1
|
Jakubu V, Cechova M, Musilek M, Malisova L, Zapletalova B, Zemlickova H. Amino acid substitutions in PBP3 in Haemophilus influenzae strains, their phenotypic detection and impact on resistance to β-lactams. J Antimicrob Chemother 2025; 80:980-987. [PMID: 39895369 PMCID: PMC11962375 DOI: 10.1093/jac/dkaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Data from surveillance on antibiotic resistance have shown an increasing prevalence of non-enzymatic resistance (β-lactamase-negative ampicillin-resistant) to β-lactam antibiotics among H. influenzae strains in the Czech Republic. Aminopenicillins are recommended agents for non-invasive Haemophilus influenzae infections. The phenomenon of non-enzymatic resistance to β-lactams is complicated by the fact that the phenotypic detection of PBP3 with specific amino acid substitutions (rPBP3) is challenging, since rPBP3 isolates have repeatedly been demonstrated to be split by the epidemiological cut-off values (ECOFF) for aminopenicillins defined by EUCAST. OBJECTIVES We sought to determine whether the penicillin disc has sufficient detection ability to predict the non-enzymatic mechanism; whether other antibiotics can be used for detection; and what is the agreement between the broth microdilution and disc diffusion methods. METHODS We undertook susceptibility testing of selected antibiotics according to EUCAST of 153 rPBP3 strains, and sequencing of the ftsI gene to determination amino acid substitutions. RESULTS For a selected set of rPBP strains: (i) the detection capability for penicillin, ampicillin, cefuroxime and amoxicillin/clavulanate was found to be 91.5%, 94.4%, 89.5% and 70.6%, respectively; (ii) the categorical agreement between the disc diffusion method and the MIC for ampicillin and cefuroxime was 71.1% and 83.8%, respectively. CONCLUSIONS We observed better recognition of rPBP3 strains by the ampicillin disc than by the penicillin disc. There is frequently a discrepancy in the interpretation of susceptibility results between the methods used.
Collapse
Affiliation(s)
- Vladislav Jakubu
- National Reference Laboratory for Antibiotics, Centre for Epidemiology and Microbiology, National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Prague, The Czech Republic
- Department of Microbiology, 3rd Faculty of Medicine, Kralovske Vinohrady University Hospital and National Institute of Public Health, Charles University, Ruska 87, 100 00 Prague 10, Prague, The Czech Republic
| | - Marketa Cechova
- National Reference Laboratory for Antibiotics, Centre for Epidemiology and Microbiology, National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Prague, The Czech Republic
| | - Martin Musilek
- National Reference Laboratory for Meningococcal Infections, Centre for Epidemiology and Microbiology, National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Prague, The Czech Republic
| | - Lucia Malisova
- National Reference Laboratory for Antibiotics, Centre for Epidemiology and Microbiology, National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Prague, The Czech Republic
- Department of Microbiology, 3rd Faculty of Medicine, Kralovske Vinohrady University Hospital and National Institute of Public Health, Charles University, Ruska 87, 100 00 Prague 10, Prague, The Czech Republic
| | - Barbora Zapletalova
- National Reference Laboratory for Antibiotics, Centre for Epidemiology and Microbiology, National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Prague, The Czech Republic
| | - Helena Zemlickova
- National Reference Laboratory for Antibiotics, Centre for Epidemiology and Microbiology, National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Prague, The Czech Republic
- Department of Microbiology, 3rd Faculty of Medicine, Kralovske Vinohrady University Hospital and National Institute of Public Health, Charles University, Ruska 87, 100 00 Prague 10, Prague, The Czech Republic
| |
Collapse
|
2
|
Frank T, Wohlfarth E, Claus H, Krone M, Lâm TT, Kresken M. Antibiotic resistance and molecular characterization of non-invasive clinical Haemophilus influenzae isolates in Germany 2019 and 2020. JAC Antimicrob Resist 2024; 6:dlae197. [PMID: 39659639 PMCID: PMC11631347 DOI: 10.1093/jacamr/dlae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Background Haemophilus influenzae (Hi) is known as a cause of invasive and non-invasive diseases. Especially ear, nose and throat (ENT) infections are common reasons for antibiotic prescriptions in outpatient settings in Germany. Therefore, antibiotic resistance surveillance is important to provide the basis of recommendations for the empirical usage of antibiotic agents. Objectives To provide data on susceptibility rates of oral antibiotics for non-invasive clinical Hi isolates in Germany and to investigate molecular resistance patterns of β-lactams, ciprofloxacin, doxycycline and trimethoprim/sulfamethoxazole. Methods Isolates were collected from a sentinel network of diagnostic laboratories in a prospective multicentre prevalence study. Antibiotic susceptibility testing was done with a commercial broth microdilution kit. MICs were interpreted according to EUCAST guidelines. Resistance gene sequencing and WGS were performed to analyze molecular antibiotic resistance patterns and genetic relationships between the isolates. Results In total, 215 Hi isolates were collected from 23 laboratories across Germany. The highest resistance rates were found for amoxicillin (n = 30; 14%), cefuroxime (n = 40; 18.6%) and trimethoprim/sulfamethoxazole (co-trimoxazole) (n = 34; 15.8%). Resistance to amoxicillin was mainly due to blaTEM-1 (n = 29; 96.7%). PBP3 alterations were found in 39 of 40 cefuroxime-resistant isolates (97.5%). Two of the cefuroxime-resistant isolates harboured PBP3 mutation patterns that have not yet been associated with cefuroxime resistance; in one of them, a known lpoA mutation was found. One isolate showed no mutations in PBP3 or lpoA. All co-trimoxazole-resistant isolates (15.8%) showed known mutations in folA and its promoter region. Additionally, point mutations in folP were identified in a subset of these isolates. The most frequent sequence types (STs) were ST57 (n = 10) and ST103 (n = 10). Genetic cluster analysis identified six clusters, but no epidemiological link could be confirmed. Conclusion Resistance to oral antibiotics in non-invasive clinical Hi isolates in Germany was generally low. Amoxicillin is estimated to cover 86% of infections involving non-invasive Hi and, therefore, is still effective for the first-line empirical treatment for ENT infections in Germany. Further surveillance of antimicrobial susceptibility in non-invasive Hi isolates is important to ensure the data basis for guidelines of antibiotic usage.
Collapse
Affiliation(s)
- Thiemo Frank
- Institute for Hygiene and Microbiology, National Reference Center for Meningococci and Haemophilus influenzae, University of Würzburg, Würzburg, Germany
| | | | - Heike Claus
- Institute for Hygiene and Microbiology, National Reference Center for Meningococci and Haemophilus influenzae, University of Würzburg, Würzburg, Germany
| | - Manuel Krone
- Institute for Hygiene and Microbiology, National Reference Center for Meningococci and Haemophilus influenzae, University of Würzburg, Würzburg, Germany
| | - Thiên-Trí Lâm
- Institute for Hygiene and Microbiology, National Reference Center for Meningococci and Haemophilus influenzae, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
3
|
Wautier M, Unal S, Martiny D. Monitoring of Haemophilus influenzae isolated from carriage, lower respiratory tract infections and blood over a six-month period in Belgium. Eur J Clin Microbiol Infect Dis 2024; 43:1919-1926. [PMID: 39042345 DOI: 10.1007/s10096-024-04900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION H. influenzae carriage may evolve into respiratory or systemic infections. However, no surveillancesystem is in place in Belgium to monitor carriage strains. MATERIAL AND METHODS This study provides a detailed description of H. influenzae strains isolated from both carriage and lower respiratory infections, collected during a six-month national surveillance. Subsequently, a comparison is conducted with invasive isolates collected during the same period at the National Reference Centre (NRC). RESULTS AND DISCUSSION From November 2021 to April 2022, 39 clinical laboratories collected 142 and 210 strains of H. influenzae from carriage and infection, respectively, and 56 strains of blood were submitted to the NRC. In each group, the biotype II comprised more than 40%, followed by biotypes III and I. The majority of strains were non-typeable H. influenzae, with a notable increase in the number of encapsulated strains in the invasive group (14.3% vs. 1-2%). A beta-lactamase was identified in 18.5% and 12.5% of surveillance and invasive strains, respectively. Resistance to the amoxicillin-clavulanic acid combination accounted for 7% in the surveillance strains and 10.7% in invasive strains. The overall resistance to third-generation cephalosporins at 1.2% is consistent with rates observed in other European countries. Of particular significance is the identification of mutations in the ftsI gene in both carriage and infected strains, which are associated with high-level beta-lactam resistance. CONCLUSION NRC must engage in regular and systematic monitoring of beta-lactam susceptibility of H. influenzae to guarantee safe empiric therapy in severe cases and identify potential transitions from low-level to high-level resistance in the future.
Collapse
Affiliation(s)
- Magali Wautier
- Department of molecular microbiology, Laboratoire Hospitalier Universitaire de Bruxelles- Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sema Unal
- Belgian National Reference Centre for Haemophilus influenzae, Laboratoire Hospitalier Universitaire de Bruxelles- Universitair Laboratorium Brussel (LHUB-ULB), 290 rue Haute, Brussels, 1000, Belgium
| | - Delphine Martiny
- Belgian National Reference Centre for Haemophilus influenzae, Laboratoire Hospitalier Universitaire de Bruxelles- Universitair Laboratorium Brussel (LHUB-ULB), 290 rue Haute, Brussels, 1000, Belgium.
- Faculty of Medicine and Pharmacy, University of Mons (UMONS), Mons, Belgium.
| |
Collapse
|
4
|
Jakubu V, Vrbova I, Bitar I, Cechova M, Malisova L, Zemlickova H. Evolution of mutations in the ftsI gene leading to amino acid substitutions in PBP3 in Haemophilus influenzae strains under the selective pressure of ampicillin and cefuroxime. Int J Med Microbiol 2024; 316:151626. [PMID: 38954914 DOI: 10.1016/j.ijmm.2024.151626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/25/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Aminopenicillins are recommended agents for non-invasive Haemophilus influenzae infections. One of the mechanisms of resistance to β-lactams is the alteration of the transpeptidase region of penicillin binding protein 3 (PBP3) which is caused by mutations in the ftsI gene. It was shown that exposure to beta-lactams has a stimulating effect on increase of prevalence of H. influenzae strains with the non-enzymatic mechanism of resistance. OBJECTIVES The aim of our study was to compare the mutational potential of ampicillin and cefuroxime in H. influenzae strains, determination of minimum inhibitory concentration and the evolution of mutations over time, focusing on amino acid substitutions in PBP3. METHODS 30 days of serial passaging of strains in liquid broth containing increasing concentrations of ampicillin or cefuroxime was followed by whole-genome sequencing. RESULTS On average, cefuroxime increased the minimum inhibitory concentration more than ampicillin. The minimum inhibitory concentration was increased by a maximum of 32 fold. Substitutions in the PBP3 started to appear after 15 days of passaging. In PBP3, cefuroxime caused different substitutions than ampicillin. CONCLUSIONS Our experiment observed differences in mutation selection by ampicillin and cefuroxime. Selection pressure of antibiotics in vitro generated substitutions that do not occur in clinical strains in the Czech Republic.
Collapse
Affiliation(s)
- Vladislav Jakubu
- National Reference Laboratory for Antibiotics, Centre for Epidemiology and Microbiology, National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Prague, Czech Republic; Department of Microbiology, 3rd Faculty of Medicine, Kralovske Vinohrady University Hospital and National Institute of Public Health, Charles University, Ruska 87, 100 00 Prague 10, Prague, Czech Republic
| | - Iveta Vrbova
- National Reference Laboratory for Antibiotics, Centre for Epidemiology and Microbiology, National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Prague, Czech Republic
| | - Ibrahim Bitar
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1237/65, 301 00, Plzen, Czech Republic
| | - Marketa Cechova
- National Reference Laboratory for Antibiotics, Centre for Epidemiology and Microbiology, National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Prague, Czech Republic
| | - Lucia Malisova
- National Reference Laboratory for Antibiotics, Centre for Epidemiology and Microbiology, National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Prague, Czech Republic; Department of Microbiology, 3rd Faculty of Medicine, Kralovske Vinohrady University Hospital and National Institute of Public Health, Charles University, Ruska 87, 100 00 Prague 10, Prague, Czech Republic
| | - Helena Zemlickova
- National Reference Laboratory for Antibiotics, Centre for Epidemiology and Microbiology, National Institute of Public Health, Srobarova 49/48, 100 00 Prague 10, Prague, Czech Republic; Department of Microbiology, 3rd Faculty of Medicine, Kralovske Vinohrady University Hospital and National Institute of Public Health, Charles University, Ruska 87, 100 00 Prague 10, Prague, Czech Republic.
| |
Collapse
|
5
|
Hleba L, Hlebova M, Kovacikova E, Kovacik A. MALDI-TOF MS Indirect Beta-Lactamase Detection in Ampicillin-Resistant Haemophilus influenzae. Microorganisms 2023; 11:microorganisms11041018. [PMID: 37110441 PMCID: PMC10142446 DOI: 10.3390/microorganisms11041018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Rapid identification of beta-lactamase-producing strains of Haemophilus influenzae plays key role in diagnostics in clinical microbiology. Therefore, the aim of this study was the rapid determination of beta-lactamase's presence in H. influenzae isolates via indirect detection of degradation ampicillin products using MALDI-TOF MS. H. influenzae isolates were subjected to antibiotic resistance testing using disk diffusion and MIC methodologies. Beta-lactamase activity was tested using MALDI-TOF MS, and results were compared to spectral analysis of alkaline hydrolysis. Resistant and susceptible strains of H. influenzae were distinguished, and strains with a high MIC level were identified as beta-lactamase-producing. Results indicate that MALDI-TOF mass spectrometry is also suitable for the rapid identification of beta-lactamase-producing H. influenzae. This observation and confirmation can accelerate identification of beta-lactamase strains of H. influenzae in clinical microbiology, which can have an impact on health in general.
Collapse
Affiliation(s)
- Lukas Hleba
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Miroslava Hlebova
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 917 01 Trnava, Slovakia
| | - Eva Kovacikova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Anton Kovacik
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|
6
|
Piccirilli A, Cherubini S, Brisdelli F, Fazii P, Stanziale A, Di Valerio S, Chiavaroli V, Principe L, Perilli M. Molecular Characterization by Whole-Genome Sequencing of Clinical and Environmental Serratia marcescens Strains Isolated during an Outbreak in a Neonatal Intensive Care Unit (NICU). Diagnostics (Basel) 2022; 12:diagnostics12092180. [PMID: 36140580 PMCID: PMC9498040 DOI: 10.3390/diagnostics12092180] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
The whole-genome sequencing (WGS) of eighteen S. marcescens clinical strains isolated from 18 newborns hospitalized in the Neonatal Intensive Care Unit (NICU) at Pescara Public Hospital, Italy, was compared with that of S. marcescens isolated from cradles surfaces in the same ward. The identical antibiotic resistance genes (ARGs) and virulence factors were found in both clinical and environmental S. marcescens strains. The aac(6′)-Ic, tetA(41), blaSRT-3, adeFGH, rsmA, and PBP3 (D350N) genes were identified in all strains. The SRT-3 enzyme, which exhibited 10 amino acid substitutions with respect to SST-1, the constitutive AmpC β-lactamase in S. marcescens, was partially purified and tested against some β-lactams. It showed a good activity against cefazolin. Both clinical and environmental S. marcescens strains exhibited susceptibility to all antibiotics tested, with the exception of amoxicillin/clavulanate.
Collapse
Affiliation(s)
- Alessandra Piccirilli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Correspondence: (A.P.); (M.P.); Tel.: +39-0862433489 (M.P.)
| | - Sabrina Cherubini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Fabrizia Brisdelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Paolo Fazii
- Clinical Microbiology and Virology Unit, Pescara Public Hospital, 65122 Pescara, Italy
| | - Andrea Stanziale
- Clinical Microbiology and Virology Unit, Pescara Public Hospital, 65122 Pescara, Italy
| | - Susanna Di Valerio
- Neonatal Intensive Care Unit, Pescara Public Hospital, 65123 Pescara, Italy
| | - Valentina Chiavaroli
- Neonatal Intensive Care Unit, Pescara Public Hospital, 65123 Pescara, Italy
- Liggins Institute, The University of Auckland, Auckland 1141, New Zealand
| | - Luigi Principe
- Clinical Pathology and Microbiology Unit, “S. Giovanni di Dio” Hospital, 88900 Crotone, Italy
| | - Mariagrazia Perilli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Correspondence: (A.P.); (M.P.); Tel.: +39-0862433489 (M.P.)
| |
Collapse
|
7
|
Kiedrowska M, Foryś WJ, Gołębiewska A, Waśko I, Ronkiewicz P, Kuch A, Wróbel-Pawelczyk I, Wroczyński M, Hryniewicz W, Skoczyńska A. Antimicrobial resistance among Haemophilus influenzae isolates responsible for lower respiratory tract infections in Poland, 2005-2019. Eur J Clin Microbiol Infect Dis 2022; 41:961-969. [PMID: 35585442 DOI: 10.1007/s10096-022-04457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/10/2022] [Indexed: 11/03/2022]
Abstract
Haemophilus influenzae is a human-specific pathogen responsible for respiratory tract infections, meningitis, and sepsis. The study aimed to characterize antibiotic resistance in H. influenzae strains isolated from patients with lower respiratory tract infections over 15 years in Poland. The minimum inhibitory concentrations (MICs) of clinically relevant antibiotics were determined by broth microdilution method. Screening for beta-lactam resistance was performed in all isolates following EUCAST recommendation. Finally, relevant changes in penicillin-binding protein 3 (PBP3) were detected by PCR screening. Of the 1481 isolates collected between 2005 and 2019, 12.6%, 0.2%, 17.1%, and 0.2% were resistant to ampicillin, amoxicillin/clavulanate, cefuroxime, and ceftriaxone, respectively. Among them, 74.4% (1102/1481) of isolates were categorized as BLNAS (β-lactamase negative, ampicillin-susceptible), 13.0% (192/1481) as BLNAS with modified PBP3 (mutations in ftsI gene), 2.6% (39/1481) as BLNAR (β-lactamase negative, ampicillin-resistant), and 0.2% had PBP3 modifications typical for high-BLNAR. Production of β-lactamase characterized 9.7% of isolates (8.6% BLPAR-β-lactamase-positive, ampicillin-resistant, and 1.1% BLPACR-β-lactamase-positive, amoxicillin-clavulanate resistant). Three isolates with PBP3 modifications typical for high-BLNAR proved resistant to ceftriaxone (MIC > 0.125 mg/L). Resistance to ciprofloxacin, chloramphenicol, tetracycline, and trimethoprim-sulfamethoxazole was observed in 0.1%, 0.5%, 1.6%, and 24.7% of isolates, respectively. This is the first report of Polish H. influenzae isolates resistant to third-generation cephalosporins. Polish H. influenzae isolates demonstrate similar susceptibility trends as in many other countries. The substantial proportion of β-lactam-resistant isolates and the emergence of those resistant to third-generation cephalosporins are of great concern and should be under surveillance.
Collapse
Affiliation(s)
- Marlena Kiedrowska
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland.
| | | | - Agnieszka Gołębiewska
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - Izabela Waśko
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland.,Department of Biomedical Research, National Medicines Institute, Warsaw, Poland
| | - Patrycja Ronkiewicz
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - Alicja Kuch
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - Izabela Wróbel-Pawelczyk
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - Michał Wroczyński
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland.,Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Waleria Hryniewicz
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - Anna Skoczyńska
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| |
Collapse
|