1
|
Okamoto R, Hosokawa Y, Hosokawa I, Ozaki K, Hosaka K. Zerumbone modulates the expression of inflammatory mediators and antioxidant enzymes in TNF-α-stimulated human periodontal ligament cells. Immunopharmacol Immunotoxicol 2025; 47:176-181. [PMID: 39748667 DOI: 10.1080/08923973.2024.2445724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025]
Abstract
OBJECTIVES Periodontal disease is a chronic inflammatory disease caused by periodontopathogenic bacteria, and its progression leads to periodontal tissue destruction and tooth loss. Zerumbone is a bioactive substance found in ginger (Zingiber zerumbet) and is known to have bioactive effects such as anticancer effects, but there have been no attempts to use it for periodontitis treatment. In addition, there have been no reports examining its effects on periodontal tissue component cells. In this experiment, we aimed to determine whether zerumbone affects the production of inflammatory mediators induced by tumor necrosis factor (TNF)-α in human periodontal ligament cells (HPDLCs), including its effects on signaling pathways. METHODS HPDLCs were stimulated by TNF-α (10 ng/ml) with or without zerumbone (6.25, 12.5, or 25 µM). Cytokine production in supernatant was determined using ELISA. Activation of signal transduction pathways and intracellular protein expression were investigated using the western blot analysis. RESULTS Zerumbone significantly suppressed TNF-α-induced production of CC chemokine ligand 2 (CCL2), CCL20, CXC chemokine ligand 10 (CXCL10), and interleukin-6 (IL-6) in HPDLCs. In addition, zerumbone decreased intercellular adhesion molecule-1 (ICAM-1) and cyclooxygenase-2 (COX-2) expression in TNF-α-stimulated HPDLCs. Furthermore, zerumbone suppressed activation of nuclear factor (NF)-κB and signal transducer and activator of transcription 3 (STAT3) pathways in TNF-α-treated HPDLCs. Finally, zerumbone enhanced the production of heme oxygenase-1 (HO-1), an antioxidant enzyme, in HPDLCs. CONCLUSION These results suggest that zerumbone suppressed the production of several inflammatory mediators by inhibiting the NF-κB and STAT3 pathways in HPDLCs.
Collapse
Affiliation(s)
- Risa Okamoto
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Tokushima, Japan
| | - Yoshitaka Hosokawa
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Tokushima, Japan
| | - Ikuko Hosokawa
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Tokushima, Japan
| | - Kazumi Ozaki
- Department of Oral Health Care Promotion, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Tokushima, Japan
| | - Keiichi Hosaka
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Tokushima, Japan
| |
Collapse
|
2
|
Farhad SZ, Karbalaeihasanesfahani A, Dadgar E, Nasiri K, Hosseini NM, Valian N, Esfahaniani M, Nabi Afjadi M. Promising potential effects of resveratrol on oral and dental health maintenance: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1367-1389. [PMID: 39305330 DOI: 10.1007/s00210-024-03457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/24/2024] [Indexed: 02/14/2025]
Abstract
Resveratrol (RV-3, 5, 4'-trihydroxystilbene) is a natural compound found in plants like red grapes, berries, and peanuts, with promising effects on dental health. It helps strengthen tooth enamel by promoting remineralization, making the teeth more resistant to decay caused by acid-producing bacteria. RV also shields dentin, a vulnerable layer beneath the enamel, from erosion and sensitivity. Its anti-inflammatory properties can reduce inflammation associated with dental conditions such as pulpitis and endodontic diseases. Moreover, RV's antimicrobial activity inhibits the growth of bacteria involved in dental plaque and biofilm formation, preventing their accumulation on the tooth surface. This contributes to a healthier oral environment and prolongs the lifespan of dental restorative materials. However, the research on RV's impact on dental health is in its early stages, and further studies are needed to confirm potential benefits. Important factors such as determining the optimal dosage, understanding its bioavailability, and assessing potential side effects require further investigation. This review focuses on the important role of RV in promoting dental health. It delves into various aspects, including its impact on root health, maintenance of the dental pulp, care for tooth enamel, effectiveness of dental restorative materials, and health of dentin.
Collapse
Affiliation(s)
- Shirin Zahra Farhad
- Department of Periodontics, Faculty of Dentistry, Isfahan(Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | | | - Esmaeel Dadgar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Narges Mohammad Hosseini
- Faculty of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Neda Valian
- Faculty of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahla Esfahaniani
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Tao YK, Tseng YW, Tzou KY, Kuo CY, Nguyen HT, Lu HT, Chuang AEY. Advancing teeth whitening efficacy via dual-phototherapeutic strategy incorporating molybdenum disulfide embedded in carrageenan hydrogel for dental healthcare. Int J Biol Macromol 2024; 276:133647. [PMID: 38964693 DOI: 10.1016/j.ijbiomac.2024.133647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Teeth discoloration poses a widespread challenge in dental health across various regions. Conventional teeth whitening methods often result in enamel deterioration and soft tissue harm due to the utilization of incompatible whitening agents and continuous intense light exposure. Here, we propose an effective phototherapy technique for teeth whitening, employing pathways of energy transition through intersystem crossing. The integration of MoS2 nanosheets into carrageenan gel (MoS2 NSs@Carr) facilitates both photothermal-hyperthermia and the generation of reactive oxygen species (ROS) through photocatalytic processes. The efficacy of ROS generation by the phototherapeutic MoS2 NSs@Carr on teeth whitening in the scenario. This approach ensures comprehensive teeth whitening by eliminating deep-seated stains on the teeth while preserving structural integrity and avoiding any tissue toxicity. This research highlights the efficacy of the phototherapeutic MoS2 NSs@Carr for dental whitening and underscores the potential of exploring nanostructures based on MoS2 NSs for managing dental healthcare issue.
Collapse
Affiliation(s)
- Yu-Kuang Tao
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Wen Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Kai-Yi Tzou
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Medical University Research Centre of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Chun-Yuan Kuo
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, Taipei 110301, Taiwan; School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110301, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Hsien-Tsung Lu
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University, Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
4
|
Wang Y, Lei L, Huang J, Cai Z, Huang X. Sonic-assisted antibacterial photodynamic therapy: a strategy for enhancing lateral canal disinfection. BMC Oral Health 2024; 24:5. [PMID: 38166876 PMCID: PMC10762957 DOI: 10.1186/s12903-023-03801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Bacterial infections in lateral canals pose challenges for root canal treatment. This in vitro study aims to evaluate the antibacterial efficacy of sonic-assisted methylene blue mediated antimicrobial photodynamic therapy (MB-aPDT) against Enterococcus faecalis (E. faecalis) in infected lateral canals. METHODS Sixty-five premolars infected with E. faecalis in lateral canals were randomly divided into five groups (n = 13) and treated with : (1) 5.25% NaOCl (positive control); (2) Saline (negative control); (3) Sonic-assisted MB-aPDT; (4) 3% NaOCl + MB-aPDT; (5) 3% NaOCl + sonic-assisted MB-aPDT, respectively. The antibacterial efficacy was evaluated by the colony- counting method (CCM) and scanning electronic microscope (SEM). RESULTS Both 5.25% NaOCl and the 3% NaOCl + sonic-assisted MB-aPDT exhibited the most effective while comparable antibacterial effects without significant statistical difference (P > 0.05). Furthermore, the antibacterial effect of the 3% NaOCl + MB-aPDT group was significantly higher compared to that of the sonic-assisted MB-aPDT group (P < 0.05). The SEM results demonstrated notable morphological alterations in E. faecalis across all experimental groups, except for the negative control group. CONCLUSION The concentration of NaOCl can be reduced to a safe level while preserving its antibacterial efficacy through the synergism with the sonic-assisted MB-aPDT in this study.
Collapse
Affiliation(s)
- Yanhuang Wang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, PR China
| | - Lishan Lei
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, PR China
| | - Jing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, PR China
| | - Zhiyu Cai
- Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, 350002, PR China.
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, PR China.
| |
Collapse
|
5
|
Gogde K, Paul S, Pujari AK, Yadav AK, Bhaumik J. Synthesis of Metallo-Chromone Porphyrin Nano-Starch Sensitizers as Photodynamic Therapeutics for the Eradication of Enterococci Dental Pathogens. J Med Chem 2023; 66:13058-13071. [PMID: 37671975 DOI: 10.1021/acs.jmedchem.3c01087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Photodynamic therapy (PDT), as an advanced, alternative, and promising treatment, can inhibit dental pathogens. PDT employs the activation of photosensitizers via the light of a particular wavelength and molecular oxygen to inhibit dental pathogens. Herein, we present a comprehensive study on the synthesis and characterization of three chromone-porphyrins [Zn(II)-5-[4-chromone]-15-(4-phenyl)porphyrin (ZnCP), 5-[4-chromone]-15-(4-12 phenyl)porphyrin (DMCP), and Pd(II)-5-[4-chromone]-15-(4-phenyl)porphyrin (PdCP)]. Next, the computational study was also performed to establish the correlation between photophysical properties and theoretical calculations for those chromone-porphyrins using density functional theory and time-dependent density functional theory. Furthermore, chromone-porphyrins were encapsulated in starch nanoparticles to develop soluble nano-starch sensitizers (ZnCP-SNPs, DMCP-SNPs, and PdCP-SNPs) via the nanoprecipitation technique. Upon green light exposure, these nano-starch sensitizers exhibited excellent singlet oxygen generation ability. Moreover, final nanoformulations have been explored for pH responsiveness. Based on our intriguing findings, the chromone-porphyrin-loaded nano-starch sensitizers displayed great potential as prospective PDT to treat enterococci dental pathogens.
Collapse
Affiliation(s)
- Kunal Gogde
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing, Dept. of Biotechnology (Govt. of India), Knowledge City, Sector 81, Mohali, Punjab 140308, India
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Sector 14, Chandigarh 160014, India
| | - Shatabdi Paul
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing, Dept. of Biotechnology (Govt. of India), Knowledge City, Sector 81, Mohali, Punjab 140308, India
- Regional Centre for Biotechnology (RCB), Faridabad, Haryana 121001, India
| | - Anil Kumar Pujari
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing, Dept. of Biotechnology (Govt. of India), Knowledge City, Sector 81, Mohali, Punjab 140308, India
- Indian Institute of Science Education and Research (IISER), Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Ashok Kumar Yadav
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Sector 14, Chandigarh 160014, India
| | - Jayeeta Bhaumik
- Department of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing, Dept. of Biotechnology (Govt. of India), Knowledge City, Sector 81, Mohali, Punjab 140308, India
| |
Collapse
|
6
|
Müller-Heupt LK, Eckelt A, Eckelt J, Groß J, Opatz T, Kommerein N. An In Vitro Study of Local Oxygen Therapy as Adjunctive Antimicrobial Therapeutic Option for Patients with Periodontitis. Antibiotics (Basel) 2023; 12:990. [PMID: 37370309 DOI: 10.3390/antibiotics12060990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Periodontitis is a common global disease caused by bacterial dysbiosis leading to tissue destruction, and it is strongly associated with anaerobic bacterial colonization. Therapeutic strategies such as oxygen therapy have been developed to positively influence the dysbiotic microbiota, and the use of oxygen-releasing substances may offer an added benefit of avoiding systemic effects commonly associated with antibiotics taken orally or hyperbaric oxygen therapy. Therefore, the oxygen release of calcium peroxide (CaO2) was measured using a dissolved oxygen meter, and CaO2 solutions were prepared by dissolving autoclaved CaO2 in sterile filtered and deionized water. The effects of CaO2 on planktonic bacterial growth and metabolic activity, as well as on biofilms of Streptococcus oralis and Porphyromonas gingivalis, were investigated through experiments conducted under anaerobic conditions. The objective of this study was to investigate the potential of CaO2 as an antimicrobial agent for the treatment of periodontitis. Results showed that CaO2 selectively inhibited the growth and viability of P. gingivalis (p < 0.001) but had little effect on S. oralis (p < 0.01), indicating that CaO2 has the potential to selectively affect both planktonic bacteria and mono-species biofilms of P. gingivalis. The results of this study suggest that CaO2 could be a promising antimicrobial agent with selective activity for the treatment of periodontitis.
Collapse
Affiliation(s)
- Lena Katharina Müller-Heupt
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Anja Eckelt
- WEE-Solve GmbH, Auf der Burg 6, 55130 Mainz, Germany
| | - John Eckelt
- WEE-Solve GmbH, Auf der Burg 6, 55130 Mainz, Germany
| | - Jonathan Groß
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Nadine Kommerein
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
7
|
Wen Y, Dong H, Lin J, Zhuang X, Xian R, Li P, Li S. Response of Human Gingival Fibroblasts and Porphyromonas gingivalis to UVC-Activated Titanium Surfaces. J Funct Biomater 2023; 14:jfb14030137. [PMID: 36976061 PMCID: PMC10051447 DOI: 10.3390/jfb14030137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Ultraviolet (UV) photofunctionalization has been demonstrated to synergistically improve the osteoblast response and reduce biofilm formation on titanium (Ti) surfaces. However, it remains obscure how photofunctionalization affects soft tissue integration and microbial adhesion on the transmucosal part of a dental implant. This study aimed to investigate the effect of UVC (100–280 nm) pretreatment on the response of human gingival fibroblasts (HGFs) and Porphyromonas gingivalis (P. g.) to Ti-based implant surfaces. The smooth and anodized nano-engineered Ti-based surfaces were triggered by UVC irradiation, respectively. The results showed that both smooth and nano-surfaces acquired super hydrophilicity without structural alteration after UVC photofunctionalization. UVC-activated smooth surfaces enhanced the adhesion and proliferation of HGFs compared to the untreated smooth ones. Regarding the anodized nano-engineered surfaces, UVC pretreatment weakened the fibroblast attachment but had no adverse effects on proliferation and the related gene expression. Additionally, both Ti-based surfaces could effectively inhibit P. g. adhesion after UVC irradiation. Therefore, the UVC photofunctionalization could be more potentially favorable to synergistically improve the fibroblast response and inhibit P. g. adhesion on the smooth Ti-based surfaces.
Collapse
Affiliation(s)
- Yin Wen
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Hao Dong
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Jiating Lin
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Xianxian Zhuang
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Ruoting Xian
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Ping Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
- Correspondence: (P.L.); (S.L.)
| | - Shaobing Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
- First Clinical Medical College, Xinjiang Medical University, Urumqi 830011, China
- The First People’s Hospital of Kashgar Region, Kashgar 844000, China
- Correspondence: (P.L.); (S.L.)
| |
Collapse
|