1
|
Wang DD, Lin S, Lyu GR. Advances in the Application of Artificial Intelligence in the Ultrasound Diagnosis of Vulnerable Carotid Atherosclerotic Plaque. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:607-614. [PMID: 39828500 DOI: 10.1016/j.ultrasmedbio.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
Vulnerable atherosclerotic plaque is a type of plaque that poses a significant risk of high mortality in patients with cardiovascular disease. Ultrasound has long been used for carotid atherosclerosis screening and plaque assessment due to its safety, low cost and non-invasive nature. However, conventional ultrasound techniques have limitations such as subjectivity, operator dependence, and low inter-observer agreement, leading to inconsistent and possibly inaccurate diagnoses. In recent years, a promising approach to address these limitations has emerged through the integration of artificial intelligence (AI) into ultrasound imaging. It was found that by training AI algorithms with large data sets of ultrasound images, the technology can learn to recognize specific characteristics and patterns associated with vulnerable plaques. This allows for a more objective and consistent assessment, leading to improved diagnostic accuracy. This article reviews the application of AI in the field of diagnostic ultrasound, with a particular focus on carotid vulnerable plaques, and discusses the limitations and prospects of AI-assisted ultrasound. This review also provides a deeper understanding of the role of AI in diagnostic ultrasound and promotes more research in the field.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, Australia
| | - Guo-Rong Lyu
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Departments of Medical Imaging, Quanzhou Medical College, Quanzhou, China.
| |
Collapse
|
2
|
Yu C, Zhong L, Zhou Y, Jiang N, Chen J, Cao S. Identification of the Vulnerability of Atherosclerotic Plaques by a Photoacoustic/Ultrasonic Dual-Modal cRGD Nanomolecular Probe. Int J Nanomedicine 2024; 19:9395-9410. [PMID: 39282572 PMCID: PMC11402356 DOI: 10.2147/ijn.s476236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Objective To explore the feasibility of using cRGD-GNR-PFP-NPs to assess plaque vulnerability in an atherosclerotic plaque mouse model by dual-modal photoacoustic/ultrasonic imaging. Methods A nanomolecular probe containing gold nanorods (GNRs) and perfluoropentane (PFP) coated with the cyclic Arg-Gly-Asp (cRGD) peptide were prepared by double emulsion solvent evaporation and carbodiimide methods. The morphology, particle size, potential, cRGD conjugation and absorption features of the nanomolecular probe were characterized, along with its in vitro phase transformation and photoacoustic/ultrasonic dual-modal imaging properties. In vivo fluorescence imaging was used to determine the distribution of cRGD-GNR-PFP-NPs in vivo in apolipoprotein E-deficient (ApoE-/-) atherosclerotic plaque model mice, the optimal imaging time was determined, and photoacoustic/ultrasonic dual-modal molecular imaging of integrin αvβ3 expressed in atherosclerotic plaques was performed. Pathological assessments verified the imaging results in terms of integrin αvβ3 expression and plaque vulnerability. Results cRGD-GNR-PFP-NPs were spherical with an appropriate particle size (average of approximately 258.03±6.75 nm), a uniform dispersion, and a potential of approximately -9.36±0.53 mV. The probe had a characteristic absorption peak at 780~790 nm, and the surface conjugation of the cRGD peptide reached 92.79%. cRGD-GNR-PFP-NPs were very stable in the non-excited state but very easily underwent phase transformation under low-intensity focused ultrasound (LIFU) and had excellent photoacoustic/ultrasonic dual-modal imaging capability. Mice fed a high-fat diet for 20 weeks had obvious hyperlipidemia with larger, more vulnerable plaques. These plaques could be specifically targeted by cRGD-GNR-PFP-NPs as determined by in vivo fluorescence imaging, and the enrichment of nanomolecular probe increased with the increasing of plaque vulnerability; the photoacoustic/ultrasound signals of the plaques in the high-fat group were stronger. The pathological assessments were in good agreement with the cRGD-GNR-PFP-NPs plaque accumulation, integrin αvβ3 expression and plaque vulnerability results. Conclusion A phase variant photoacoustic/ultrasonic dual-modal cRGD nanomolecular probe was successfully prepared and can be used to identify plaque vulnerability safely and effectively.
Collapse
Affiliation(s)
- Caigui Yu
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Lu Zhong
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Yanxiang Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Nan Jiang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Jinling Chen
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Sheng Cao
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| |
Collapse
|
3
|
Inam H, Ali MN, Jameel IR, Awaiz D, Qureshi Z. Development of Robust PEBAX-Based Angiographic Catheter: Design and In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4248. [PMID: 39274637 PMCID: PMC11396707 DOI: 10.3390/ma17174248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/16/2024]
Abstract
BACKGROUND Keeping in mind the unceasingly escalating prevalence of coronary disease worldwide, the mortality rate is also expected to rise with a staggering increase in healthcare costs. Angiography is the gold standard for diagnosing these blockages that trigger these diseases. Amides and urethanes are the common catheter construction material used for angiography. However, the experimental evidence verifying the use of PEBAX® and comparing its performance with that of commercially available catheters for angiography is not published despite it being well recognized for its excellent flexural modulus, mechanical properties, and biocompatibility and its potential to reduce the incidence of vascular spasm during intravascular diagnostic and interventional procedures. Therefore, the aim of this study was to develop a PEBAX®-based angiographic catheter and evaluate its performance in comparison with three commercially available nylon- and polyurethane-based angiographic catheters. METHODOLOGY A PEBAX®-based angiographic catheter was developed for this purpose. This study analyzes and reports the performance and behavior of PEBAX®-, nylon-, and polyurethane-based catheters. The catheter's performance and arterial forces' endurance nature were mapped out by evaluating pushability (advancement force) and selective bench tests outlined in the applicable regulatory standard. CONCLUSIONS The PEBAX®-based catheter exhibited the least bond-flexural rigidity (180.4 g), which was approximately one-third of that shown by all six French catheters and which exhibited the least advancement force (510.4 g), which was approximately 50% less than that of the nylon- and polyurethane-based catheters when traversing through the mock arterial system. Bench testing was carried out as per the applicable regulatory standard; the differences obtained between individual catheters were discussed in detail. Based on this extensive in vitro assessment, it was concluded that the PEBAX®-based catheters outperformed the nylon- and polyurethane-based catheters, exhibiting an exceptionally minimal advancement force of 510.4 g. This leads to the inference that this catheter can inject more radiopaque material (because of the enhanced flow rate) to the coronary arteries and can play a significant role in minimizing vascular spasms during a diagnostic procedure.
Collapse
Affiliation(s)
- Hafsa Inam
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Murtaza Najabat Ali
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Ibraheem Raza Jameel
- N-ovative Health Technologies, NHT, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Dil Awaiz
- N-ovative Health Technologies, NHT, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Zunaira Qureshi
- Medical Devices Development Center (MDDC), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| |
Collapse
|
4
|
Metformin Directly Binds to MMP-9 to Improve Plaque Stability. J Cardiovasc Dev Dis 2023; 10:jcdd10020054. [PMID: 36826550 PMCID: PMC9962015 DOI: 10.3390/jcdd10020054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Vulnerable atherosclerotic plaque rupture is the principal mechanism that accounts for myocardial infarction and stroke. High matrix metalloproteinase-9 (MMP-9) expression and activity have been proven to lead to plaque instability. Metformin, a first-line treatment for type 2 diabetes, is beneficial to plaque vulnerability. However, the mechanism underlying its anti-atherogenic effect remains unclear. Molecular docking and surface plasmon resonance experiments showed that metformin directly interacts with MMP-9, and incubated MMP-9 overexpressing HEK293A cells with metformin (1 μmol·L-1) significantly attenuates MMP-9's activity using zymography and MMP activity assays. Moreover, metformin treatment drives MMP-9 degradation. Next, we constructed a carotid artery atherosclerotic plaque model and administered consecutive 14-day metformin (200 mg·kg-1·d-1) treatment by intragastric gavage. Immunofluorescence staining of the right carotid common artery and serum MMP activity assay results showed that metformin treatment decreased local plaque MMP-9 protein level and circulating MMP-9 activity, respectively. Histochemical staining revealed that after metformin treatment, the collagen content in plaque was significantly preserved, and the plaque vulnerability index decreased. These findings suggested that metformin improved atherosclerotic plaque stability by directly binding to MMP-9 and driving its degradation.
Collapse
|
5
|
Risk Score for Prediction of Acute Kidney Injury in Patients with Acute ST-Segment Elevation Myocardial Infarction. DISEASE MARKERS 2022; 2022:7493690. [PMID: 36583063 PMCID: PMC9794425 DOI: 10.1155/2022/7493690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Background Acute kidney injury (AKI) is an important comorbidity of ST-Segment Elevation Myocardial Infarction (STEMI) and worsens the prognosis. The purpose of this study was to investigate the relationship between clinical data, test results, surgical findings, and AKI in STEMI patients and to develop a simple, practical model for predicting the risk of AKI. Method Prognostic prediction research with clinical risk score development was conducted. The data used for model development was derived from the database of the Henan Province Cardiovascular Disease Clinical Data and Sample Resource Bank Engineering Research Center. The data used for external validation was derived from the China Chest Pain Center database. The study endpoint was defined as the occurrence of AKI. Logistic regression analysis was used to identify independent predictors of AKI. Logistic coefficients of each predictor were used for score weighting and transformation. The predictive performance of the newly derived risk scores was validated, respectively, by receiver operating characteristic (ROC) regression in the development population and the external validation population. Result A total of 364 patients, 57 (15.6%) with AKI and 307 (84.4%) without AKI, were included for score derivation. The validation crowd includes 88 STEMI patients in different institutions. A total of 11 potential predictors were explored under the multivariable logistic regression model. The new risk score was based on five final predictors which were age > 72 years, ejection fraction of no more than 40%, baseline serum creatinine > 102.7 mmol/L, red blood cell distribution width > 13.15, and culprit lesion located in the middistal segment. With only five predictor variables, the score predicted the risk of AKI with the effective discriminative ability (area under the receiver operating characteristic curve (AuROC): 0.721, 95% confidence interval (CI): 0.652-0.790). In the external validation, the newly developed score confirmed a similar discrimination as the crowd used for derivation (AuROC: 0.731, 95% CI: 0.624-0.838). Conclusion The newly developed score was proved to have good predictive performance and could be practically applied for risk stratification of AKI in STEMI patients.
Collapse
|
6
|
Shen Y, Shen X, Zhang H, Li X, Shang T, Zhao Y, Wang J, Huang N. Improved corrosion resistance and biocompatibility of biomedical magnesium alloy with polypeptide TK14 functionalised hydrophobic coating. BIOSURFACE AND BIOTRIBOLOGY 2021. [DOI: 10.1049/bsb2.12011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Yang Shen
- Key Laboratories of Advanced Technology for Materials of Education Ministry School of Materials Science and Engineering Southwest Jiaotong University Chengdu Sichuan China
| | | | - Hao Zhang
- Panzhihua University Panzhihua Sichuan China
| | - Xin Li
- Key Laboratories of Advanced Technology for Materials of Education Ministry School of Materials Science and Engineering Southwest Jiaotong University Chengdu Sichuan China
| | - Tengda Shang
- Key Laboratories of Advanced Technology for Materials of Education Ministry School of Materials Science and Engineering Southwest Jiaotong University Chengdu Sichuan China
| | - Yuancong Zhao
- Key Laboratories of Advanced Technology for Materials of Education Ministry School of Materials Science and Engineering Southwest Jiaotong University Chengdu Sichuan China
| | - Jin Wang
- Key Laboratories of Advanced Technology for Materials of Education Ministry School of Materials Science and Engineering Southwest Jiaotong University Chengdu Sichuan China
| | - Nan Huang
- Key Laboratories of Advanced Technology for Materials of Education Ministry School of Materials Science and Engineering Southwest Jiaotong University Chengdu Sichuan China
| |
Collapse
|
7
|
Peng C, Wu H, Kim S, Dai X, Jiang X. Recent Advances in Transducers for Intravascular Ultrasound (IVUS) Imaging. SENSORS (BASEL, SWITZERLAND) 2021; 21:3540. [PMID: 34069613 PMCID: PMC8160965 DOI: 10.3390/s21103540] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022]
Abstract
As a well-known medical imaging methodology, intravascular ultrasound (IVUS) imaging plays a critical role in diagnosis, treatment guidance and post-treatment assessment of coronary artery diseases. By cannulating a miniature ultrasound transducer mounted catheter into an artery, the vessel lumen opening, vessel wall morphology and other associated blood and vessel properties can be precisely assessed in IVUS imaging. Ultrasound transducer, as the key component of an IVUS system, is critical in determining the IVUS imaging performance. In recent years, a wide range of achievements in ultrasound transducers have been reported for IVUS imaging applications. Herein, a comprehensive review is given on recent advances in ultrasound transducers for IVUS imaging. Firstly, a fundamental understanding of IVUS imaging principle, evaluation parameters and IVUS catheter are summarized. Secondly, three different types of ultrasound transducers (piezoelectric ultrasound transducer, piezoelectric micromachined ultrasound transducer and capacitive micromachined ultrasound transducer) for IVUS imaging are presented. Particularly, the recent advances in piezoelectric ultrasound transducer for IVUS imaging are extensively examined according to their different working mechanisms, configurations and materials adopted. Thirdly, IVUS-based multimodality intravascular imaging of atherosclerotic plaque is discussed. Finally, summary and perspectives on the future studies are highlighted for IVUS imaging applications.
Collapse
Affiliation(s)
- Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (C.P.); (H.W.)
| | - Huaiyu Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (C.P.); (H.W.)
| | | | - Xuming Dai
- Department of Cardiology, New York-Presbyterian Queens Hospital, Flushing, NY 11355, USA;
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (C.P.); (H.W.)
| |
Collapse
|
8
|
The Impact of Sclerostin Levels on Long-Term Prognosis in Patients Undergoing Coronary Angiography: A Personalized Approach with 9-Year Follow-Up. J Pers Med 2021; 11:jpm11030186. [PMID: 33800939 PMCID: PMC8001826 DOI: 10.3390/jpm11030186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/28/2022] Open
Abstract
Sclerostin might play a role in atherosclerosis development. This study aimed to analyze the impact of baseline sclerostin levels on 9-year outcomes in patients without significant renal function impairment and undergoing coronary angiography. The primary study endpoint was the rate of major cardiovascular events (MACE), defined as a combined rate of myocardial infarction (MI), stroke, or death at 9 years. We included 205 patients with a mean age of 62.9 ± 0.6 years and 70.2% male. Median serum sclerostin concentration was 133.22 pg/mL (IQR 64.0–276.17). At 9 years, in the whole population, the rate of MACE was 34.1% (n = 70), MI: 11.2% (n = 23), stroke: 2.4% (n = 5), and death: 20.5% (n = 42). In the high sclerostin (>median) group, we observed statistically significant higher rates of MACE and death: 25.2% vs. 43.1% (HR 1.75, 95% CI 1.1–2.10, p = 0.02) and 14.6% vs. 26.5% (HR 1.86, 95% CI 1.02–3.41, p = 0.049), respectively. Similar relationships were observed in patients with chronic coronary syndrome and SYNTAX 0–22 subgroups. Our results suggest that sclerostin assessment might be useful in risk stratification, and subjects with higher sclerostin levels might have a worse prognosis.
Collapse
|
9
|
Ou LC, Zhong S, Ou JS, Tian JW. Application of targeted therapy strategies with nanomedicine delivery for atherosclerosis. Acta Pharmacol Sin 2021; 42:10-17. [PMID: 32457416 DOI: 10.1038/s41401-020-0436-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/09/2020] [Indexed: 12/20/2022]
Abstract
Atherosclerosis (AS) is the main pathological cause of coronary heart disease (CHD). Current clinical interventions including statin drugs can effectively reduce acute myocardial infarction and stroke to some extent, but residual risk remains high. The current clinical treatment regimens are relatively effective for early atherosclerotic plaques and can even reverse their progression. However, the effectiveness of these treatments for advanced AS is not ideal, and advanced atherosclerotic plaques-the pathological basis of residual risk-can still cause a recurrence of acute cardiovascular and cerebrovascular events. Recently, nanomedicine-based treatment strategies have been extensively used in antitumor therapy, and also shown great potential in anti-AS therapy. There are many microstructures in late-stage atherosclerotic plaques, such as neovascularization, micro-calcification, and cholesterol crystals, and these have become important foci for targeted nanomedicine delivery. The use of targeted nanoparticles has become an important strategy for the treatment of advanced AS to further reduce the residual risk of cardiovascular events. Furthermore, the feasibility and safety of nanotechnology in clinical treatment have been preliminarily confirmed. In this review, we summarize the application of nanomedicine delivery in the treatment of advanced AS and the clinical value of several promising nanodrugs.
Collapse
|
10
|
Hokken TW, Ribeiro JM, De Jaegere PP, Van Mieghem NM. Precision Medicine in Interventional Cardiology. ACTA ACUST UNITED AC 2020; 15:e03. [PMID: 32382319 PMCID: PMC7203877 DOI: 10.15420/icr.2019.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022]
Abstract
Precision medicine has recently become widely advocated. It revolves around the individual patient, taking into account genetic, biomarker, phenotypic or psychosocial characteristics and uses biological, mechanical and/or personal variables to optimise individual therapy. In silico testing, such as the Virtual Physiological Human project, is being promoted to predict risk and to test treatments and medical devices. It combines artificial intelligence and computational modelling to select the best therapeutic option for the individual patient.
Collapse
Affiliation(s)
- Thijmen W Hokken
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Joana M Ribeiro
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center Rotterdam, the Netherlands.,Department of Cardiology, Centro Hospitlar and Universitário de Coimbra Coimbra, Portugal
| | - Peter P De Jaegere
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Nicolas M Van Mieghem
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center Rotterdam, the Netherlands
| |
Collapse
|
11
|
Musialek P, Dabrowski W, Mazurek A, Tekieli L, Banys RP, Rigla J, Stefaniak J. Quantitative Virtual Histology for In Vivo Evaluation of Human Atherosclerosis—A Plaque Biomechanics-Based Novel Image Analysis Algorithm: Validation and Applications to Atherosclerosis Research. INTRAVASCULAR ULTRASOUND 2020:71-96. [DOI: 10.1016/b978-0-12-818833-0.00005-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Immune-Mediated Inflammation in Vulnerable Atherosclerotic Plaques. Molecules 2019; 24:molecules24173072. [PMID: 31450823 PMCID: PMC6749340 DOI: 10.3390/molecules24173072] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 01/16/2023] Open
Abstract
Atherosclerosis is a chronic long-lasting vascular disease leading to myocardial infarction and stroke. Vulnerable atherosclerotic (AS) plaques are responsible for these life-threatening clinical endpoints. To more successfully work against atherosclerosis, improvements in early diagnosis and treatment of AS plaque lesions are required. Vulnerable AS plaques are frequently undetectable by conventional imaging because they are non-stenotic. Although blood biomarkers like lipids, C-reactive protein, interleukin-6, troponins, and natriuretic peptides are in pathological ranges, these markers are insufficient in detecting the critical perpetuation of AS anteceding endpoints. Thus, chances to treat the patient in a preventive way are wasted. It is now time to solve this dilemma because clear results indicate a benefit of anti-inflammatory therapy per se without modification of blood lipids (CANTOS Trial, NCT01327846). This fact identifies modulation of immune-mediated inflammation as a new promising point of action for the eradication of fatal atherosclerotic endpoints.
Collapse
|