1
|
Yousefian-Jazi A, Kim S, Chu J, Choi SH, Nguyen PTT, Park U, Kim MG, Hwang H, Lee K, Kim Y, Hyeon SJ, Rhim H, Ryu HL, Lim G, Stein TD, Lim K, Ryu H, Lee J. Loss of MEF2C function by enhancer mutation leads to neuronal mitochondria dysfunction and motor deficits in mice. Mol Neurodegener 2025; 20:16. [PMID: 39920775 PMCID: PMC11806887 DOI: 10.1186/s13024-024-00792-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/20/2024] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the loss of both upper and lower motor neurons, leading to progressive paralysis. Both genetic alterations and epigenetic modifications contribute to neuronal dysfunction in the pathogenesis of ALS. However, the mechanism behind genetic mutations in the non-coding region of genes that affect epigenetic modifications remains unclear. METHODS Convolutional neural network was used to identify an ALS-associated SNP located in the intronic region of MEF2C (rs304152), residing in a putative enhancer element. To examine the alteration of MEF2C transcription by the SNP, we generated HEK293T cells carrying the major or minor allele by CRISPR-Cas9. To verify the role of MEF2C-knockdown (MEF2C-KD) in mice, we developed AAV expressing shRNA for MEF2C based on AAV-U6 promoter vector. Neuropathological alterations of MEF2C-KD mice with mitochondrial dysfunction and motor neuronal damage were observed by confocal microscopy and transmission electron microscope (TEM). Behavioral changes of mice were examined through longitudinal study by tail suspension, inverted grid test and automated gait analysis. RESULTS Here, we show that enhancer mutation of MEF2C reduces own gene expression and consequently impairs mitochondrial function in motor neurons. MEF2C localizes and binds to the mitochondria DNA, and directly modulates mitochondria-encoded gene expression. CRISPR/Cas-9-induced mutation of the MEF2C enhancer decreases expression of mitochondria-encoded genes. Moreover, MEF2C mutant cells show reduction of mitochondrial membrane potential, ATP level but elevation of oxidative stress. MEF2C deficiency in the upper and lower motor neurons of mice impairs mitochondria-encoded genes, and leads to mitochondrial metabolic disruption and progressive motor behavioral deficits. CONCLUSIONS Together, MEF2C dysregulation by the enhancer mutation leads to mitochondrial dysfunction and oxidative stress, which are prevalent features in motor neuronal damage and ALS pathogenesis. This genetic and epigenetic crosstalk mechanism provides insights for advancing our understanding of motor neuron disease and developing effective treatments.
Collapse
Affiliation(s)
- Ali Yousefian-Jazi
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Suhyun Kim
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jiyeon Chu
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Integrated Biomedical and Life Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Seung-Hye Choi
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Phuong Thi Thanh Nguyen
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KIST School, Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Uiyeol Park
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea
| | - Min-Gyeong Kim
- KIST School, Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hongik Hwang
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kyungeun Lee
- Advanced Analysis Data Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yeyun Kim
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Integrated Biomedical and Life Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Seung Jae Hyeon
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyewhon Rhim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hannah L Ryu
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Grewo Lim
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Kayeong Lim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hoon Ryu
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- KIST School, Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Junghee Lee
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA.
- VA Boston Healthcare System, Boston, MA, 02130, USA.
| |
Collapse
|
2
|
Vasquez V, Kodavati M, Mitra J, Vedula I, Hamilton DJ, Garruto RM, Rao KS, Hegde ML. Mitochondria-targeted oligomeric α-synuclein induces TOM40 degradation and mitochondrial dysfunction in Parkinson's disease and parkinsonism-dementia of Guam. Cell Death Dis 2024; 15:914. [PMID: 39695091 DOI: 10.1038/s41419-024-07258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024]
Abstract
Mitochondrial dysfunction is a central aspect of Parkinson's disease (PD) pathology, yet the underlying mechanisms are not fully understood. This study investigates the link between α-Synuclein (α-Syn) pathology and the loss of translocase of the outer mitochondrial membrane 40 (TOM40), unraveling its implications for mitochondrial dysfunctions in neurons. We discovered that TOM40 protein depletion occurs in the brains of patients with Guam Parkinsonism-Dementia (Guam PD) and cultured neurons expressing α-Syn proteinopathy, notably, without corresponding changes in TOM40 mRNA levels. Cultured neurons expressing α-Syn mutants, with or without a mitochondria-targeting signal (MTS) underscores the role of α-Syn's mitochondrial localization in inducing TOM40 degradation. PDe-related etiological factors, such as 6-hydroxydopamine or ROS/metal ions stress, which promotes α-Syn oligomerization, exacerbate TOM40 depletion in PD patient-derived cells with SNCA gene triplication. Although α-Syn interacts with both TOM40 and TOM20 in the outer mitochondrial membrane, degradation is selective for TOM40, which occurs via the ubiquitin-proteasome system (UPS) pathway. Our comprehensive analyses using Seahorse technology, mitochondrial DNA sequencing, and damage assessments, demonstrate that mutant α-Syn-induced TOM40 loss results in mitochondrial dysfunction, characterized by reduced membrane potential, accumulation of mtDNA damage, deletion/insertion mutations, and altered oxygen consumption rates. Notably, ectopic supplementation of TOM40 or reducing pathological forms of α-Syn using ADP-ribosylation inhibitors ameliorate these mitochondrial defects, suggesting potential therapeutic avenues. In conclusion, our findings provide crucial mechanistic insights into how α-Syn accumulation leads to TOM40 degradation and mitochondrial dysfunction, offering insights for targeted interventions to alleviate mitochondrial defects in PD.
Collapse
Affiliation(s)
- Velmarini Vasquez
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Neuroscience Center, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, (INDICASAT AIP), Panama City, Panama
| | - Manohar Kodavati
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Joy Mitra
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Indira Vedula
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, USA
| | - Dale J Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, USA
- Department of Medicine, Houston Methodist, Weill Cornell Medicine affiliate, Houston, TX, USA
| | - Ralph M Garruto
- Departments of Anthropology and Biological Sciences, Binghamton University, State University of New York, Binghamton, NY, USA
| | - K S Rao
- Department of Biotechnology, KLEF Deemed to be University, Vaddeswaram, India
| | - Muralidhar L Hegde
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Neuroscience, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
3
|
Hsu PC, Lu TC, Hung PH, Leu JY. Protein moonlighting by a target gene dominates phenotypic divergence of the Sef1 transcriptional regulatory network in yeasts. Nucleic Acids Res 2024; 52:13914-13930. [PMID: 39565215 DOI: 10.1093/nar/gkae1147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
Transcriptional rewiring generates phenotypic novelty, acting as an important mechanism contributing to evolutionary development, speciation, and adaptation in all organisms. The phenotypic outcomes (functions) of transcription factor (TF) activity are determined by the combined effects of all target genes in the TF's regulatory network. Plastic rewiring of target genes accumulates during species divergence and ultimately alters phenotypes, indicating a TF functional switch. We define this phenomenon as 'disruptive rewiring', where the rewiring process disrupts the link between a TF and its original target genes that determine phenotypes. Here, we investigate if 'complete' disruptive rewiring is a prerequisite for a TF functional switch by employing chromatin immunoprecipitation sequencing, RNA expression, and phenotypic assays across yeast species. In yeasts where Sef1 targets TCA (tricarboxylic acid) cycle genes, we demonstrate that Sef1 orthologs can promote and inhibit respiratory growth by modulating the moonlighting function of their conserved target, NDE1. This modulation occurs without changing the overall association of Sef1 with TCA cycle genes. We propose that phenotypic masking by NDE1 promotes 'deceptive' disruptive rewiring of the Sef1 regulatory network in Saccharomyces cerevisiae, thereby potentially constraining future evolutionary trajectories.
Collapse
Affiliation(s)
- Po-Chen Hsu
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Taipei 115201, Taiwan, Republic of China
| | - Tzu-Chiao Lu
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Po-Hsiang Hung
- Department of Genetics, Stanford University Medical School, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Taipei 115201, Taiwan, Republic of China
| |
Collapse
|
4
|
Liang R, Zhu L, Huang Y, Chen J, Tang Q. Mitochondria: fundamental characteristics, challenges, and impact on aging. Biogerontology 2024; 25:923-941. [PMID: 39196438 DOI: 10.1007/s10522-024-10132-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
As one of the most vital organelles within biological cells, mitochondria hold an irreplaceable status and play crucial roles in various diseases. Research and therapies targeting mitochondria have achieved significant progress in numerous conditions. Throughout an organism's lifespan, mitochondrial dynamics persist continuously, and due to their inherent characteristics and various external factors, mitochondria are highly susceptible to damage. This susceptibility is particularly evident during aging, where the decline in biological function is closely intertwined with mitochondrial dysfunction. Despite being an ancient and enigmatic organelle, much remains unknown about mitochondria. Here, we will explore the past and present knowledge of mitochondria, providing a comprehensive review of their intrinsic properties and interactions with nuclear DNA, as well as the challenges and impacts they face during the aging process.
Collapse
Affiliation(s)
- Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Luwen Zhu
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yongyin Huang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
5
|
Chatsirisupachai A, Muanjumpon P, Jeayeng S, Onkoksong T, Pluempreecha M, Soingam T, Panich U. Calcitriol/vitamin D receptor system alleviates PM2.5-induced human bronchial epithelial damage through upregulating mitochondrial bioenergetics in association with regulation of HIF-1α/PGC-1α signaling. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104568. [PMID: 39307374 DOI: 10.1016/j.etap.2024.104568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
PM2.5 exposure causes lung injury by triggering oxidative stress, mitochondrial dysfunction, and modulating HIF-1α signaling. Calcitriol activates VDR, which regulates cellular homeostasis. This study evaluated the protective role of the calcitriol/VDR system in PM2.5-induced damage to BEAS-2B bronchial epithelial cells by reducing oxidative stress, upregulating mitochondrial bioenergetics, and downregulating HIF-1α. We found that the calcitriol/VDR system decreased ROS formation and restored mitochondrial bioenergetics in PM2.5-treated cells. This improvement correlated with reduced HIF-1α nuclear translocation and increased PGC-1α protein and mitochondrial gene expressions. This study is the first to suggest that targeting the calcitriol/VDR system could be a promising pharmacological strategy for mitigating PM2.5-induced lung epithelial damage by promoting mitochondrial bioenergetics and regulating PGC-1α and HIF-1α signaling.
Collapse
Affiliation(s)
| | - Phetthinee Muanjumpon
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Saowanee Jeayeng
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand; Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Tasanee Onkoksong
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Mutita Pluempreecha
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Tanyapohn Soingam
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
6
|
Needs HI, Yan Y, Niemi NM, Collinson I. The MitoLuc assay for the analysis of the mechanism of mitochondrial protein import. Methods Enzymol 2024; 706:407-436. [PMID: 39455227 PMCID: PMC11756599 DOI: 10.1016/bs.mie.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
The NanoLuc split luciferase assay has proven to be a powerful tool for the analysis of protein translocation. Its flexibility has enabled in vivo, ex vivo, and in vitro studies-including systems reconstituting protein transport from pure components. The assay has been particularly useful in the characterization of bacterial secretion and mitochondrial protein import. In the latter case, MitoLuc has been developed for the investigation of the TIM23-pathway via import into the matrix of isolated yeast mitochondria. Subsequent analysis identified three distinct phases of import, rather than in a single continuous step. The assay has also been developed to monitor import into the mitochondrial matrix of intact cultured cells. This latter innovation has laid the foundations for further analysis of the import process in humans, including the consequences of interactions with cytosolic factors and neighboring organelles. The versatility of the MitoLuc assay is conducive for its adaptation to also monitor import into the inter-membrane space (MIA-pathway), and into the inner-membrane via the TIM22- and TIM23-complexes. Here, we present detailed protocols for the application of MitoLuc to mitochondria isolated from yeast and to those within cultured human cells.
Collapse
Affiliation(s)
- Hope I Needs
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Youmian Yan
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, United States
| | - Natalie M Niemi
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, United States.
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
7
|
Benaroya H. Mitochondria and MICOS - function and modeling. Rev Neurosci 2024; 35:503-531. [PMID: 38369708 DOI: 10.1515/revneuro-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/20/2024]
Abstract
An extensive review is presented on mitochondrial structure and function, mitochondrial proteins, the outer and inner membranes, cristae, the role of F1FO-ATP synthase, the mitochondrial contact site and cristae organizing system (MICOS), the sorting and assembly machinery morphology and function, and phospholipids, in particular cardiolipin. Aspects of mitochondrial regulation under physiological and pathological conditions are outlined, in particular the role of dysregulated MICOS protein subunit Mic60 in Parkinson's disease, the relations between mitochondrial quality control and proteins, and mitochondria as signaling organelles. A mathematical modeling approach of cristae and MICOS using mechanical beam theory is introduced and outlined. The proposed modeling is based on the premise that an optimization framework can be used for a better understanding of critical mitochondrial function and also to better map certain experiments and clinical interventions.
Collapse
Affiliation(s)
- Haym Benaroya
- Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| |
Collapse
|
8
|
Yousefian-Jazi A, Kim S, Choi SH, Chu J, Nguyen PTT, Park U, Lim K, Hwang H, Lee K, Kim Y, Hyeon SJ, Rhim H, Ryu HL, Lim G, Stein TD, Ryu H, Lee J. Loss of MEF2C function by enhancer mutation leads to neuronal mitochondria dysfunction and motor deficits in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603186. [PMID: 39071309 PMCID: PMC11275751 DOI: 10.1101/2024.07.15.603186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Genetic changes and epigenetic modifications are associated with neuronal dysfunction in the pathogenesis of neurodegenerative disorders. However, the mechanism behind genetic mutations in the non-coding region of genes that affect epigenetic modifications remains unclear. Here, we identified an ALS-associated SNP located in the intronic region of MEF2C (rs304152), residing in a putative enhancer element, using convolutional neural network. The enhancer mutation of MEF2C reduces own gene expression and consequently impairs mitochondrial function in motor neurons. MEF2C localizes and binds to the mitochondria DNA, and directly modulates mitochondria-encoded gene expression. CRISPR/Cas-9-induced mutation of the MEF2C enhancer decreases expression of mitochondria-encoded genes. Moreover, MEF2C mutant cells show reduction of mitochondrial membrane potential, ATP level but elevation of oxidative stress. MEF2C deficiency in the upper and lower motor neurons of mice impairs mitochondria-encoded genes, and leads to mitochondrial metabolic disruption and progressive motor behavioral deficits. Together, MEF2C dysregulation by the enhancer mutation leads to mitochondrial dysfunction and oxidative stress, which are prevalent features in motor neuronal damage and ALS pathogenesis. This genetic and epigenetic crosstalk mechanism provides insights for advancing our understanding of motor neuron disease and developing effective treatments.
Collapse
|
9
|
Magrì A, Lipari CLR, Caccamo A, Battiato G, Conti Nibali S, De Pinto V, Guarino F, Messina A. AAV-mediated upregulation of VDAC1 rescues the mitochondrial respiration and sirtuins expression in a SOD1 mouse model of inherited ALS. Cell Death Discov 2024; 10:178. [PMID: 38627359 PMCID: PMC11021507 DOI: 10.1038/s41420-024-01949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Mitochondrial dysfunction represents one of the most common molecular hallmarks of both sporadic and familial forms of amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder caused by the selective degeneration and death of motor neurons. The accumulation of misfolded proteins on and within mitochondria, as observed for SOD1 G93A mutant, correlates with a drastic reduction of mitochondrial respiration and the inhibition of metabolites exchanges, including ADP/ATP and NAD+/NADH, across the Voltage-Dependent Anion-selective Channel 1 (VDAC1), the most abundant channel protein of the outer mitochondrial membrane. Here, we show that the AAV-mediated upregulation of VDAC1 in the spinal cord of transgenic mice expressing SOD1 G93A completely rescues the mitochondrial respiratory profile. This correlates with the increased activity and levels of key regulators of mitochondrial functions and maintenance, namely the respiratory chain Complex I and the sirtuins (Sirt), especially Sirt3. Furthermore, the selective increase of these mitochondrial proteins is associated with an increase in Tom20 levels, the receptor subunit of the TOM complex. Overall, our results indicate that the overexpression of VDAC1 has beneficial effects on ALS-affected tissue by stabilizing the Complex I-Sirt3 axis.
Collapse
Affiliation(s)
- Andrea Magrì
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy
- we.MitoBiotech s.r.l., C.so Italia 172, 95125, Catania, Italy
| | - Cristiana Lucia Rita Lipari
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 32, 98166, Messina, Italy
| | - Giuseppe Battiato
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy
| | - Stefano Conti Nibali
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy
| | - Vito De Pinto
- we.MitoBiotech s.r.l., C.so Italia 172, 95125, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy
| | - Francesca Guarino
- we.MitoBiotech s.r.l., C.so Italia 172, 95125, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via S. Sofia 97, 95123, Catania, Italy.
- we.MitoBiotech s.r.l., C.so Italia 172, 95125, Catania, Italy.
| |
Collapse
|
10
|
Hegde M, Vasquez V, Kodavati M, Mitra J, Vendula I, Hamilton D, Garruto R, Rao KS. Mitochondria-Targeted Oligomeric α-Synuclein Induces TOM40 Degradation and Mitochondrial Dysfunction in Parkinson's Disease and Parkinsonism-Dementia of Guam. RESEARCH SQUARE 2024:rs.3.rs-3970470. [PMID: 38464024 PMCID: PMC10925433 DOI: 10.21203/rs.3.rs-3970470/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Mitochondrial dysfunction is a central aspect of Parkinson's disease (PD) pathology, yet the underlying mechanisms are not fully understood. This study investigates the link between α-Synuclein (α-Syn) pathology and the loss of translocase of the outer mitochondrial membrane 40 (TOM40), unraveling its implications for mitochondrial dysfunctions in neurons. We discovered that TOM40 protein depletion occurs in the brains of patients with Guam Parkinsonism Dementia (Guam PD) and cultured neurons expressing α-Syn proteinopathy, notably, without corresponding changes in TOM40 mRNA levels. Cultured neurons expressing α-Syn mutants, with or without a mitochondria-targeting signal (MTS) underscore the role of α-Syn's mitochondrial localization in inducing TOM40 degradation. Parkinson's Disease related etiological factors, such as 6-hydroxy dopamine or ROS/metal ions stress, which promote α-Syn oligomerization, exacerbate TOM40 depletion in PD patient-derived cells with SNCA gene triplication. Although α-Syn interacts with both TOM40 and TOM20 in the outer mitochondrial membrane, degradation is selective for TOM40, which occurs via the ubiquitin-proteasome system (UPS) pathway. Our comprehensive analyses using Seahorse technology, mitochondrial DNA sequencing, and damage assessments, demonstrate that mutant α-Syn-induced TOM40 loss results in mitochondrial dysfunction, characterized by reduced membrane potential, accumulation of mtDNA damage, deletion/insertion mutations, and altered oxygen consumption rates. Notably, ectopic supplementation of TOM40 or reducing pathological forms of α-Syn using ADP-ribosylation inhibitors ameliorate these mitochondrial defects, suggesting potential therapeutic avenues. In conclusion, our findings provide crucial mechanistic insights into how α-Syn accumulation leads to TOM40 degradation and mitochondrial dysfunction, offering insights for targeted interventions to alleviate mitochondrial defects in PD.
Collapse
Affiliation(s)
| | | | | | - Joy Mitra
- Houston Methodist Research Institute
| | | | - Dale Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute
| | | | | |
Collapse
|
11
|
Needs HI, Glover E, Pereira GC, Witt A, Hübner W, Dodding MP, Henley JM, Collinson I. Rescue of mitochondrial import failure by intercellular organellar transfer. Nat Commun 2024; 15:988. [PMID: 38307874 PMCID: PMC10837123 DOI: 10.1038/s41467-024-45283-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
Mitochondria are the powerhouses of eukaryotic cells, composed mostly of nuclear-encoded proteins imported from the cytosol. Thus, problems with the import machinery will disrupt their regenerative capacity and the cell's energy supplies - particularly troublesome for energy-demanding cells of nervous tissue and muscle. Unsurprisingly then, import breakdown is implicated in disease. Here, we explore the consequences of import failure in mammalian cells; wherein, blocking the import machinery impacts mitochondrial ultra-structure and dynamics, but, surprisingly, does not affect import. Our data are consistent with a response involving intercellular mitochondrial transport via tunnelling nanotubes to import healthy mitochondria and jettison those with blocked import sites. These observations support the existence of a widespread mechanism for the rescue of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Hope I Needs
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Emily Glover
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Gonçalo C Pereira
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
- Nanna Therapeutics, Merrifield Centre, Rosemary Lane, Cambridge, CB1 3LQ, UK
| | - Alina Witt
- Fakultät für Physik, Universität Bielefeld, Bielefeld, Postfach 100131 D-33501, Germany
| | - Wolfgang Hübner
- Fakultät für Physik, Universität Bielefeld, Bielefeld, Postfach 100131 D-33501, Germany
| | - Mark P Dodding
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Jeremy M Henley
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
12
|
Kim Y, Shin SY, Jeung J, Kim Y, Kang YW, Lee S, Oh CM. Integrative analysis of mitochondrial metabolic reprogramming in early-stage colon and liver cancer. Front Oncol 2023; 13:1218735. [PMID: 37692839 PMCID: PMC10484220 DOI: 10.3389/fonc.2023.1218735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Gastrointestinal malignancies, including colon adenocarcinoma (COAD) and liver hepatocellular carcinoma (LIHC), remain leading causes of cancer-related deaths worldwide. To better understand the underlying mechanisms of these cancers and identify potential therapeutic targets, we analyzed publicly accessible Cancer Genome Atlas datasets of COAD and LIHC. Our analysis revealed that differentially expressed genes (DEGs) during early tumorigenesis were associated with cell cycle regulation. Additionally, genes related to lipid metabolism were significantly enriched in both COAD and LIHC, suggesting a crucial role for dysregulated lipid metabolism in their development and progression. We also identified a subset of DEGs associated with mitochondrial function and structure, including upregulated genes involved in mitochondrial protein import and respiratory complex assembly. Further, we identified mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS2) as a crucial regulator of cancer cell metabolism. Using a genome-scale metabolic model, we demonstrated that HMGCS2 suppression increased glycolysis, lipid biosynthesis, and elongation while decreasing fatty acid oxidation in colon cancer cells. Our study highlights the potential contribution of dysregulated lipid metabolism, including ketogenesis, to COAD and LIHC development and progression and identifies potential therapeutic targets for these malignancies.
Collapse
Affiliation(s)
- Yeongmin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - So-Yeon Shin
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jihun Jeung
- Department of School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Yumin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Yun-Won Kang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Sunjae Lee
- Department of School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
13
|
Needs HI, Wilkinson KA, Henley JM, Collinson I. Aggregation-prone Tau impairs mitochondrial import, which affects organelle morphology and neuronal complexity. J Cell Sci 2023; 136:jcs260993. [PMID: 37303235 PMCID: PMC10357015 DOI: 10.1242/jcs.260993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023] Open
Abstract
Mitochondrial protein import is essential for organellar biogenesis, and thereby for the sufficient supply of cytosolic ATP - which is particularly important for cells with high energy demands like neurons. This study explores the prospect of import machinery perturbation as a cause of neurodegeneration instigated by the accumulation of aggregating proteins linked to disease. We found that the aggregation-prone Tau variant (TauP301L) reduces the levels of components of the import machinery of the outer (TOM20, encoded by TOMM20) and inner membrane (TIM23, encoded by TIMM23) while associating with TOM40 (TOMM40). Intriguingly, this interaction affects mitochondrial morphology, but not protein import or respiratory function; raising the prospect of an intrinsic rescue mechanism. Indeed, TauP301L induced the formation of tunnelling nanotubes (TNTs), potentially for the recruitment of healthy mitochondria from neighbouring cells and/or the disposal of mitochondria incapacitated by aggregated Tau. Consistent with this, inhibition of TNT formation (and rescue) reveals Tau-induced import impairment. In primary neuronal cultures, TauP301L induced morphological changes characteristic of neurodegeneration. Interestingly, these effects were mirrored in cells where the import sites were blocked artificially. Our results reveal a link between aggregation-prone Tau and defective mitochondrial import relevant to disease.
Collapse
Affiliation(s)
- Hope I. Needs
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | - Jeremy M. Henley
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
14
|
Zhan J, Xia D. Bcs1, a novel target for fungicide. Front Chem 2023; 11:1146753. [PMID: 36993815 PMCID: PMC10040684 DOI: 10.3389/fchem.2023.1146753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
The mitochondrial respiratory chain has long been a primary target for the development of fungicides for its indispensable role in various cellular functions including energy metabolism. Over the years, a wide range of natural and synthetic fungicides and pesticides targeting the respiratory chain complexes have been discovered or developed and used in agriculture and in medicine, which brought considerable economic gains but was also accompanied by the emergence of resistance to these compounds. To delay and overcome the onset of resistance, novel targets for fungicides development are actively being pursued. Mitochondrial AAA protein Bcs1 is necessary for the biogenesis of respiratory chain Complex III, also known as cyt bc1 complex, by delivering the last essential iron-sulfur protein subunit in its folded form to the cyt bc1 precomplex. Although no report on the phenotypes of knock-out Bcs1 has been reported in animals, pathogenic Bcs1 mutations cause Complex III deficiency and respiratory growth defects, which makes it a promising new target for the development of fungicides. Recent Cryo-EM and X-ray structures of mouse and yeast Bcs1 revealed the basic oligomeric states of Bcs1, shed light on the translocation mechanism of its substrate ISP, and provided the basis for structure-based drug design. This review summarizes the recent progress made on understanding the structure and function of Bcs1, proposes the use of Bcs1 as an antifungal target, and provides novel prospects for fungicides design by targeting Bcs1.
Collapse
|
15
|
Molecular and Cellular Interactions in Pathogenesis of Sporadic Parkinson Disease. Int J Mol Sci 2022; 23:ijms232113043. [PMID: 36361826 PMCID: PMC9657547 DOI: 10.3390/ijms232113043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
An increasing number of the population all around the world suffer from age-associated neurodegenerative diseases including Parkinson’s disease (PD). This disorder presents different signs of genetic, epigenetic and environmental origin, and molecular, cellular and intracellular dysfunction. At the molecular level, α-synuclein (αSyn) was identified as the principal molecule constituting the Lewy bodies (LB). The gut microbiota participates in the pathogenesis of PD and may contribute to the loss of dopaminergic neurons through mitochondrial dysfunction. The most important pathogenetic link is an imbalance of Ca2+ ions, which is associated with redox imbalance in the cells and increased generation of reactive oxygen species (ROS). In this review, genetic, epigenetic and environmental factors that cause these disorders and their cause-and-effect relationships are considered. As a constituent of environmental factors, the example of organophosphates (OPs) is also reviewed. The role of endothelial damage in the pathogenesis of PD is discussed, and a ‘triple hit hypothesis’ is proposed as a modification of Braak’s dual hit one. In the absence of effective therapies for neurodegenerative diseases, more and more evidence is emerging about the positive impact of nutritional structure and healthy lifestyle on the state of blood vessels and the risk of developing these diseases.
Collapse
|
16
|
Elastic network modeling of cellular networks unveils sensor and effector genes that control information flow. PLoS Comput Biol 2022; 18:e1010181. [PMID: 35639793 PMCID: PMC9216591 DOI: 10.1371/journal.pcbi.1010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/22/2022] [Accepted: 05/07/2022] [Indexed: 12/03/2022] Open
Abstract
The high-level organization of the cell is embedded in indirect relationships that connect distinct cellular processes. Existing computational approaches for detecting indirect relationships between genes typically consist of propagating abstract information through network representations of the cell. However, the selection of genes to serve as the source of propagation is inherently biased by prior knowledge. Here, we sought to derive an unbiased view of the high-level organization of the cell by identifying the genes that propagate and receive information most effectively in the cell, and the indirect relationships between these genes. To this aim, we adapted a perturbation-response scanning strategy initially developed for identifying allosteric interactions within proteins. We deployed this strategy onto an elastic network model of the yeast genetic interaction profile similarity network. This network revealed a superior propensity for information propagation relative to simulated networks with similar topology. Perturbation-response scanning identified the major distributors and receivers of information in the network, named effector and sensor genes, respectively. Effectors formed dense clusters centrally integrated into the network, whereas sensors formed loosely connected antenna-shaped clusters and contained genes with previously characterized involvement in signal transduction. We propose that indirect relationships between effector and sensor clusters represent major paths of information flow between distinct cellular processes. Genetic similarity networks for fission yeast and human displayed similarly strong propensities for information propagation and clusters of effector and sensor genes, suggesting that the global architecture enabling indirect relationships is evolutionarily conserved across species. Our results demonstrate that elastic network modeling of cellular networks constitutes a promising strategy to probe the high-level organization and cooperativity in the cell.
Collapse
|
17
|
Nesci S, Lenaz G. Impaired Mitochondrial Bioenergetics under Pathological Conditions. Life (Basel) 2022; 12:205. [PMID: 35207491 PMCID: PMC8879432 DOI: 10.3390/life12020205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are the powerhouses of cells; however, mitochondrial dysfunction causes energy depletion and cell death in various diseases [...].
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, BO, Italy
| | - Giorgio Lenaz
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Via Massarenti 9, Pad 11, 40138 Bologna, BO, Italy
| |
Collapse
|
18
|
Knapp-Wilson A, Pereira GC, Buzzard E, Ford HC, Richardson A, Corey RA, Neal C, Verkade P, Halestrap AP, Gold VAM, Kuwabara PE, Collinson I. Maintenance of complex I and its supercomplexes by NDUF-11 is essential for mitochondrial structure, function and health. J Cell Sci 2021; 134:jcs258399. [PMID: 34106255 PMCID: PMC8277142 DOI: 10.1242/jcs.258399] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial supercomplexes form around a conserved core of monomeric complex I and dimeric complex III; wherein a subunit of the former, NDUFA11, is conspicuously situated at the interface. We identified nduf-11 (B0491.5) as encoding the Caenorhabditis elegans homologue of NDUFA11. Animals homozygous for a CRISPR-Cas9-generated knockout allele of nduf-11 arrested at the second larval (L2) development stage. Reducing (but not eliminating) expression using RNAi allowed development to adulthood, enabling characterisation of the consequences: destabilisation of complex I and its supercomplexes and perturbation of respiratory function. The loss of NADH dehydrogenase activity was compensated by enhanced complex II activity, with the potential for detrimental reactive oxygen species (ROS) production. Cryo-electron tomography highlighted aberrant morphology of cristae and widening of both cristae junctions and the intermembrane space. The requirement of NDUF-11 for balanced respiration, mitochondrial morphology and development presumably arises due to its involvement in complex I and supercomplex maintenance. This highlights the importance of respiratory complex integrity for health and the potential for its perturbation to cause mitochondrial disease. This article has an associated First Person interview with Amber Knapp-Wilson, joint first author of the paper.
Collapse
Affiliation(s)
| | | | - Emma Buzzard
- Living Systems Institute, Stocker Road, University of Exeter, Exeter EX4 4QD, UK
- College of Life and Environmental Sciences,Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Holly C. Ford
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | - Robin A. Corey
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Chris Neal
- Wolfson Bioimaging Facility, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | - Vicki A. M. Gold
- Living Systems Institute, Stocker Road, University of Exeter, Exeter EX4 4QD, UK
- College of Life and Environmental Sciences,Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | | | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|