1
|
Malkinson G, Henriques CM. Cerebrovascular ageing: how zebrafish can contribute to solving the puzzle. Front Physiol 2025; 16:1548242. [PMID: 39995479 PMCID: PMC11849178 DOI: 10.3389/fphys.2025.1548242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
The mean life expectancy continues to increase world-wide. However, this extended lifespan trend is not accompanied by health span, or years of healthy life. Understanding the fundamental mechanisms responsible for the switch from health to morbidity with ageing are key to identifying potential therapeutic targets to decrease age-associated morbidity and increase years spent in good health. The leading cause of morbidity in Europe are diseases of the circulatory system and diseases of the nervous system and cognitive disorders are among the top-ten. Cerebrovascular ageing is therefore of particular importance as it links circulatory disease to brain functions, cognition, and behavior. Despite major progress in brain research and related technologies, little is known on how the cerebrovascular network changes its properties as ageing proceeds. Importantly, we do not understand why this is different in different individuals in what concerns rate of dysfunction and its downstream impact on brain function. Here we explore how the zebrafish has evolved as an attractive complementary ageing model and how it could provide key insights to understanding the mechanisms underlying cerebrovascular ageing and downstream consequences.
Collapse
Affiliation(s)
- Guy Malkinson
- Université de Lorraine, Inserm, DCAC, Nancy, France
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Catarina M. Henriques
- Department of Oncology and Metabolism, Healthy Lifespan Institute and MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, University of Sheffield, Sheffield, United Kingdom
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
2
|
Diwan Z, Kang J, Tsztoo E, Siekmann AF. Alk1/Endoglin signaling restricts vein cell size increases in response to hemodynamic cues. Angiogenesis 2024; 28:5. [PMID: 39656297 PMCID: PMC11632009 DOI: 10.1007/s10456-024-09955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/20/2024] [Indexed: 12/13/2024]
Abstract
Hemodynamic cues are thought to control blood vessel hierarchy through a shear stress set point, where flow increases lead to blood vessel diameter expansion, while decreases in blood flow cause blood vessel narrowing. Aberrations in blood vessel diameter control can cause congenital arteriovenous malformations (AVMs). We show in zebrafish embryos that while arteries behave according to the shear stress set point model, veins do not. This behavior is dependent on distinct arterial and venous endothelial cell (EC) shapes and sizes. We show that arterial ECs enlarge more strongly when experiencing higher flow, as compared to vein cells. Through the generation of chimeric embryos, we discover that this behavior of vein cells depends on the bone morphogenetic protein (BMP) pathway components Endoglin and Alk1. Endoglin (eng) or alk1 (acvrl1) mutant vein cells enlarge when in normal hemodynamic environments, while we do not observe a phenotype in either acvrl1 or eng mutant ECs in arteries. We further show that an increase in vein diameters initiates AVMs in eng mutants, secondarily leading to higher flow to arteries. These enlarge in response to higher flow through increasing arterial EC sizes, fueling the AVM. This study thus reveals a mechanism through which BMP signaling limits vein EC size increases in response to flow and provides a framework for our understanding of how a small number of mutant vein cells via flow-mediated secondary effects on wildtype arterial ECs can precipitate larger AVMs in disease conditions, such as hereditary hemorrhagic telangiectasia (HHT).
Collapse
Affiliation(s)
- Zeenat Diwan
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - Jia Kang
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA, 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Emma Tsztoo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - Arndt F Siekmann
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Liu J, Wang C, Huang E, Wang L, Wu C, Jiang W, Wu M, Zhang X, Yan J, Wang Y, Zhang J. PDGFRB mutation causes intracranial aneurysm. J Genet Genomics 2024; 51:978-981. [PMID: 39047938 DOI: 10.1016/j.jgg.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Affiliation(s)
- Junyu Liu
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China; Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Chunling Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Enyu Huang
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Luming Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Chengchao Wu
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Weixi Jiang
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Mei Wu
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiuru Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Junxia Yan
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, Hunan 410006, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, XiangYa School of Public Health, Central South University, Changsha, Hunan 410006, China.
| | - Yeqi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
4
|
Colijn S, Nambara M, Malin G, Sacchetti EA, Stratman AN. Identification of distinct vascular mural cell populations during zebrafish embryonic development. Dev Dyn 2024; 253:519-541. [PMID: 38112237 PMCID: PMC11065631 DOI: 10.1002/dvdy.681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/14/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Mural cells are an essential perivascular cell population that associate with blood vessels and contribute to vascular stabilization and tone. In the embryonic zebrafish vasculature, pdgfrb and tagln are commonly used as markers for identifying pericytes and vascular smooth muscle cells. However, the overlapping and distinct expression patterns of these markers in tandem have not been fully described. RESULTS Here, we used the Tg(pdgfrb:Gal4FF; UAS:RFP) and Tg(tagln:NLS-EGFP) transgenic lines to identify single- and double-positive perivascular cell populations on the cranial, axial, and intersegmental vessels between 1 and 5 days postfertilization. From this comparative analysis, we discovered two novel regions of tagln-positive cell populations that have the potential to function as mural cell precursors. Specifically, we found that the hypochord-a reportedly transient structure-contributes to tagln-positive cells along the dorsal aorta. We also identified a unique mural cell progenitor population that resides along the midline between the neural tube and notochord and contributes to intersegmental vessel mural cell coverage. CONCLUSION Together, our findings highlight the variability and versatility of tracking both pdgfrb and tagln expression in mural cells of the developing zebrafish embryo and reveal unexpected embryonic cell populations that express pdgfrb and tagln.
Collapse
Affiliation(s)
- Sarah Colijn
- Department of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| | - Miku Nambara
- Department of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| | - Gracie Malin
- Department of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| | - Elena A. Sacchetti
- Department of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| | - Amber N. Stratman
- Department of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| |
Collapse
|
5
|
Rieder GS, Braga MM, Mussulini BHM, Silva ES, Lazzarotto G, Casali EA, Oliveira DL, Franco JL, Souza DOG, Rocha JBT. Diphenyl Diselenide Attenuates Mitochondrial Damage During Initial Hypoxia and Enhances Resistance to Recurrent Hypoxia. Neurotox Res 2024; 42:13. [PMID: 38332435 DOI: 10.1007/s12640-024-00691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
Hypoxia plays a significant role in the development of various cerebral diseases, many of which are associated with the potential risk of recurrence due to mitochondrial damage. Conventional drug treatments are not always effective for hypoxia-related brain diseases, necessitating the exploration of alternative compounds. In this study, we investigated the potential of diphenyl diselenide [(PhSe)2] to ameliorate locomotor impairments and mitigate brain mitochondrial dysfunction in zebrafish subjected to hypoxia. Additionally, we explored whether these improvements could confer resistance to recurrent hypoxia. Through a screening process, an appropriate dose of (PhSe)2 was determined, and animals exposed to hypoxia received a single intraperitoneal injection of 100 mg/kg of the compound or vehicle. After 1 h from the injection, evaluations were conducted on locomotor deficits, (PhSe)2 content, mitochondrial electron transport system, and mitochondrial viability in the brain. The animals were subsequently exposed to recurrent hypoxia to assess the latency time to hypoxia symptoms. The findings revealed that (PhSe)2 effectively crossed the blood-brain barrier, attenuated locomotor deficits induced by hypoxia, and improved brain mitochondrial respiration by modulating complex III. Furthermore, it enhanced mitochondrial viability in the telencephalon, contributing to greater resistance to recurrent hypoxia. These results demonstrate the beneficial effects of (PhSe)2 on both hypoxia and recurrent hypoxia, with cerebral mitochondria being a critical target of its action. Considering the involvement of brain hypoxia in numerous pathologies, (PhSe)2 should be further tested to determine its effectiveness as a potential treatment for hypoxia-related brain diseases.
Collapse
Affiliation(s)
- Guilherme S Rieder
- Programa de Pós Graduação Em Bioquímica Toxicológica, Departamento de Bioquímica E Biologia Molecular, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Avenida Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Marcos M Braga
- Programa de Pós Graduação Em Bioquímica Toxicológica, Departamento de Bioquímica E Biologia Molecular, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Avenida Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Ben Hur M Mussulini
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Emerson S Silva
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Lazzarotto
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Emerson André Casali
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Diogo L Oliveira
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Jeferson L Franco
- Universidade Federal Do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil
| | - Diogo O G Souza
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - João Batista T Rocha
- Programa de Pós Graduação Em Bioquímica Toxicológica, Departamento de Bioquímica E Biologia Molecular, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Avenida Roraima 1000, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
6
|
Abstract
The vasculature consists of vessels of different sizes that are arranged in a hierarchical pattern. Two cell populations work in concert to establish this pattern during embryonic development and adopt it to changes in blood flow demand later in life: endothelial cells that line the inner surface of blood vessels, and adjacent vascular mural cells, including smooth muscle cells and pericytes. Despite recent progress in elucidating the signalling pathways controlling their crosstalk, much debate remains with regard to how mural cells influence endothelial cell biology and thereby contribute to the regulation of blood vessel formation and diameters. In this Review, I discuss mural cell functions and their interactions with endothelial cells, focusing on how these interactions ensure optimal blood flow patterns. Subsequently, I introduce the signalling pathways controlling mural cell development followed by an overview of mural cell ontogeny with an emphasis on the distinguishing features of mural cells located on different types of blood vessels. Ultimately, I explore therapeutic strategies involving mural cells to alleviate tissue ischemia and improve vascular efficiency in a variety of diseases.
Collapse
Affiliation(s)
- Arndt F. Siekmann
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Sur A, Wang Y, Capar P, Margolin G, Farrell JA. Single-cell analysis of shared signatures and transcriptional diversity during zebrafish development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533545. [PMID: 36993555 PMCID: PMC10055256 DOI: 10.1101/2023.03.20.533545] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
During development, animals generate distinct cell populations with specific identities, functions, and morphologies. We mapped transcriptionally distinct populations across 489,686 cells from 62 stages during wild-type zebrafish embryogenesis and early larval development (3-120 hours post-fertilization). Using these data, we identified the limited catalog of gene expression programs reused across multiple tissues and their cell-type-specific adaptations. We also determined the duration each transcriptional state is present during development and suggest new long-term cycling populations. Focused analyses of non-skeletal muscle and the endoderm identified transcriptional profiles of understudied cell types and subpopulations, including the pneumatic duct, individual intestinal smooth muscle layers, spatially distinct pericyte subpopulations, and homologs of recently discovered human best4+ enterocytes. The transcriptional regulators of these populations remain unknown, so we reconstructed gene expression trajectories to suggest candidates. To enable additional discoveries, we make this comprehensive transcriptional atlas of early zebrafish development available through our website, Daniocell.
Collapse
Affiliation(s)
- Abhinav Sur
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814
| | - Yiqun Wang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Paulina Capar
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814
| | - Gennady Margolin
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20814
| | - Jeffrey A. Farrell
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814
| |
Collapse
|
8
|
Colijn S, Nambara M, Stratman AN. Identification of overlapping and distinct mural cell populations during early embryonic development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535476. [PMID: 37066365 PMCID: PMC10104062 DOI: 10.1101/2023.04.03.535476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Mural cells are an essential perivascular cell population that associate with blood vessels and contribute to vascular stabilization and tone. In the embryonic zebrafish vasculature, pdgfrb and tagln are commonly used as markers for identifying pericytes and vascular smooth muscle cells (vSMCs). However, the expression patterns of these markers used in tandem have not been fully described. Here, we used the Tg(pdgfrb:Gal4FF; UAS:RFP) and Tg(tagln:NLS-EGFP) transgenic lines to identify single- and double-positive perivascular populations in the cranial, axial, and intersegmental vessels between 1 and 5 days post-fertilization. From this comparative analysis, we discovered two novel regions of tagln-positive cell populations that have the potential to function as mural cell precursors. Specifically, we found that the hypochord- a reportedly transient structure-contributes to tagln-positive cells along the dorsal aorta. We also identified a unique sclerotome-derived mural cell progenitor population that resides along the midline between the neural tube and notochord and contributes to intersegmental vessel mural cell coverage. Together, our findings highlight the variability and versatility of tracking pdgfrb and tagln expression in mural cells of the developing zebrafish embryo.
Collapse
Affiliation(s)
- Sarah Colijn
- Department of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| | - Miku Nambara
- Department of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| | - Amber N. Stratman
- Department of Cell Biology and Physiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| |
Collapse
|
9
|
Leonard EV, Hasan SS, Siekmann AF. Temporally and regionally distinct morphogenetic processes govern zebrafish caudal fin blood vessel network expansion. Development 2023; 150:dev201030. [PMID: 36938965 PMCID: PMC10113958 DOI: 10.1242/dev.201030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/10/2023] [Indexed: 03/21/2023]
Abstract
Blood vessels form elaborate networks that depend on tissue-specific signalling pathways and anatomical structures to guide their growth. However, it is not clear which morphogenetic principles organize the stepwise assembly of the vasculature. We therefore performed a longitudinal analysis of zebrafish caudal fin vascular assembly, revealing the existence of temporally and spatially distinct morphogenetic processes. Initially, vein-derived endothelial cells (ECs) generated arteries in a reiterative process requiring vascular endothelial growth factor (Vegf), Notch and cxcr4a signalling. Subsequently, veins produced veins in more proximal fin regions, transforming pre-existing artery-vein loops into a three-vessel pattern consisting of an artery and two veins. A distinct set of vascular plexuses formed at the base of the fin. They differed in their diameter, flow magnitude and marker gene expression. At later stages, intussusceptive angiogenesis occurred from veins in distal fin regions. In proximal fin regions, we observed new vein sprouts crossing the inter-ray tissue through sprouting angiogenesis. Together, our results reveal a surprising diversity among the mechanisms generating the mature fin vasculature and suggest that these might be driven by separate local cues.
Collapse
Affiliation(s)
- Elvin V. Leonard
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Sana Safatul Hasan
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany
| | - Arndt F. Siekmann
- Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Xia Y, Duca S, Perder B, Dündar F, Zumbo P, Qiu M, Yao J, Cao Y, Harrison MRM, Zangi L, Betel D, Cao J. Activation of a transient progenitor state in the epicardium is required for zebrafish heart regeneration. Nat Commun 2022; 13:7704. [PMID: 36513650 PMCID: PMC9747719 DOI: 10.1038/s41467-022-35433-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
The epicardium, a mesothelial cell tissue that encompasses vertebrate hearts, supports heart regeneration after injury through paracrine effects and as a source of multipotent progenitors. However, the progenitor state in the adult epicardium has yet to be defined. Through single-cell RNA-sequencing of isolated epicardial cells from uninjured and regenerating adult zebrafish hearts, we define the epithelial and mesenchymal subsets of the epicardium. We further identify a transiently activated epicardial progenitor cell (aEPC) subpopulation marked by ptx3a and col12a1b expression. Upon cardiac injury, aEPCs emerge from the epithelial epicardium, migrate to enclose the wound, undergo epithelial-mesenchymal transition (EMT), and differentiate into mural cells and pdgfra+hapln1a+ mesenchymal epicardial cells. These EMT and differentiation processes are regulated by the Tgfβ pathway. Conditional ablation of aEPCs blocks heart regeneration through reduced nrg1 expression and mesenchymal cell number. Our findings identify a transient progenitor population of the adult epicardium that is indispensable for heart regeneration and highlight it as a potential target for enhancing cardiac repair.
Collapse
Affiliation(s)
- Yu Xia
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Sierra Duca
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Björn Perder
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Friederike Dündar
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Applied Bioinformatics Core, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Applied Bioinformatics Core, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Miaoyan Qiu
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Jun Yao
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Yingxi Cao
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Michael R M Harrison
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Lior Zangi
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Institute for Computational Biomedicine, Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
11
|
Peng D, Ando K, Hußmann M, Gloger M, Skoczylas R, Mochizuki N, Betsholtz C, Fukuhara S, Schulte-Merker S, Lawson ND, Koltowska K. Proper migration of lymphatic endothelial cells requires survival and guidance cues from arterial mural cells. eLife 2022; 11:e74094. [PMID: 35316177 PMCID: PMC9042226 DOI: 10.7554/elife.74094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The migration of lymphatic endothelial cells (LECs) is key for the development of the complex and vast lymphatic vascular network that pervades most tissues in an organism. In zebrafish, arterial intersegmental vessels together with chemokines have been shown to promote lymphatic cell migration from the horizontal myoseptum (HM). We observed that emergence of mural cells around the intersegmental arteries coincides with lymphatic departure from HM which raised the possibility that arterial mural cells promote LEC migration. Our live imaging and cell ablation experiments revealed that LECs migrate slower and fail to establish the lymphatic vascular network in the absence of arterial mural cells. We determined that mural cells are a source for the C-X-C motif chemokine 12 (Cxcl12a and Cxcl12b), vascular endothelial growth factor C (Vegfc) and collagen and calcium-binding EGF domain-containing protein 1 (Ccbe1). We showed that chemokine and growth factor signalling function cooperatively to induce robust LEC migration. Specifically, Vegfc-Vegfr3 signalling, but not chemokines, induces extracellular signal-regulated kinase (ERK) activation in LECs, and has an additional pro-survival role in LECs during the migration. Together, the identification of mural cells as a source for signals that guide LEC migration and survival will be important in the future design for rebuilding lymphatic vessels in disease contexts.
Collapse
Affiliation(s)
- Di Peng
- Uppsala University, Immunology Genetics and PathologyUppsalaSweden
| | - Koji Ando
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical SchoolTokyoJapan
| | - Melina Hußmann
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU MünsterMünsterGermany
| | - Marleen Gloger
- Uppsala University, Immunology Genetics and PathologyUppsalaSweden
| | - Renae Skoczylas
- Uppsala University, Immunology Genetics and PathologyUppsalaSweden
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research InstituteSuitaJapan
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala UniversityUppsalaSweden
- Department of Medicine Huddinge (MedH), Karolinska Institutet, Campus FlemingsbergHuddingeSweden
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical SchoolTokyoJapan
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU MünsterMünsterGermany
| | - Nathan D Lawson
- Department of Molecular, Cellular, and Cancer Biology, University of Massachusetts Medical SchoolWorcesterUnited States
| | | |
Collapse
|