1
|
Zhu W, Gong A, Zhang B, Cheng H, Huang L, Wu X, Zhang D, Dai W, Li S, Xu H. The Chronobiological and Neuroprotective Mechanisms of Resveratrol in Improving Sleep. Mediators Inflamm 2025; 2025:4954030. [PMID: 40144750 PMCID: PMC11944795 DOI: 10.1155/mi/4954030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/01/2025] [Indexed: 03/28/2025] Open
Abstract
According to statistics, more than one-third of the global population currently experiences sleep problems, and about 10% of adults have been diagnosed with insomnia, a proportion that is increasing annually. Most currently used insomnia medications are not specifically developed but are discovered by chance, often resulting in unavoidable side effects like addiction. Thus, there is an urgent need to find safer and more effective therapeutic options. Resveratrol, a natural polyphenolic compound, shows significant potential in improving insomnia. Research shows that its effects may be achieved through multiple biological processes, including antiapoptosis, antioxidant activity, anti-inflammation, circadian rhythm regulation, modulation of neurotransmitters (gamma-aminobutyric acid (GABA), DA, 5-HT, cortisol), and increased levels of neurotrophic factor BDNF. Additionally, resveratrol's treatment of insomnia is closely linked to the SIRT1, AMPK, NF-κB, mTOR, PI3K/Akt, and MAPK pathways. This review summarizes the mechanisms of resveratrol in treating insomnia to provide researchers with a deeper understanding of its action, which can aid in the development of novel targeted drugs and offer innovative ideas and methods for clinical insomnia treatment.
Collapse
Affiliation(s)
- Wenwen Zhu
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Ailin Gong
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Bin Zhang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Hanxing Cheng
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Lishan Huang
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiao Wu
- Department of Acupuncture and Tuina, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Dechou Zhang
- Department of Acupuncture and Tuina, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenbin Dai
- Department of Respiratory medicine, Luzhou Longmatan District People's Hospital, Luzhou, Sichuan, China
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Houping Xu
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Numakawa T, Kajihara R. The Role of Brain-Derived Neurotrophic Factor as an Essential Mediator in Neuronal Functions and the Therapeutic Potential of Its Mimetics for Neuroprotection in Neurologic and Psychiatric Disorders. Molecules 2025; 30:848. [PMID: 40005159 PMCID: PMC11857940 DOI: 10.3390/molecules30040848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Among neurotrophins, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4/5), BDNF has been extensively studied for its physiological role in cell survival and synaptic regulation in the central nervous system's (CNS's) neurons. BDNF binds to TrkB (a tyrosine kinase) with high affinity, and the resulting downstream intracellular signaling cascades play crucial roles in determining cell fate, including neuronal differentiation and maturation of the CNS neurons. It has been well demonstrated that the downregulation/dysregulation of the BDNF/TrkB system is implicated in the pathogenesis of neurologic and psychiatric disorders, such as Alzheimer's disease (AD) and depression. Interestingly, the effects of BDNF mimetic compounds including flavonoids, small molecules which can activate TrkB-mediated signaling, have been extensively investigated as potential therapeutic strategies for brain diseases, given that p75NTR, a common neurotrophin receptor, also contributes to cell death under a variety of pathological conditions such as neurodegeneration. Since the downregulation of the BDNF/TrkB system is associated with the pathophysiology of neurodegenerative diseases and psychiatric disorders, understanding how alterations in the BDNF/TrkB system contribute to disease progression could provide valuable insight for the prevention of these brain diseases. The present review shows recent advances in the molecular mechanisms underlying the BDNF/TrkB system in neuronal survival and plasticity, providing critical insights into the potential therapeutic impact of BDNF mimetics in the pathophysiology of brain diseases.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ryutaro Kajihara
- Department of Hematology and Immunology, Faculty of Life Science, Kumamoto University, Kumamoto 862-0976, Japan
| |
Collapse
|
3
|
Shkundin A, Wheeler HE, Sinacore J, Halaris A. BDNF/BDNF-AS Gene Polymorphisms Modulate Treatment Response and Remission in Bipolar Disorder: A Randomized Clinical Trial. J Pers Med 2025; 15:62. [PMID: 39997339 PMCID: PMC11856652 DOI: 10.3390/jpm15020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Bipolar disorder (BD) is a chronic condition associated with treatment resistance, cognitive decline, structural brain changes, and an approximately 13-year reduction in life expectancy compared to the general population. Depression in BD substantially impairs quality of life, while neuroinflammation and excitotoxicity are thought to contribute to the recurrence of mood episodes and disease progression. Brain-derived neurotrophic factor (BDNF) plays a key role in neuronal growth and function, with its dysregulation being linked to various psychiatric disorders. This study is an extension of a previously published clinical trial and was conducted to assess the effects of three BDNF and BDNF-AS gene polymorphisms (rs1519480, rs6265, and rs10835210) on treatment outcomes and serum BDNF levels in patients with treatment-resistant bipolar disorder depression (TRBDD) over an eight-week period. Methods: This study included 41 participants from a previously conducted randomized clinical trial, all of whom had available BDNF serum samples and genotype data. The participants, aged 21 to 65, were diagnosed with bipolar disorder, and treatment-resistant depression was assessed using the Maudsley Staging Method. Participants were randomly assigned to receive either escitalopram plus a placebo (ESC+PBO) or escitalopram plus celecoxib (ESC+CBX) over an 8-week period. Statistical analyses included a mixed ANOVA and chi-square tests to compare the minor allele carrier status of three SNPs with treatment response and remission rates. Results: Non-carriers of the rs6265 A allele (p = 0.005) and carriers of the rs10835210 A allele (p = 0.007) showed a significantly higher response to treatment with adjunctive celecoxib compared to escitalopram alone. Additionally, remission rates after adjunctive celecoxib were significantly higher in both carriers and non-carriers across all three SNPs compared to escitalopram alone. However, remission rates were notably higher in non-carriers of the rs1519480 G allele and rs10835210 A allele, as well as in carriers of the rs6265 A allele. Conclusions: This study suggests that genetic variations in BDNF and BDNF-AS genes significantly influence treatment response to and remission with escitalopram and celecoxib in bipolar disorder.
Collapse
Affiliation(s)
- Anton Shkundin
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Chicago, Maywood, IL 60153, USA
| | - Heather E. Wheeler
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - James Sinacore
- Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL 60153, USA
| | - Angelos Halaris
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
4
|
Canzian J, Borba JV, Resmim CM, Mohammed KA, Pretzel CW, Adedara IA, Rosemberg DB. The dopamine transporter inhibition using GBR 12909 as a novel pharmacological tool to assess bipolar disorder-like neurobehavioral phenotypes in zebrafish. Behav Brain Res 2025; 477:115302. [PMID: 39442564 DOI: 10.1016/j.bbr.2024.115302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Dopamine (DA) is a neurotransmitter that plays an important role in brain physiology. Changes in DA-mediated signaling have been implicated with the pathophysiology of various neuropsychiatric conditions. Bipolar disorder (BD) is a mental disorder, characterized by alterning between manic/hypomanic and depressive mood. In experimental research, the pharmacological inhibition of DA reuptake using GBR 12909 serves as a tool to elicit BD-like phenotypes. Alternative model organisms, such as the zebrafish (Danio rerio), have been considered important systems for investigating the neurobehavioral changes involved in different neuropsychiatric conditions, including BD. Here, we discuss the use of GBR 12909 as a novel pharmacological strategy to mimic BD-like phenotypes in zebrafish models. We also emphasize the well-conserved DA-mediated signaling in zebrafish and the early expression of dopaminergic biomarkers in the brain, especially focusing on dopamine transporter (DAT), the main target of GBR 12909. Finally, we discuss potential advantages and limitations in the field, the perspectives of using GBR 12909 in BD research, and how distinct validation criteria (i.e., face, predictive, and construct validity) can be assessed in translational approaches using zebrafish-based models.
Collapse
Affiliation(s)
- Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - João V Borba
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Cássio M Resmim
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Khadija A Mohammed
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Camilla W Pretzel
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Isaac A Adedara
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS 97105-900, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
5
|
Kang Z, Zheng Z, Guo W. Efficacy of agomelatine on sleep disorders and lateral habenula neuronal activity in chronic restraint stress depression model mice. Psychopharmacology (Berl) 2025; 242:353-360. [PMID: 39249500 DOI: 10.1007/s00213-024-06681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Sleep disorders (SD) are one of the common manifestations of depression patients. This article aimed to explore the effect of Agomelatine (Ago) on SD in chronic restraint stress (CRS) depression model mice and its effect on the activity of neurons in the lateral habenula (LHb). METHODS 30 C57BL/6 J mice were divided into normal (C57BL/6 J) group, CRS group, and Ago group. CRS experiment was used to establish the depression model, and Ago was used to treat CRS mice. Based on behavioral tests in mice and electrophysiology record, SD and LHb neuron activity were assessed. The expression levels of brain-derived neurotrophic factor (BDNF) and nuclear phosphoprotein (c-Fos) in LHb were detected by Western blot (WB). RESULTS As against the CRS group, the Ago group had a reduction in the immobility time during forced swimming training and an increase in the preference for sucrose in the sucrose preference test; The expression levels of c-Fos and BDNF proteins in the LHb neurons of the Ago group mice were lower than those in the CRS group (P < 0.05), and the values approached the levels of the normal control group. In both dark and light environments, the rapid eye movement (REM) sleep duration of the CRS group mice was significantly longer than that of the normal control group (P < 0.05). CONCLUSION It was concluded that Ago may intervene in the depressive-like behavior and overall sleep patterns of CRS depression model mice by regulating the activity of LHb neurons and inhibiting the neuroinflammatory process. This provides a potential drug target for the development of new treatment strategies for depression.
Collapse
Affiliation(s)
- Zhuojun Kang
- Department of Acupuncture and Moxibustion, Chengdu First People's Hospital, Chengdu, 610041, China.
| | - Zhenzhen Zheng
- Department of Acupuncture and Moxibustion, Chengdu First People's Hospital, Chengdu, 610041, China
| | - Wenli Guo
- Department of Acupuncture and Moxibustion, Chengdu First People's Hospital, Chengdu, 610041, China
| |
Collapse
|
6
|
Dong C, Han Y, Chen S, Wang G. Mendelian randomisation analysis to explore the association between cathepsins and bipolar disorder. BMC Psychiatry 2024; 24:758. [PMID: 39482620 PMCID: PMC11529291 DOI: 10.1186/s12888-024-06210-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
INTRODUCTION Bipolar disorder is a psychiatric condition characterized by the coexistence of depression and mania. Diagnosis of this disorder can be challenging due to limited pathologic and experimental tools. Treatment compliance is often poor due to medication side effects. Although cathepsin is known to play a significant role in diseases such as tumors and osteoporosis, its role in psychiatric disorders is not yet fully understood. OBJECTIVE The aim of this study was to investigate the relationship between cathepsin in the blood circulation and bipolar disorder. METHODS The causal relationship between cathepsin and different subtypes of bipolar affective disorder was explored using bidirectional Mendelian randomization analysis and multivariate analysis. RESULTS It was found that cathepsin H level was a protective factor for type II bipolar disorder. No potential causal relationship was found between cathepsin H and type I bipolar disorder, but cathepsin B changes with the development of type I bipolar disorder. A causal relationship was found between cathepsin H and cerebral dopamine neurotrophic factor. CONCLUSIONS In conclusion, cathepsin H may be a diagnostic target for bipolar II disorder and may play a guiding role in clinical diagnosis. Cathepsin H may have an effect on BD through cerebral dopamine neurotrophic factor.
Collapse
Affiliation(s)
- Chenshuang Dong
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yecheng Han
- Research Institute for "Ren" Doctors, School of Medical Humanities, China Medical University, Shenyang, 110122, Liaoning, China
| | - Siqiao Chen
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Guiling Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
7
|
Liberona A, Jones N, Zúñiga K, Garrido V, Zelada MI, Silva H, Nieto RR. Brain-Derived Neurotrophic Factor (BDNF) as a Predictor of Treatment Response in Schizophrenia and Bipolar Disorder: A Systematic Review. Int J Mol Sci 2024; 25:11204. [PMID: 39456983 PMCID: PMC11508575 DOI: 10.3390/ijms252011204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a potential biomarker of response to treatment in psychiatric disorders. As it plays a role in the pathophysiological development of schizophrenia and bipolar disorder, it is of interest to study its role in predicting therapeutic responses in both conditions. We carried out a systematic review of the literature, looking for differences in baseline BDNF levels and the Val66Met BDNF polymorphism in these disorders between responders and non-responders, and found information showing that the Val/Val genotype and higher baseline BDNF levels may be present in patients that respond successfully to pharmacological and non-pharmacological treatments. However, there is still limited evidence to support the role of the Val66Met polymorphism and baseline BDNF levels as predictors of treatment response.
Collapse
Affiliation(s)
- Andrés Liberona
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Natalia Jones
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Karen Zúñiga
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Verónica Garrido
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Mario Ignacio Zelada
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Hernán Silva
- Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago 8380453, Chile
- Departamento de Psiquiatría y Salud Mental Norte, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Rodrigo R. Nieto
- Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago 8380453, Chile
- Departamento de Psiquiatría y Salud Mental Norte, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Departamento de Neurociencias, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
8
|
Sultanova R, Gashkarimov V, Efremov I, Asadullin A. Biological Methods for Diagnosing Depressive Symptoms in Patients with Schizophrenia: A Narrative Review. CONSORTIUM PSYCHIATRICUM 2024; 5:31-41. [PMID: 39526009 PMCID: PMC11542912 DOI: 10.17816/cp15525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Depressive symptoms in patients with schizophrenia lead to more frequent exacerbations of the underlying disease, worsen the prognosis, and increase the risk of suicide. Clinical practitioners continue to face challenges in diagnosing this disorder. AIM This study aims to analyze published material on biological markers of depressive symptoms in patients with schizophrenia. METHODS The search of literature was conducted using the following electronic search engines (the total number of relevant papers found is also specified): ACCESSSS (n=150), Cochrane Library (n=48), PubMed (n=623), eLIBRARY (n=216), and Google Scholar (n=367). The final discussion included 67 papers consistent with the study aim and were published between January 1, 2018 and December 31, 2023. RESULTS Based on the available scaterred data, it appears that plasma biomarkers (e.g. C-reactive protein, metabolic parameters, hormones, enzymes, neurotrophic factors) are limited in specificity when it comes to diagnosing depressive symptoms in schizophrenia. Our analysis of the neuroimaging findings showed that depressive manifestations are associated with a decrease in the volume of the gray matter in the parietal, frontal, and temporal lobes (particularly in Broca's and Wernicke's areas) and in specific regions of the prefrontal cortex (including the medial right superior frontal, medial orbitofrontal, and superior and middle frontal gyri). It has been suggested that the SIRT1, OXT, CDKAL1, and APOE genes are involved in the development of depressive symptoms in patients with schizophrenia. CONCLUSION Understanding and identifying depressive symptoms in schizophrenia will improve the quality of care for patients with this disorder.
Collapse
|
9
|
Singh J, Wilkins G, Goodman-Vincent E, Chishti S, Bonilla Guerrero R, Fiori F, Ameenpur S, McFadden L, Zahavi Z, Santosh P. Using Precision Medicine to Disentangle Genotype-Phenotype Relationships in Twins with Rett Syndrome: A Case Report. Curr Issues Mol Biol 2024; 46:8424-8440. [PMID: 39194714 DOI: 10.3390/cimb46080497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Rett syndrome (RTT) is a paediatric neurodevelopmental disorder spanning four developmental stages. This multi-system disorder offers a unique window to explore genotype-phenotype relationships in a disease model. However, genetic prognosticators of RTT have limited clinical value due to the disorder's heterogeneity on multiple levels. This case report used a precision medicine approach to better understand the clinical phenotype of RTT twins with an identical pathogenic MECP2 mutation and discordant neurodevelopmental profiles. Targeted genotyping, objective physiological monitoring of heart rate variability (HRV) parameters, and clinical severity were assessed in a RTT twin pair (5 years 7 months old) with an identical pathogenic MECP2 mutation. Longitudinal assessment of autonomic HRV parameters was conducted using the Empatica E4 wristband device, and clinical severity was assessed using the RTT-anchored Clinical Global Impression Scale (RTT-CGI) and the Multi-System Profile of Symptoms Scale (MPSS). Genotype data revealed impaired BDNF function for twin A when compared to twin B. Twin A also had poorer autonomic health than twin B, as indicated by lower autonomic metrics (autonomic inflexibility). Hospitalisation, RTT-CGI-S, and MPSS subscale scores were used as measures of clinical severity, and these were worse in twin A. Treatment using buspirone shifted twin A from an inflexible to a flexible autonomic profile. This was mirrored in the MPSS scores, which showed a reduction in autonomic and cardiac symptoms following buspirone treatment. Our findings showed that a combination of a co-occurring rs6265 BDNF polymorphism, and worse autonomic and clinical profiles led to a poorer prognosis for twin A compared to twin B. Buspirone was able to shift a rigid autonomic profile to a more flexible one for twin A and thereby prevent cardiac and autonomic symptoms from worsening. The clinical profile for twin A represents a departure from the disorder trajectory typically observed in RTT and underscores the importance of wider genotype profiling and longitudinal objective physiological monitoring alongside measures of clinical symptoms and severity when assessing genotype-phenotype relationships in RTT patients with identical pathogenic mutations. A precision medicine approach that assesses genetic and physiological risk factors can be extended to other neurodevelopmental disorders to monitor risk when genotype-phenotype relationships are not so obvious.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Georgina Wilkins
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Ella Goodman-Vincent
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Samiya Chishti
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | | | - Federico Fiori
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Shashidhar Ameenpur
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Leighton McFadden
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Zvi Zahavi
- Myogenes Limited, Borehamwood WD6 4PJ, UK
| | - Paramala Santosh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| |
Collapse
|
10
|
Hu J, Lian Z, Weng Z, Xu Z, Gao J, Liu Y, Luo T, Wang X. Intranasal Delivery of Near-Infrared and Magnetic Dual-Response Nanospheres to Rapidly Produce Antidepressant-Like and Cognitive Enhancement Effects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405547. [PMID: 38778461 DOI: 10.1002/adma.202405547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Restricted by synaptic plasticity, dopamine receptor (DR) upregulation takes a long time to work. Moreover, the impact of the blood-brain barrier (BBB) on delivery efficiency restricts the development of drugs. Taking inspiration from snuff bottles, a convenient, fast-acting, and nonaddictive nasal drug delivery system has been developed to rapidly reshape the balance of synaptic transmitters. This optical and magnetic response system called CFs@DP, comprised of carbonized MIL-100 (Fe) frameworks (CFs) and domperidone (DP), which can enter the brain via nasal administration. Under dual stimulation of near-infrared (NIR) irradiation and catecholamine-induced complexation, CFs@DP disintegrates to release iron ions and DP, causing upregulation of the dopamine type 1 (D1), type 2 (D2) receptors, and brain-derived neurotrophic factor (BDNF) to achieve a therapeutic effect. In vivo experiments demonstrate that the DR density of mice (postnatal day 50-60) increased in the prefrontal cortex (PFC) and the hippocampus (HPC) after 10 days of therapy, resulting in antidepressant-like and cognitive enhancement effects. Interestingly, the cognitive enhancement effect of CFs@DP is even working in noniron deficiency (normal fed) mice, making it a promising candidate for application in enhancing learning ability.
Collapse
Affiliation(s)
- Jiangnan Hu
- Institute of Biomedical Innovation, Jiangxi Medical College, School of Life Sciences, Nanchang University, Nanchang, 330088, P. R. China
| | - Zhenglong Lian
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Zhenzhen Weng
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Zihao Xu
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Jie Gao
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Yuanyuan Liu
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Tao Luo
- Institute of Biomedical Innovation, Jiangxi Medical College, School of Life Sciences, Nanchang University, Nanchang, 330088, P. R. China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| |
Collapse
|
11
|
Carpita B, Nardi B, Bonelli C, Pascariello L, Massimetti G, Cremone IM, Pini S, Palego L, Betti L, Giannaccini G, Dell’Osso L. Platelet Levels of Brain-Derived Neurotrophic Factor in Adults with Autism Spectrum Disorder: Is There a Specific Association with Autism Spectrum Psychopathology? Biomedicines 2024; 12:1529. [PMID: 39062102 PMCID: PMC11274613 DOI: 10.3390/biomedicines12071529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
To date, although several studies have investigated the circulating levels of brain-derived neurotrophic factor (BDNF) in children with autism spectrum disorder (ASD), only a few authors have addressed their evaluation in adults. Furthermore, an important limitation of these studies lies in the fact that circulating BDNF is stored in platelets and released into the circulation when needed. To the best of our knowledge, a very limited number of studies have related peripheral BDNF values to platelet counts, and yet no study has evaluated intra-platelet BDNF levels in adults with ASD. In this framework, the aim of the present work is to pave the way in this field and evaluate platelet BNDF levels in adult ASD patients, as well as their correlation with autistic symptoms and related psychopathological dimensions. We recruited 22 ASD and 22 healthy controls, evaluated with the Adult autism subthreshold spectrum (AdAS Spectrum), the Social Anxiety Spectrum-self report (SHY-SR), the Trauma and loss spectrum-self report (TALS-SR), the Work and Social Adjustment Scale (WSAS), and the Mood Spectrum-self report for suicidality. Intra-platelet BDNF levels were also assessed. The results highlighted lower BDNF levels in the ASD group; moreover, AdAS Spectrum and WSAS total score as well as AdAS Spectrum Restricted interest and rumination, WSAS Private leisure activities, TALS-SR Arousal, and SHY-SR Childhood domains were significant negative predictors of platelet BDNF levels.
Collapse
Affiliation(s)
- Barbara Carpita
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Benedetta Nardi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Chiara Bonelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Lavinia Pascariello
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Gabriele Massimetti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Ivan Mirko Cremone
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Stefano Pini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Lionella Palego
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.P.); (L.B.); (G.G.)
| | - Laura Betti
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.P.); (L.B.); (G.G.)
| | - Gino Giannaccini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.P.); (L.B.); (G.G.)
| | - Liliana Dell’Osso
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| |
Collapse
|
12
|
Ilieva MS. Non-Coding RNAs in Neurological and Neuropsychiatric Disorders: Unraveling the Hidden Players in Disease Pathogenesis. Cells 2024; 13:1063. [PMID: 38920691 PMCID: PMC11201512 DOI: 10.3390/cells13121063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/25/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Neurological and neuropsychiatric disorders pose substantial challenges to public health, necessitating a comprehensive understanding of the molecular mechanisms underlying their pathogenesis. In recent years, the focus has shifted toward the intricate world of non-coding RNAs (ncRNAs), a class of RNA molecules that do not encode proteins but play pivotal roles in gene regulation and cellular processes. This review explores the emerging significance of ncRNAs in the context of neurological and neuropsychiatric disorders, shedding light on their diverse functions and regulatory mechanisms. The dysregulation of various ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), has been implicated in the pathophysiology of conditions such as Alzheimer's disease, Parkinson's disease, schizophrenia, and mood disorders. This review delves into the specific roles these ncRNAs play in modulating key cellular processes, including synaptic plasticity, neuroinflammation, and apoptosis, providing a nuanced understanding of their impact on disease progression. Furthermore, it discusses the potential diagnostic and therapeutic implications of targeting ncRNAs in neurological and neuropsychiatric disorders. The identification of specific ncRNA signatures holds promise for the development of novel biomarkers for early disease detection, while the manipulation of ncRNA expression offers innovative therapeutic avenues. Challenges and future directions in the field are also considered, highlighting the need for continued research to unravel the complexities of ncRNA-mediated regulatory networks in the context of neurological and neuropsychiatric disorders. This review aims to provide a comprehensive overview of the current state of knowledge and stimulate further exploration into the fascinating realm of ncRNAs in the brain's intricate landscape.
Collapse
Affiliation(s)
- Mirolyuba Simeonova Ilieva
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen N, Ole Maaløes Vej 5, 3rd Floor, 2200 Copenhagen, Denmark
| |
Collapse
|
13
|
Jiao L, Chen T, Huang Y, Huang X. Effect analysis of repeated transcranial magnetic stimulation combined with fluoxetine in the treatment of first-episode adolescent depression. Front Psychiatry 2024; 15:1397706. [PMID: 38938464 PMCID: PMC11210588 DOI: 10.3389/fpsyt.2024.1397706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024] Open
Abstract
Objectives This study aims to evaluate the efficacy of repeated transcranial magnetic stimulation (rTMS) combined with fluoxetine in enhancing the early antidepressant response in first-episode adolescent depression cases, providing insights for patient diagnosis and treatment. Methods One hundred and thirty-five adolescents experiencing their first depressive episode were randomly assigned to either a sham group treated with fluoxetine or to low or high repetitive transcranial magnetic stimulation (rTMS) groups receiving both rTMS and fluoxetine. Therapeutic effects were assessed by comparing changes in Hamilton Depression Scale (HAMD-17) scores, cognitive function scores from the Wisconsin Card Sorting Test (WCST), and Clinical Global Impression-improvement (CGI-I) scores, along with recording adverse reactions. Results The total effectiveness rate in the rTMS groups (Low, 95.56%; High, 97.78%) was significantly higher than in the Sham rTMS group (80%) (F = 11.15, P<0.0001). Post-treatment, not only the Low but also the High rTMS group exhibited more significant reductions in HAMD-17 (Low, 21.05; High, 21.45) and CGI-I scores (Low, 3.44; High, 3.60) compared to the Sham rTMS group (HAMD-17, 16.05; CGI-I, 2.57) (two weeks: F = 7.889, P = 0.0006; four weeks: F = 15.900, P<0.0001). Additionally, the two rTMS groups exhibited fewer erroneous responses and persistent errors in the WCST and completed more WCST categorizations than the Sham rTMS group. There was no significant difference in adverse reaction rates between the groups (F=4.421, P=0.0794). Conclusions The combination of fluoxetine with rTMS demonstrates enhanced therapeutic effectiveness in treating adolescent depression, effectively controlling disease progression, reducing depressive symptoms, and improving cognitive function, making it a valuable clinical approach.
Collapse
Affiliation(s)
- Long Jiao
- Department of Psychology, The First Affiliated Hospital of Anhui Medical University, Heifei, China
- Department of Child Psychology, Anhui Provincial Children’s Hospital, Heifei, China
| | - Tingting Chen
- Laboratory of Medical Test, Hefei Technology College, Heifei, China
| | - Yuanyuan Huang
- Department of Child Psychology, Anhui Provincial Children’s Hospital, Heifei, China
| | - Xiaoqin Huang
- Department of Psychology, The First Affiliated Hospital of Anhui Medical University, Heifei, China
| |
Collapse
|
14
|
Shkundin A, Halaris A. IL-8 (CXCL8) Correlations with Psychoneuroimmunological Processes and Neuropsychiatric Conditions. J Pers Med 2024; 14:488. [PMID: 38793070 PMCID: PMC11122344 DOI: 10.3390/jpm14050488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Interleukin-8 (IL-8/CXCL8), an essential CXC chemokine, significantly influences psychoneuroimmunological processes and affects neurological and psychiatric health. It exerts a profound effect on immune cell activation and brain function, suggesting potential roles in both neuroprotection and neuroinflammation. IL-8 production is stimulated by several factors, including reactive oxygen species (ROS) known to promote inflammation and disease progression. Additionally, CXCL8 gene polymorphisms can alter IL-8 production, leading to potential differences in disease susceptibility, progression, and severity across populations. IL-8 levels vary among neuropsychiatric conditions, demonstrating sensitivity to psychosocial stressors and disease severity. IL-8 can be detected in blood circulation, cerebrospinal fluid (CSF), and urine, making it a promising candidate for a broad-spectrum biomarker. This review highlights the need for further research on the diverse effects of IL-8 and the associated implications for personalized medicine. A thorough understanding of its complex role could lead to the development of more effective and personalized treatment strategies for neuropsychiatric conditions.
Collapse
Affiliation(s)
| | - Angelos Halaris
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Chicago Stritch School of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
| |
Collapse
|
15
|
Zhang G, Lv S, Zhong X, Li X, Yi Y, Lu Y, Yan W, Li J, Teng J. Ferroptosis: a new antidepressant pharmacological mechanism. Front Pharmacol 2024; 14:1339057. [PMID: 38259274 PMCID: PMC10800430 DOI: 10.3389/fphar.2023.1339057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The incidence rate of depression, a mental disorder, is steadily increasing and has the potential to become a major global disability factor. Given the complex pathological mechanisms involved in depression, the use of conventional antidepressants may lead to severe complications due to their side effects. Hence, there is a critical need to explore the development of novel antidepressants. Ferroptosis, a newly recognized form of cell death, has been found to be closely linked to the onset of depression. Several studies have indicated that certain active ingredients can ameliorate depression by modulating the ferroptosis signaling pathway. Notably, traditional Chinese medicine (TCM) active ingredients and TCM prescriptions have demonstrated promising antidepressant effects in previous investigations owing to their unique advantages in antidepressant therapy. Building upon these findings, our objective was to review recent relevant research and provide new insights and directions for the development and application of innovative antidepressant strategies.
Collapse
Affiliation(s)
- Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Zhong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangyu Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yunhao Yi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiamin Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
16
|
Xie J, Wang Y, Ye C, Li XJ, Lin L. Distinctive Patterns of 5-Methylcytosine and 5-Hydroxymethylcytosine in Schizophrenia. Int J Mol Sci 2024; 25:636. [PMID: 38203806 PMCID: PMC10779130 DOI: 10.3390/ijms25010636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/25/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Schizophrenia is a highly heritable neuropsychiatric disorder characterized by cognitive and social dysfunction. Genetic, epigenetic, and environmental factors are together implicated in the pathogenesis and development of schizophrenia. DNA methylation, 5-methycytosine (5mC) and 5-hydroxylcytosine (5hmC) have been recognized as key epigenetic elements in neurodevelopment, ageing, and neurodegenerative diseases. Recently, distinctive 5mC and 5hmC pattern and expression changes of related genes have been discovered in schizophrenia. Antipsychotic drugs that affect 5mC status can alleviate symptoms in patients with schizophrenia, suggesting a critical role for DNA methylation in the pathogenesis of schizophrenia. Further exploring the signatures of 5mC and 5hmC in schizophrenia and developing precision-targeted epigenetic drugs based on this will provide new insights into the diagnosis and treatment of schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | - Li Lin
- Guangdong Key Laboratory of Non-Human Primate Research, Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (J.X.); (Y.W.); (C.Y.); (X.-J.L.)
| |
Collapse
|