1
|
Yang Z, Wang J, Wang W, Zhang H, Wu Y, Gao X, Gao D, Li X. Physiological, cytological and multi-omics analysis revealed the molecular response of Fritillaria cirrhosa to Cd toxicity in Qinghai-Tibet Plateau. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134611. [PMID: 38754230 DOI: 10.1016/j.jhazmat.2024.134611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Fritillaria cirrhosa, an endangered plant endemic to plateau regions, faces escalating cadmium (Cd) stress due to pollution in the Qinghai-Tibet Plateau. This study employed physiological, cytological, and multi-omics techniques to investigate the toxic effects of Cd stress and detoxification mechanisms of F. cirrhosa. The results demonstrated that Cd caused severe damage to cell membranes and organelles, leading to significant oxidative damage and reducing photosynthesis, alkaloid and nucleoside contents, and biomass. Cd application increased cell wall thickness by 167.89% in leaves and 445.78% in bulbs, leading to weight percentage of Cd increases of 76.00% and 257.14%, respectively. PER, CESA, PME, and SUS, genes responsible for cell wall thickening, were significantly upregulated. Additionally, the levels of metabolites participating in the scavenging of reactive oxygen species, including oxidized glutathione, D-proline, L-citrulline, and putrescine, were significantly increased under Cd stress. Combined multi-omics analyses revealed that glutathione metabolism and cell wall biosynthesis pathways jointly constituted the detoxification mechanism of F. cirrhosa in response to Cd stress. This study provides a theoretical basis for further screening of new cultivars for Cd tolerance and developing appropriate cultivation strategies to alleviate Cd toxicity.
Collapse
Affiliation(s)
- Zemin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Jialu Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wenjun Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Haobo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Yuhan Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Xusheng Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Dan Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
2
|
Szeliga M, Bakera B, Święcicka M, Tyrka M, Rakoczy-Trojanowska M. Identification of candidate genes responsible for chasmogamy in wheat. BMC Genomics 2023; 24:170. [PMID: 37016302 PMCID: PMC10074802 DOI: 10.1186/s12864-023-09252-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/15/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND The flowering biology of wheat plants favours self-pollination which causes obstacles in wheat hybrid breeding. Wheat flowers can be divided into two groups, the first one is characterized by flowering and pollination within closed flowers (cleistogamy), while the second one possesses the ability to open flowers during processes mentioned above (chasmogamy). The swelling of lodicules is involved in the flowering of cereals and among others their morphology, calcium and potassium content differentiate between cleistogamic and non-cleistogamous flowers. A better understanding of the chasmogamy mechanism can lead to the development of tools for selection of plants with the desired outcrossing rate. To learn more, the sequencing of transcriptomes (RNA-Seq) and Representational Difference Analysis products (RDA-Seq) were performed to investigate the global transcriptomes of wheat lodicules in two highly chasmogamous (HCH, Piko and Poezja) and two low chasmogamous (LCH, Euforia and KWS Dacanto) varieties at two developmental stages-pre-flowering and early flowering. RESULTS The differentially expressed genes were enriched in five, main pathways: "metabolism", "organismal systems", "genetic information processing", "cellular processes" and "environmental information processing", respectively. Important genes with opposite patterns of regulation between the HCH and LCH lines have been associated with the lodicule development i.e. expression levels of MADS16 and MADS58 genes may be responsible for quantitative differences in chasmogamy level in wheat. CONCLUSIONS We conclude that the results provide a new insight into lodicules involvement in the wheat flowering process. This study generated important genomic information to support the exploitation of the chasmogamy in wheat hybrid breeding programs.
Collapse
Affiliation(s)
- Magdalena Szeliga
- Rzeszow University of Technology, Powstańców Warszawy 12, 35-959, Rzeszów, Poland.
| | - Beata Bakera
- Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa Street 1, 02-096, Warsaw, Poland
| | - Magdalena Święcicka
- Warsaw University of Life Sciences, Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Mirosław Tyrka
- Rzeszow University of Technology, Powstańców Warszawy 12, 35-959, Rzeszów, Poland
| | | |
Collapse
|
3
|
Li R, Xiao M, Li J, Zhao Q, Wang M, Zhu Z. Transcriptome Analysis of CYP450 Family Members in Fritillaria cirrhosa D. Don and Profiling of Key CYP450s Related to Isosteroidal Alkaloid Biosynthesis. Genes (Basel) 2023; 14:219. [PMID: 36672960 PMCID: PMC9859280 DOI: 10.3390/genes14010219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Fritillaria cirrhosa D. Don (known as Chuan-Bei-Mu in Chinese) can synthesize isosteroidal alkaloids (ISA) with excellent medicinal value, and its bulb has become an indispensable ingredient in many patented drugs. Members of the cytochrome P450 (CYP450) gene superfamily have been shown to play essential roles in regulating steroidal alkaloids biosynthesis. However, little information is available on the P450s in F. cirrhosa. Here, we performed full-length transcriptome analysis and discovered 48 CYP450 genes belonging to 10 clans, 25 families, and 46 subfamilies. By combining phylogenetic trees, gene expression, and key F. cirrhosa ISA content analysis, we presumably identify seven FcCYP candidate genes, which may be hydroxylases active at the C-22, C-23, or C-26 positions in the late stages of ISA biosynthesis. The transcript expression levels of seven FcCYP candidate genes were positively correlated with the accumulation of three major alkaloids in bulbs of different ages. These data suggest that the candidate genes are most likely to be associated with ISA biosynthesis. Finally, the subcellular localization prediction of FcCYPs and transient expression analysis within Nicotiana benthamiana showed that the FcCYPs were mainly localized in the chloroplast. This study presents a systematic analysis of the CYP450 gene family in F. cirrhosa and provides a foundation for further functional characterization of the CYPs involved in ISA biosynthesis.
Collapse
Affiliation(s)
- Rui Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu 610106, China
| | - Maotao Xiao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu 610106, China
| | - Jian Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu 610106, China
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu 610106, China
| | - Mingcheng Wang
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ziwei Zhu
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
4
|
Veratrum parviflorum: An Underexplored Source for Bioactive Steroidal Alkaloids. Molecules 2022; 27:molecules27165349. [PMID: 36014585 PMCID: PMC9412450 DOI: 10.3390/molecules27165349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Plants of the Veratrum genus have been used throughout history for their emetic properties, rheumatism, and for the treatment of high blood pressure. However, inadvertent consumption of these plants, which resemble wild ramps, induces life-threatening side effects attributable to an abundance of steroidal alkaloids. Several of the steroidal alkaloids from Veratrum spp. have been investigated for their ability to antagonize the Hedgehog (Hh) signaling pathway, a key pathway for embryonic development and cell proliferation. Uncontrolled activation of this pathway is linked to the development of various cancers; most notably, basal cell carcinoma and acute myeloid leukemia. Additional investigation of Veratrum spp. may lead to the identification of novel alkaloids with the potential to serve as chemotherapeutics. V. parviflorum is a relatively uncommon species of Veratrum that resides in the southeastern regions of North America. The phytochemical profile of this plant remains largely unexplored; however, bioactive steroidal alkaloids, including cyclopamine, veratramine, veratridine, and verazine were identified in its extract. The structural elucidation and bioactivity assessment of steroidal alkaloids in lesser abundance within the extract of V. parviflorum may yield potent Hh pathway inhibitors. This review seeks to consolidate the botanical and phytochemical information regarding V. parviflorum.
Collapse
|
5
|
Lu Q, Li R, Liao J, Hu Y, Gao Y, Wang M, Li J, Zhao Q. Integrative analysis of the steroidal alkaloids distribution and biosynthesis of bulbs Fritillariae Cirrhosae through metabolome and transcriptome analyses. BMC Genomics 2022; 23:511. [PMID: 35836113 PMCID: PMC9284883 DOI: 10.1186/s12864-022-08724-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/23/2022] [Indexed: 11/21/2022] Open
Abstract
Background Bulbus Fritillariae Cirrhosae (BFC) is an endangered high-altitude medicine and food homology plant with anti-tumor, anti-asthmatic, and antitussive activities as it contains a variety of active ingredients, especially steroidal alkaloids. Bulbus Fritillariae Thunbergia (BFT) is another species of Fritillaria that grows at lower altitude areas. Production of plant-derived active ingredients through a synthetic biology strategy is one of the current hot topics in biological research, which requires a complete understanding of the related molecular pathways. Our knowledge of the steroidal alkaloid biosynthesis in Fritillaria species is still very limited. Results To promote our understanding of these pathways, we performed non-target metabolomics and transcriptome analysis of BFC and BFT. Metabolomics analysis identified 1288 metabolites in BFC and BFT in total. Steroidal alkaloids, including the proposed active ingredients of Fritillaria species peimine, peimisine, peiminine, etc., were the most abundant alkaloids detected. Our metabolomics data also showed that the contents of the majority of the steroidal alkaloids in BFC were higher than in BFT. Further, our comparative transcriptome analyses between BFC and BFT identified differentially expressed gene sets among these species, which are potentially involved in the alkaloids biosynthesis of BFC. Conclusion These findings promote our understanding of the mechanism of steroidal alkaloids biosynthesis in Fritillaria species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08724-0.
Collapse
Affiliation(s)
- Qiuxia Lu
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.,Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China.,Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu, 610106, China
| | - Rui Li
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.,Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China.,Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu, 610106, China
| | - Jiaqing Liao
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China.,Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu, 610106, China.,College of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yuqin Hu
- Aba County Shenhe Agricultural Development Co. LTD, Aba County, 624600, China
| | - Yundong Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Mingcheng Wang
- Institute for Advanced Study, Chengdu University, No. 2025 Chengluo Road, Chengdu, 610106, China
| | - Jian Li
- Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China. .,Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu, 610106, China. .,State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 610106, China. .,School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China.
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China. .,Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu, 610106, China. .,Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu, 610106, China.
| |
Collapse
|
6
|
Lu Q, Wang S, Yin Z, Chen Q, He X, Wang Q, Hu Q, Gu Y, Tang H, Xie H. Identification of Veratrum Species in Pimacao Based on ITS2 Sequences and Steroidal Alkaloids by a Pseudo-Targeted Metabolomics Method. FRONTIERS IN PLANT SCIENCE 2022; 13:831562. [PMID: 35481147 PMCID: PMC9037537 DOI: 10.3389/fpls.2022.831562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Pimacao is a traditional Chinese folk medicine and is the main component of the famous Chinese herbal remedy "Yunnan Baiyao" for its significant analgesic activity in the treatment of wounds. Due to increases in consumption, its wild population is now difficult to find, and adulterant from the same genus has occurred. However, this is challenging to distinguish the species of Veratrum in Pimacao using dried roots and rhizomes or medicinal powder. ITS2 sequences and steroidal alkaloids by the non-targeted and pseudo-targeted metabolomics methods were taken advantage of establishing an effective identification method. Based on the ITS2 sequence, metabolite profiling of steroidal alkaloids and morphological characteristics, the classification of two distinct subspecies in V. mengzeanum has been reinforced. In addition, the new subspecies V. mengzeanum subsp. phuwae was collected in China for the first time. The ITS2 sequence could be used in the identification of V. taliense, V. mengtzeanum, V. stenophyllum, and V. nigrum, but is insufficient for intraspecific identification. Simultaneously, 147 variables were labeled by non-targeted analysis accomplished utilizing an ultra-high-performance liquid chromatography electrospray ionization orbitrap tandem mass spectrometry (UPLC-ESI-QE-Orbitrap-MS) system consisting of an Orbitrap QE HF-X. Followed by a pseudo-targeted analysis method developed for the Qtrap 6500-plus mass spectrometry system coupled with an ESI source, 29 labeled steroidal alkaloids detected by the MRM mode could distinguish between four species. Notably, 25 labeled steroidal alkaloids could distinguish between three closely related species. These have the potential to be used as markers for identification. Furthermore, there were several variables with statistical differences between two subspecies of V. mengtzeanum and populations of V. taliense, V. mengtzeanum, and V. stenophyllum.
Collapse
Affiliation(s)
- Qinwei Lu
- Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Shuaiyao Wang
- Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Zili Yin
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, China
| | - Qinsheng Chen
- Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xingchao He
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, China
- Yunnan Baiyao Group Co., Ltd., Kunming, China
| | - Qi Wang
- Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Qingyu Hu
- Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Gu
- Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Huiru Tang
- Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Hui Xie
- Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Zhao F, Wang J, Yao L, Qin YT, Tuerxun N, Wang H, Jiang M, Hao JP. Synergistic inhibitory effect of Smo inhibitor jervine and its combination with decitabine can target Hedgehog signaling pathway to inhibit myelodysplastic syndrome cell line. ACTA ACUST UNITED AC 2021; 26:518-528. [PMID: 34314648 DOI: 10.1080/16078454.2021.1950897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Hypomethylating agents (HMAs) have been reported to target the Sonic Hedgehog (Shh) signaling pathway in myelodysplastic syndrome (MDS). However, the synergistic inhibitory effect of Smo inhibitor jervine and its combination with decitabine in MUTZ-1 cell lines remains lacking. METHODS We used a CCK-8 assay to detect the in-vitro proliferation rate of MUTZ-1 cell lines. Besides, the Annexin V-FITC/PI double staining flow cytometry was utilized to detect the apoptosis rate and cell cycle changes. The expression levels of mRNA were quantified by using qRT-PCR, and the western blot was employed to detect the expression of proteins. RESULTS We found that the single-agent jervine or decitabine can significantly inhibit the proliferation rate of MUTZ-1 cell lines, and this inhibitory effect is time-dependent and concentration-dependent. The combined intervention of the jervine and decitabine can more significantly inhibit cell proliferation, induce cell apoptosis, and block the G1 phase of the cell cycle. The combined intervention of the two drugs significantly reduced Smo and G1i-1 mRNA expression in MUTZ-1 cells. Furthermore, after combining both of the drug treatments, the proteins levels of Smo, G1i-1, PI3K, p-AKT, Bcl2, and Cyclin Dl were significantly downregulated, and Caspase-3 is upregulated, indicating that jervine with its combination of decitabine might be effective for controlling the proliferation, apoptosis, and cell cycle. CONCLUSION The Smo inhibitor jervine and its combination with decitabine have a synergistic effect on the proliferation, cell cycle, and apoptosis of MUTZ-1 cells, and its mechanism may be achieved by interfering with the Shh signaling pathway.
Collapse
Affiliation(s)
- Fang Zhao
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Jie Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Liu Yao
- The First Clinical Medical College of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Yu-Ting Qin
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Niluopaer Tuerxun
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Huan Wang
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Ming Jiang
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Jian-Ping Hao
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| |
Collapse
|
8
|
Lei W, Huo Z. Jervine inhibits non-small cell lung cancer (NSCLC) progression by suppressing Hedgehog and AKT signaling via triggering autophagy-regulated apoptosis. Biochem Biophys Res Commun 2020; 533:397-403. [PMID: 32972750 DOI: 10.1016/j.bbrc.2020.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
Non-small cell lung cancer (NSCLC) has been identified as a leading cause of tumor-associated death around the world. Presently, it is necessary to find effective and safe therapy for its treatment in clinic. Jervine (Jer), a sterodial alkaloid from rhizomes of Veratrum album, exhibits anti-inflammatory and anti-cancer effects. However, its effects on lung cancer progression are still unknown. In this study, we explored if Jer showed any influences on NSCLC development, as well as the underlying molecular mechanisms. The results showed that Jer time- and dose-dependently reduced the proliferation of NSCLC cells, along with inhibited colony formation capacity. Apoptosis was highly induced by Jer in NSCLC cells through promoting the expression of cleaved Caspase-3. Furthermore, Jer treatment led to autophagy in cancer cells, as evidenced by the fluorescence microscopy results and increases of LC3II. Autophagy inhibitor bafilomycinA1 (BafA1) abrogated the inhibitory effects of Jer on cell proliferation and apoptosis induction, showing that Jer triggered autophagy-mediated apoptosis in NSCLC cells. Additionally, AKT and mammalian target of Rapamycin (mTOR) signaling pathway was highly repressed in cancer cells. Importantly, promoting AKT activation greatly rescued the cell survival, while attenuated autophagy and apoptosis in Jer-incubated NSCLC cells, revealing that Jer-modulated autophagic cell death was through the blockage of AKT signaling. Hedgehog signaling pathway was then found to be suppressed by Jer, as proved by the decreased expression of Sonic Hedgehog (Shh), Hedgehog receptor protein patched homolog 1 (PTCH1), smoothened (SMO) and glioma-associated oncogene homolog 1 (Gli1) in NSCLC cells. Of note, enhancing Shh signaling dramatically diminished the stimulative effects of Jer on autophagy-mediated apoptosis in vitro, demonstrating the importance of Hedgehog signaling in Jer-regulated cell death. Moreover, Jer treatment effectively reduced tumor growth in A549-bearing mice with few toxicity. Together, Jer may be a promising and effective therapeutic strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Wei Lei
- Department of Chinese Medicine, Linyi People's Hospital, Shandong, 276000, China
| | - Zhenyun Huo
- Department of Pediatric Surgery, Linyi People's Hospital, Shandong, 276000, China.
| |
Collapse
|