness (CRF) and executive function (EF) in young adults and the mediating effects of GMV on this relationship. This study involved 217 college students. An incremental load exercise program was used to evaluate VO2max. EF was estimated by the Flanker task, the 2-back task, and the more-odd shifting task, while structural magnetic resonance and region-based morphometry (RBM) were used to analyze GMV. The high CRF group had a shorter updating reaction time (RT) (p ≤ 0.05). CRF was positively correlated with the right orbital part of the middle frontal gyrus (ORBmid.R) GMV (p ≤ 0.05). ORBmid.R GMV was negatively correlated with updating RT (p ≤ 0.05). Model 4 in SPSS was used to assess the mediating effects of ORBmid.R GMV between CRF and updating RT. ORBmid.R GMV was established to have a partially mediating role between CRF and updating RT, which accounted for 19.6% of the total effect value. These findings indicate that the negative correlation between CRF and EF was significant, and ORBmid.R GMV played a mediating role in the relationship between CRF and EF, providing new evidence toward comprehensively revealing that CRF promotes EF performance.
Collapse
Affiliation(s)
- Yuexin Liu
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Lina Zhu
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Kelong Cai
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Xiaoxiao Dong
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Xuan Xiong
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Zhimei Liu
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| | - Aiguo Chen
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
- Institute of Sports, Exercise and Brain, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
11
|
Caffeine-Induced Acute and Delayed Responses in Cerebral Metabolism of Control and Schizophrenia-Like Wisket Rats. Int J Mol Sci 2022; 23:ijms23158186. [PMID: 35897774 PMCID: PMC9331118 DOI: 10.3390/ijms23158186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 12/04/2022] Open
Abstract
Recently, morphological impairments have been detected in the brain of a triple-hit rat schizophrenia model (Wisket), and delayed depressive effects of caffeine treatment in both control and Wisket animals have also been shown. The aims of this study were to determine the basal and caffeine-induced acute (30 min) and delayed (24 h) changes in the cerebral 18fluorodeoxyglucose (18F-FDG) uptake by positron emission tomography (PET) in control and Wisket rats. No significant differences were identified in the basal whole-brain metabolism between the two groups, and the metabolism was not modified acutely by a single intraperitoneal caffeine (20 mg/kg) injection in either group. However, one day after caffeine administration, significantly enhanced 18F-FDG uptake was detected in the whole brain and the investigated areas (hippocampus, striatum, thalamus, and hypothalamus) in the control group. Although the Wisket animals showed only moderate enhancements in the 18F-FDG uptake, significantly lower brain metabolism was observed in this group than in the caffeine-treated control group. This study highlights that the basal brain metabolism of Wisket animals was similar to control rats, and that was not influenced acutely by single caffeine treatment at the whole-brain level. Nevertheless, the distinct delayed responsiveness to this psychostimulant in Wisket model rats suggests impaired control of the cerebral metabolism.
Collapse
|