1
|
Dimitrova A, Balzano A, Tsedensodnom E, Byambadorj SO, Nyam-Osor B, Scippa GS, Merela M, Chiatante D, Montagnoli A. The adaptability of Ulmus pumila and the sensitivity of Populus sibirica to semi-arid steppe is reflected in the stem and root vascular cambium and anatomical wood traits. FRONTIERS IN PLANT SCIENCE 2024; 15:1393245. [PMID: 38933456 PMCID: PMC11202817 DOI: 10.3389/fpls.2024.1393245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Afforestation success is measured by the tree establishment and growth capacity which contribute to a range of ecosystem services. In the Mongolian steppe, Populus sibirica and Ulmus pumila have been tested as candidate species for large afforestation programs, by analyzing their response to a combination of irrigation and fertilization treatments. While in temperate and Mediterranean forest ecosystems, xylogenetic studies provide insight into the trees' plasticity and adaptability, this type of knowledge is non-existent in semi-arid regions, whose climatic features are expected to become a global issue. Furthermore, in general, a comparison between the stem and root response is scarce or absent. In the present study, we show that the anatomical traits of the vascular cambium and the xylem, from stem and root microcores, reflect the previously noted dependence of P. sibirica from irrigation - as they proportionally increase and the higher adaptability of U. pumila to drought - due to the reduced impact across all five characteristics. As the first wood anatomy study of these species in semiarid areas, future research is urgently needed, as it could be a tool for quicker understanding of species' suitability under expected to be exacerbated semi-arid conditions.
Collapse
Affiliation(s)
- Anastazija Dimitrova
- Department of Bioscience and Territory, University of Molise, Pesche, Italy
- Department of Seed Science and Forest Stands, Hans Em Faculty of Forest Sciences, Landscape Architecture and Environmental Engineering, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Angela Balzano
- Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Enkhchimeg Tsedensodnom
- Laboratory of Forest Genetics and Ecophysiology, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Ser-Oddamba Byambadorj
- Laboratory of Forest Genetics and Ecophysiology, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
- Laboratory of Silviculture, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Batkhuu Nyam-Osor
- Laboratory of Forest Genetics and Ecophysiology, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | | | - Maks Merela
- Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Donato Chiatante
- Laboratory of Environmental and Applied Botany, Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Antonio Montagnoli
- Laboratory of Environmental and Applied Botany, Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| |
Collapse
|
2
|
Byambadorj SO, Hernandez JO, Lkhagvasuren S, Erma G, Sharavdorj K, Park BB, Nyam-Osor B. Leaf morpho-physiological traits of Populus sibirica and Ulmus pumila in different irrigation regimes and fertilizer types. PeerJ 2023; 11:e16107. [PMID: 37790615 PMCID: PMC10544310 DOI: 10.7717/peerj.16107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Background The impacts of climate change, such as increased soil dryness and nutrient deficiency, highlight the need for environmentally sustainable restoration of forests and groundwater resources. However, it is important to consider that extensive afforestation efforts may lead to a depletion of groundwater supply due to higher evapotranspiration rates, exacerbating water scarcity issues. Consequently, we conducted a study to examine how the fast-growing tree species Populus sibirica (Horth ex Tausch) and Ulmus pumila (L.) respond morpho-physiologically to varying watering regimes and types of fertilizers, aiming to better understand their specific water and nutrient requirements. Methods We used two-year-old nursery-growth seedlings (N = 512) of P. sibirica and U. pumila with initial root collar diameter (RCD) and the height of 0.51 ± 0.02 mm and 68 ± 2.94 cm and 0.33 ± 0.01 mm and 51 ± 1.14 cm, respectively. The leaf area (LA), specific leaf area (SLA), chlorophyll concentration, stomatal conductance (gs), chlorophyll fluorescence, and predawn and midday leaf water potential were measured across treatments. Four different irrigation regimes and two different fertilizer types were applied: no irrigation (control, 0 L h-1), 2 L h-1 = 0.25 mm m-2, 4 L h-1 = 0.5 mm m-2, 8 L h-1 = 1.0 mm m-2 and 120 g and 500 g tree-1 of NPK and compost (COMP). Twelve plots (600 m2) were established in the study site for each species and treatments. Results During the first growing season (2021), the LA of P. sibirica was larger in the 4-8 L h-1 without fertilizer, but it was smaller in the 4 L h-1+ COMP during the second growing season (2022). The 2 L h-1 without fertilizer and 2 L h-1 + NPK had larger LA compared with the control (CONT) for the first and second growing seasons, respectively, for U. pumila. P. sibirica seedlings at 4 L h-1 without fertilizer had the highest SLA for 2021 and at 2 L h-1 + NPK for 2022, whereas CONT and 4 L h-1 had the highest SLA than the other treatments for 2021 and 2022 growing seasons, respectively, for U. pumila. The chlorophyll concentration of P. sibirica seedlings in the first year was generally higher in CONT, while the 2 L h-1 without any fertilizer yielded a significantly higher chlorophyll concentration of U. pumila. Chlorophyll fluorescence parameters (PIABS and Fm) were generally lower in CONT with/without NPK or COMP for both species. The CONT with NPK/COMP generally had a higher gs compared with the other treatments in both experimental periods for U. pumila, whereas CONT and 2 L h-1+ NPK-treated P. sibirica seedlings had a significantly greater gs during the first year and second year, respectively. The predawn and midday leaf water potentials of both species were generally the lowest in CONT, followed by 2 L h-1+ NPK/COMP during the first growing season, but a different pattern was observed during the second growing season. Overall, the morpho-physiological traits of the two species were affected by watering and fertilizer treatments, and the magnitude of the effects varied depending on growing season, amount of irrigation, and fertilizer type, and their interactions.
Collapse
Affiliation(s)
- Ser-Oddamba Byambadorj
- Laboratory of Forest Genetics and Ecophysiology, National University of Mongolia, Ulaanbaatar, Mongolia
- Department of Environment and Forest Resources, College of Agriculture and Life Science, Chungnam National University, Deajeon, South Korea
| | - Jonathan Ogayon Hernandez
- Department of Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines, Los Baños, Philippines
| | - Sarangua Lkhagvasuren
- Laboratory of Forest Genetics and Ecophysiology, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Ge Erma
- Laboratory of Forest Genetics and Ecophysiology, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Khulan Sharavdorj
- Crop Ecology Laboratory, College of Agriculture and Life Science, Chungnam National University, Deajeon, South Korea
| | - Byung Bae Park
- Department of Environment and Forest Resources, College of Agriculture and Life Science, Chungnam National University, Deajeon, South Korea
| | - Batkhuu Nyam-Osor
- Laboratory of Forest Genetics and Ecophysiology, National University of Mongolia, Ulaanbaatar, Mongolia
| |
Collapse
|
3
|
Hernandez JO, An JY, Combalicer MS, Chun JP, Oh SK, Park BB. Morpho-Anatomical Traits and Soluble Sugar Concentration Largely Explain the Responses of Three Deciduous Tree Species to Progressive Water Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:738301. [PMID: 34950160 PMCID: PMC8688917 DOI: 10.3389/fpls.2021.738301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
A better understanding of plant drought responses is essential to improve plant water use efficiency, productivity, and resilience to ever-changing climatic conditions. Here, we investigated the growth, morpho-anatomical, physiological, and biochemical responses of Quercus acutissima Carruth., Quercus serrata Murray, and Betula schmidtii Regel to progressive water-stress. Seedlings were subjected to well-watered (WW) and water-stressed (WS) conditions while regularly monitoring the soil volumetric water content, stem diameter (SD), height, biomass, stomatal conductance (gs), intercellular CO2 concentration (Ci), and leaf relative water content (RWC). We also investigated the variation in stomatal pore (SP) area, specific leaf area (SLA), root xylem vessel diameter (VD), and total soluble sugar (TSS) concentration between treatments. After 2 months, WS significantly suppressed SD growth of Q. acutissima and B. schmidtii but had no impact on Q. serrata. Total biomass significantly declined at WS-treated seedlings in all species. WS resulted in a smaller SLA than WW in all species. The SP of WS-treated seedlings of Q. acutissima and B. schmidtii significantly decreased, whereas it increased significantly with time in Q. serrata. Larger vessels (i.e., >100 to ≤ 130) were more frequent at WS for Q. acutissima and B. schmidtii, whereas smaller vessels (i.e., >40 to ≤ 90) were more frequent at WS than at WW for Q. serrata after 8 weeks. Tylosis was more frequent at WS than WW for Q. serrata and B. schmidtii at eighth week. WS seedlings showed lower gs, Ci, and RWC compared with WW-treated ones in Q. acutissima and B. schmidtii. TSS concentration was also higher at WS-treated seedlings in two Quercus species. Overall, principal component analysis (PCA) showed that SLA and SP are associated with WS seedlings of Q. serrata and B. schmidtii and the tylosis frequency, TSS, and VD are associated with WS seedlings of Q. acutissima. Therefore, water-stressed plants from all species responded positively to water stress with increasing experimental duration and stress intensity, and that is largely explained by morpho-anatomical traits and soluble sugar concentration. The present study should enhance our understanding of drought-induced tree growth and short-term tree-seedling responses to drought.
Collapse
Affiliation(s)
- Jonathan O. Hernandez
- Department of Environment and Forest Resources, Chungnam National University, Daejeon, South Korea
- Department of Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines Los Baños, Los Baños, Philippines
| | - Ji Young An
- Department of Environment and Forest Resources, Chungnam National University, Daejeon, South Korea
- Institute of Agricultural Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Marilyn S. Combalicer
- Department of Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines Los Baños, Los Baños, Philippines
| | - Jong-Pil Chun
- Department of Horticulture, Chungnam National University, Daejeon, South Korea
| | - Sang-Keun Oh
- Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| | - Byung Bae Park
- Department of Environment and Forest Resources, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
4
|
Byambadorj SO, Park BB, Hernandez JO, Tsedensodnom E, Byambasuren O, Montagnoli A, Chiatante D, Nyam-Osor B. Effects of Irrigation and Fertilization on the Morphophysiological Traits of Populus sibirica Hort. Ex Tausch and Ulmus pumila L. in the Semiarid Steppe Region of Mongolia. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112407. [PMID: 34834771 PMCID: PMC8620301 DOI: 10.3390/plants10112407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 05/07/2023]
Abstract
Desertification is impeding the implementation of reforestation efforts in Mongolia. Many of these efforts have been unsuccessful due to a lack of technical knowledge on water and nutrient management strategies, limited financial support, and short-lived rainfall events. We investigated the effects of irrigation and fertilization on the morphophysiological traits of Populus sibirica Hort. Ex Tausch and Ulmus pumila L. and to suggest irrigation and fertilization strategies for reforestation. Different irrigation and fertilizer treatments were applied: no irrigation, 2 L h-1, 4 L h-1, and 8 L h-1 of water; no fertilizer, 2 L h-1 + NPK, 4 L h-1 + NPK, and 8 L h-1 + NPK; and no compost, 2 L h-1 + compost, 4 L h-1 + compost, and 8 L h-1 + compost. The leaf area (LA) and specific leaf area (SLA) of both species responded positively to 4 and 8 L h-1. Results also showed that the addition of either NPK or compost to 4 or 8 L h-1 irrigation resulted in a higher LA, SLA, and leaf biomass (LB). Total chlorophyll content decreased with irrigation in both species. The same pattern was detected when a higher amount of irrigation was combined with fertilizers. Lastly, we found that both diurnal and seasonal leaf water potential of plants grown in 4 or 8 L h-1 were significantly higher than those of plants grown in control plots. Therefore, 4 or 8 L h-1 with either NPK or compost has shown to be the optimal irrigation and fertilization strategy for the species in an arid and semiarid region of Mongolia. Results should provide us with a better understanding of tree responses to varying amounts of irrigation with or without fertilizer in pursuit of sustainable forest management in arid and semiarid ecosystems.
Collapse
Affiliation(s)
- Ser-Oddamba Byambadorj
- Laboratory of Forest Genetics and Ecophysiology, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia; (S.-O.B.); (E.T.); (O.B.)
- Department of Environment and Forest Resources, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea
| | - Byung Bae Park
- Department of Environment and Forest Resources, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea
- Correspondence: (B.B.P.); (B.N.-O.)
| | - Jonathan O. Hernandez
- Department of Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines, Los Baños 4031, Philippines;
| | - Enkhchimeg Tsedensodnom
- Laboratory of Forest Genetics and Ecophysiology, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia; (S.-O.B.); (E.T.); (O.B.)
- Institute of Geography and Geoecology, Mongolian Academy of Sciences, Ulaanbaatar 15170, Mongolia
| | - Otgonsaikhan Byambasuren
- Laboratory of Forest Genetics and Ecophysiology, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia; (S.-O.B.); (E.T.); (O.B.)
| | - Antonio Montagnoli
- Department of Biotechnology and Life Science, University of Insubria, Via Dunant, 3-21100 Varese, Italy; (A.M.); (D.C.)
| | - Donato Chiatante
- Department of Biotechnology and Life Science, University of Insubria, Via Dunant, 3-21100 Varese, Italy; (A.M.); (D.C.)
| | - Batkhuu Nyam-Osor
- Laboratory of Forest Genetics and Ecophysiology, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia; (S.-O.B.); (E.T.); (O.B.)
- Correspondence: (B.B.P.); (B.N.-O.)
| |
Collapse
|
5
|
The Use of Deep Container and Heterogeneous Substrate as Potentially Effective Nursery Practice to Produce Good Quality Nodal Seedlings of Populus sibirica Tausch. FORESTS 2021. [DOI: 10.3390/f12040418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nursery practices are considered major factors influencing seedling quality, which are likely to be maintained in the early establishment phase in the field. Here, we investigated the effects of container depth and substrate heterogeneity on the growth of Populus sibirica nodal seedlings to suggest an effective nursery practice for producing quality seedlings appropriate for forest establishment in a dry environment. We used two substrate heterogeneities (homogeneous and heterogeneous) and two container depth treatments (30 and 60 cm). Variations in root collar diameter (RCD) growth, height growth, stem and root biomass, root to stem ratio, and root mass in the first 15 cm depth from the soil surface across the treatments were computed. Results revealed that both substrate heterogeneity and container depth had no significant effects on the RCD and height growth of P. sibirica seedlings but significantly improved their root and stem biomass. Seedlings in the 60 cm containers generally accumulated higher root biomass than those in the 30 cm containers. There was an interaction effect of container depth and substrate heterogeneity treatments on root and total dry mass, such that seedlings grown in the 60 cm container using heterogeneous substrate resulted in the highest root and total biomass. Analyses of proportional root growth in the upper 15 cm of the containers compared to the total indicated that both the main effects of deeper containers (60 cm) and heterogeneous substrate have fewer roots at this depth, indicating a greater root density in the bottom of the deeper containers. Therefore, deeper containers and heterogeneous substrate may be used as an effective nursery practice to produce seedlings with root traits potentially suitable for harsh conditions, such as arid and semi-arid environments. However, further studies using other seedling morphological traits in conjunction with field-trial tests are needed for a definitive assessment of the effectiveness of deeper containers and heterogeneous substrate in producing good quality seedlings potentially suitable in a dry environment.
Collapse
|