1
|
Sharma P, Haldiya A, Dubey S, Kain H, Srivastava VK, Srivastava SK, Kothari SL, Kaushik S. Computational Studies and Functional Validation of Eugenol and Ferulic Acid as Inhibitors of Against Enterococcus faecalis Sortase A. Chembiochem 2025; 26:e202400554. [PMID: 39370400 DOI: 10.1002/cbic.202400554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Enterococcus faecalis (E. faecalis) is commonly occurring pathogen associated with nosocomial infections. Infections are difficult to treat because of their multidrug-resistant (MDR) nature and their tendency to form biofilms. Therefore, it is essential to find alternative medicinal approaches to treatment. In this regard, targeting an important protein for drug development can be an alternative approach. Sortase A (SrtA) is an important enzyme involved in anchoring cell surface-exposed proteins to the cell envelope. SrtA is present in Gram-positive bacteria which catalyses the attachment of several virulence factors and other proteins to the cell membrane. It is involved in bacterial pathogenesis, therefore, it's a promising drug target for the development of anti-microbial drugs targeting cell adhesion, evasion, and biofilm development. To identify SrtA potential inhibitors, we have expressed and purified E. faecalis Sortase A (EfSrtAΔN59). Structural studies using homology modelling along with molecular docking of protein with selected ligand molecules were also done. The results were confirmed by MD simulation experiments. We have also performed functional validation of these compounds on bacterial growth, anti-biofilm assays and inhibition assays of selected ligands were also done against E. faecalis individually and in synergistic combinations. Results indicated that both Eugenol and Ferulic acid bind to EfSrtAΔN59 with significant interactions and show promising results.
Collapse
Affiliation(s)
- Prashant Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Akanksha Haldiya
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Saumya Dubey
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Off Jaipur-Ajmer Expressway, Jaipur, Rajasthan, 303007, India
| | - Himanshi Kain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | | | - Sandeep Kumar Srivastava
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Off Jaipur-Ajmer Expressway, Jaipur, Rajasthan, 303007, India
| | - S L Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| |
Collapse
|
2
|
Liu Y, Zhang G, Ma Y, Ma M, Jiang X. Eugenol inhibits NEAT1 as a ceRNA in pre-cancerous breast lesions. Heliyon 2025; 11:e41353. [PMID: 39811361 PMCID: PMC11732537 DOI: 10.1016/j.heliyon.2024.e41353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Objective Eugenol (EU) from cloves is highly effective against different tumors. The long noncoding ribonucleic acids (lncRNAs), which play a role of competing endogenous RNAs (ceRNAs), suppress microRNAs (miRNAs) involved in post-transcriptional regulatory networks. The present work focused on analyzing how EU affected pre-cancerous breast lesions (PBL). Methods Initially, the gene expression profiles of patients (n = 880) in the National Center for Biotechnology Information (NCBI) database were analyzed. Further, we established a lncRNA-miRNA-mRNA ceRNA network through bioinformatics analysis and investigated mechanistic roles of lncRNAs as ceRNAs and the anti-tumor effect of EU using MCF-10AT cells in vitro as well as PBL model rats in vivo. Besides, Nuclear Paraspeckle Assembly Transcript 1 (NEAT1), miR-383-5p, miR-9-5p, matrix metalloproteinase-9 (MMP-9), and vascular endothelial growth factor-A (VEGF-A) expression was examined through quantitative reverse transcription polymerase chain reaction (RT-qPCR), Western blotting, and immunohistochemical staining analyses. Results There were altogether 1162 mRNAs, 81 miRNAs, and 26 lncRNAs recognized as trend genes in breast cancer (BC) and pre-cancerous BC (pBC), constructing the ceRNA network using 3 lncRNAs, 3 miRNAs, and 38 mRNAs. It was observed that NEAT1, miR-383-5p, miR-9-5p, VEGF-A, and MMP-9 were downregulated in breast tumor cells in accordance with bioinformatics analysis. EU suppressed MCF-10AT cell growth, decreasing the NEAT1, VEGF-A, and MMP-9 levels and increasing miR-383-5p and miR-9-5p expressions in vitro and in vivo. Conclusion In summary, the EU reduced the VEGF-A and MMP-9 expressions via NEAT1-mediated miR-383-5p and miR-9-5p against PBL, indicating that the EU may be a promising external drug to act against PBL.
Collapse
Affiliation(s)
- Yusheng Liu
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong, 529525, China
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510515, China
| | - Guijuan Zhang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510515, China
| | - Yi Ma
- Institute of Biomedicine and Department of Cellular Biology, Jinan University, Guangzhou, Guangdong, 510515, China
| | - Min Ma
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510515, China
| | - Xuefeng Jiang
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, Guangdong, 529525, China
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
3
|
Begh MZA, Khan J, Al Amin M, Sweilam SH, Dharmamoorthy G, Gupta JK, Sangeetha J, Lokeshvar R, Nafady MH, Ahmad I, Alshehri MA, Emran TB. Monoterpenoid synergy: a new frontier in biological applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:103-124. [PMID: 39105799 DOI: 10.1007/s00210-024-03342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024]
Abstract
Monoterpenoids, compounds found in various organisms, have diverse applications in various industries. Their effectiveness is influenced by the oil's chemical composition, which in turn is influenced by plant genotype, environmental conditions, cultivation practices, and plant development stage. They are used in various industries due to their distinctive odor and taste, serving as ingredients, additives, insecticides, and repellents. These compounds have synergistic properties, resulting in superior combined effects over discrete ones, potentially beneficial for various health purposes. Many experimental studies have investigated their interactions with other ingredients and their antibacterial, insecticidal, antifungal, anticancer, anti-inflammatory, and antioxidant properties. This review discusses potential synergistic interactions between monoterpenoids and other compounds, their sources, and biological functions. It also emphasizes the urgent need for more research on their bioavailability and toxicity, underlining the importance and relevance of this comprehensive study in the current scientific landscape.
Collapse
Affiliation(s)
- Md Zamshed Alam Begh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Md Al Amin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - G Dharmamoorthy
- Department of Pharmaceutical Analysis, MB School of Pharmaceutical Sciences, Mohan Babu University (Erstwhile Sree Vidyaniketan College of Pharmacy), Tirupati, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - J Sangeetha
- Department of Pharmacognosy, Malla Reddy Institute of Pharmaceutical Sciences, Maisammaguda, Dhulapally, 500100, India
| | - R Lokeshvar
- Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, India
| | - Mohamed H Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, 12568, Egypt
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| |
Collapse
|
4
|
Dilloo S, Whittaker A, Chang X, D’Amen E, Spisni E, Hrelia S, Angeloni C, Malaguti M, Dinelli G, Truzzi F. Administration of Spermidine and Eugenol Demonstrates Anti-Tumorigenic Efficacy on Metastatic SW620 and Primary Caco-2 Colorectal Cancer Spheroids. Int J Mol Sci 2024; 25:13362. [PMID: 39769127 PMCID: PMC11679521 DOI: 10.3390/ijms252413362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The anti-cancer potential of eugenol (EUG) is well recognized, whereas that of spermidine (SPD) is subject to dispute and requires further research. The anti-tumorigenic potential of wheat germ SPD (150 µM) and clove EUG (100 µM), alone, in combination as SPD+EUG (50 µM + 100 µM) and, as a supplement (SUPPL; 0.6 µM SPD + 50 µM EUG), was investigated on both metastatic SW620 and primary Caco-2 colorectal cancer (CRC) spheroids. Compared to untreated controls, all treatments significantly reduced the vitality and spheroid area, increased the necrotic area, and induced apoptosis on both cell-type spheroids after 96 h, with a reduced migration evident in 2D (two-dimensional) cultures after 48 h. The comparable anti-CRC effects of the SPD+EUG and the SUPPL reflected a wide-range dose efficacy of SPD and EUG. It is of note that SPD+EUG induced a synergistic effect on the increased caspase-3 expression and reduced the migration percentage in SW620. In more physiologically relevant intestinal equivalents (healthy enterocytes [NCM460], fibroblasts [L929], and monocytes [U937]) containing embedded SW620/Caco-2 spheroids, SPD+EUG administration significantly reduced the spheroid CEA marker and proliferation, whilst simultaneously increasing occludin, autophagy LC3-II expression, and monocyte differentiation, compared to the control models. Exogenous SPD, alone and in combination with EUG, displayed an anti-CRC potential on tumor growth and metastasis, and warrants further investigation.
Collapse
Affiliation(s)
- Silvia Dilloo
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy; (S.D.); (A.W.); (X.C.); (E.D.); (G.D.)
| | - Anne Whittaker
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy; (S.D.); (A.W.); (X.C.); (E.D.); (G.D.)
| | - Xinyue Chang
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy; (S.D.); (A.W.); (X.C.); (E.D.); (G.D.)
| | - Eros D’Amen
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy; (S.D.); (A.W.); (X.C.); (E.D.); (G.D.)
| | - Enzo Spisni
- Department of Biological, Geological, and Environmental Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy;
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, 47921 Rimini, Italy; (S.H.); (C.A.); (M.M.)
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, 47921 Rimini, Italy; (S.H.); (C.A.); (M.M.)
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, 47921 Rimini, Italy; (S.H.); (C.A.); (M.M.)
| | - Giovanni Dinelli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy; (S.D.); (A.W.); (X.C.); (E.D.); (G.D.)
| | - Francesca Truzzi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy; (S.D.); (A.W.); (X.C.); (E.D.); (G.D.)
| |
Collapse
|
5
|
Elgushe SM, El-Sonbati AZ, Diab MA, Gomaa EA, AbouElleef EM. Eugenol's electrochemical behavior, complexation interaction with copper chloride, antioxidant activity, and potential drug molecular docking application for Covid-19. Colloids Surf B Biointerfaces 2024; 244:114194. [PMID: 39226846 DOI: 10.1016/j.colsurfb.2024.114194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/19/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
Electrochemical studies were conducted to analyze the behavior of eugenol, CuCl2, and their complex using cyclic voltammetry. The oxidation mechanisms of eugenol and the redox behavior of copper ions were elucidated, showing differences in reversibility and charge transfer coefficients. Various kinetic and solvation parameters were determined. The redox behavior of CuCl2 was found to be more reversible compared to the copper-eugenol complex. The copper-eugenol complex exhibited enhanced antioxidant activity compared to eugenol and standard ascorbic acid. The eugenol was oxidized to form eugenol quinone methide through two postulated irreversible mechanisms. Molecular docking studies suggested higher potential bioactivity of the copper-eugenol complex towards the target protein of COVID-19 than the eugenol ligand.
Collapse
Affiliation(s)
- Saleh M Elgushe
- Chemistry Department, Faculty of Science, Damietta University, Egypt
| | - Adel Z El-Sonbati
- Chemistry Department, Faculty of Science, Damietta University, Egypt
| | - Mostafa A Diab
- Chemistry Department, Faculty of Science, Damietta University, Egypt
| | - Esam A Gomaa
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Elsayed M AbouElleef
- Basic Sciences Department, Delta Higher Institute for Engineering and Technology, Mansoura, Dakhlia 35681, Egypt.
| |
Collapse
|
6
|
Liu Y, Zhou Z, Sun S. Prospects of marine-derived compounds as potential therapeutic agents for glioma. PHARMACEUTICAL BIOLOGY 2024; 62:513-526. [PMID: 38864445 PMCID: PMC11172260 DOI: 10.1080/13880209.2024.2359659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/17/2024] [Indexed: 06/13/2024]
Abstract
CONTEXT Glioma, the most common primary malignant brain tumour, is a grave health concern associated with high morbidity and mortality. Current treatments, while effective to some extent, are often hindered by factors such as the blood-brain barrier and tumour microenvironment. This underscores the pressing need for exploring new pharmacologically active anti-glioma compounds. METHODS This review synthesizes information from major databases, including Chemical Abstracts, Medicinal and Aromatic Plants Abstracts, ScienceDirect, SciFinder, Google Scholar, Scopus, PubMed, Springer Link and relevant books. Publications were selected without date restrictions, using terms such as 'Hymenocrater spp.,' 'phytochemical,' 'pharmacological,' 'extract,' 'essential oil' and 'traditional uses.' General web searches using Google and Yahoo were also performed. Articles related to agriculture, ecology, synthetic work or published in languages other than English or Chinese were excluded. RESULTS The marine environment has been identified as a rich source of diverse natural products with potent antitumour properties. CONCLUSIONS This paper not only provides a comprehensive review of marine-derived compounds but also unveils their potential in treating glioblastoma multiforme (GBM) based on functional classifications. It encapsulates the latest research progress on the regulatory biological functions and mechanisms of these marine substances in GBM, offering invaluable insights for the development of new glioma treatments.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Zhiyang Zhou
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shusen Sun
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, USA
| |
Collapse
|
7
|
Chongtham A, Agrawal N. Neuroprotective Potential of Eugenol in Polyglutamine-Mediated Neurodegenerative Disease Using Transgenic Drosophila Model. Dose Response 2024; 22:15593258241291652. [PMID: 39410958 PMCID: PMC11475233 DOI: 10.1177/15593258241291652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Polyglutamine (PolyQ) diseases including Huntington's disease are devastating neurodegenerative disorders characterized by progressive neuronal loss and motor dysfunction. PolyQ pathology involves multiple cellular events and phytochemicals with multi-target mechanisms hold promise to treat these diseases with least side effects. One such promising phytochemical is Eugenol, which possesses antioxidant and anti-inflammatory properties, potentially targeting disrupted cellular pathways in PolyQ diseases. The present study investigated the effects of Eugenol on neurodegeneration and motor dysfunction in transgenic Drosophila models of PolyQ diseases. In this study, the robust pseudopupil assay was performed to analyze adult photoreceptor neuron degeneration, a marker of widespread degenerative events. Furthermore, the well-established crawling and climbing assays were conducted to evaluate progressive motor dysfunction in the PolyQ larvae and flies. This study found that Eugenol administration at disease onset or after progression reduced PolyQ disease phenotypes, particularly, neurodegeneration and motor dysfunction in a dose-dependent manner and with no side effects. Thus, this study suggests that Eugenol could be a viable candidate for developing treatments for PolyQ diseases, offering a multi-target approach with the potential for minimal or no side effects compared to conventional therapies.
Collapse
Affiliation(s)
- Anjalika Chongtham
- Department of Zoology, University of Delhi, Delhi, India
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Namita Agrawal
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
8
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
9
|
Chintapula U, Oh D, Perez C, Davis S, Ko J. Anti-cancer bioactivity of sweet basil leaf derived extracellular vesicles on pancreatic cancer cells. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e142. [PMID: 38939903 PMCID: PMC11080924 DOI: 10.1002/jex2.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 06/29/2024]
Abstract
Most living organisms secrete tiny lipid bilayer particles encapsulating various biomolecular entities, including nucleic acids and proteins. These secreted extracellular vesicles (EVs) are shown to aid in communication between cells and their environment. EVs are mainly involved in the signalling and manipulation of physiological processes. Plant EVs display similar functional activity as seen in mammalian EVs. Medicinal plants have many bioactive constituents with potential applications in cancer treatment. Particularly, Basil (Ocimum basilicum), has wide therapeutic properties including anti-inflammatory, anti-cancer, and anti-infection, among others. In this study, we focused on using EVs purified from Apoplast Washing Fluid (AWF) of Basil plant leaves as a biological therapeutic agent against cancer. Characterization of Basil EVs revealed a size range of 100-250 nm, which were later assessed for their cell uptake and apoptosis inducing abilities in pancreatic cancer cells. Basil plant EVs (BasEVs) showed a significant cytotoxic effect on pancreatic cancer cell line MIA PaCa-2 at a concentration of 80 and 160 μg/mL in cell viability, as well as clonogenic assays. Similarly, RT-PCR and western blot analysis has shown up regulation in apoptotic gene and protein expression of Bax, respectively, in BasEV treatment groups compared to untreated controls of MIA PaCa-2. Overall, our results suggest that EVs from basil plants have potent anti-cancer effects in pancreatic cancer cells and can serve as a drug delivery system, demanding an investigation into the therapeutic potential of other medicinal plant EVs.
Collapse
Affiliation(s)
- Uday Chintapula
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Daniel Oh
- Department of Bioengineering, School of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Cristina Perez
- Department of Bioengineering, School of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sachin Davis
- Department of Bioengineering, School of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Jina Ko
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Bioengineering, School of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
10
|
Kowalewska A, Majewska-Smolarek K. Eugenol-Based Polymeric Materials-Antibacterial Activity and Applications. Antibiotics (Basel) 2023; 12:1570. [PMID: 37998772 PMCID: PMC10668689 DOI: 10.3390/antibiotics12111570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Eugenol (4-Allyl-2-methoxy phenol) (EUG) is a plant-derived allyl chain-substituted guaiacol, widely known for its antimicrobial and anesthetic properties, as well as the ability to scavenge reactive oxygen species. It is typically used as a mixture with zinc oxide (ZOE) for the preparation of restorative tooth fillings and treatment of root canal infections. However, the high volatility of this insoluble-in-water component of natural essential oils can be an obstacle to its wider application. Moreover, molecular eugenol can be allergenic and even toxic if taken orally in high doses for long periods of time. Therefore, a growing interest in eugenol loading in polymeric materials (including the encapsulation of molecular eugenol and polymerization of EUG-derived monomers) has been noted recently. Such active macromolecular systems enhance the stability of eugenol action and potentially provide prolonged contact with pathogens without the undesired side effects of free EUG. In this review, we present an overview of methods leading to the formation of macromolecular derivatives of eugenol as well as the latest developments and further perspectives in their pharmacological and antimicrobial applications.
Collapse
Affiliation(s)
- Anna Kowalewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland;
| | | |
Collapse
|
11
|
Racea RC, Macasoi IG, Dinu S, Pinzaru I, Marcovici I, Dehelean C, Rusu LC, Chioran D, Rivis M, Buzatu R. Eugenol: In Vitro and In Ovo Assessment to Explore Cytotoxic Effects on Osteosarcoma and Oropharyngeal Cancer Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:3549. [PMID: 37896013 PMCID: PMC10610311 DOI: 10.3390/plants12203549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Cancer is a significant health problem worldwide; consequently, new therapeutic alternatives are being investigated, including those found in the vegetable kingdom. Eugenol (Eug) has attracted attention for its therapeutic properties, especially in stomatology. The purpose of this study was to investigate the cytotoxicity of Eug, in vitro, on osteosarcoma (SAOS-2) and oropharyngeal squamous cancer (Detroit-562) cells, as well as its potential irritant effect in ovo at the level of the chorioallantoic membrane (CAM). The data obtained following a 72 h Eug treatment highlighted the reduction in cell viability up to 41% in SAOS-2 cells and up to 37% in Detroit-562 cells, respectively. The apoptotic-like effect of Eug was indicated by the changes in cell morphology and nuclear aspect; the increase in caspase-3/7, -8 and -9 activity; the elevated expression of Bax and Bad genes; and the increase in luminescence signal (indicating phosphatidylserine externalization) that preceded the increase in fluorescence signal (indicating the compromise of membrane integrity). Regarding the vascular effects, slight signs of coagulation and vascular lysis were observed, with an irritation score of 1.69 for Eug 1 mM. Based on these results, the efficiency of Eug in cancer treatment is yet to be clarified.
Collapse
Affiliation(s)
- Robert-Cosmin Racea
- Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania; (R.-C.R.); (L.-C.R.); (D.C.); (M.R.); (R.B.)
- Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Ioana-Gabriela Macasoi
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.-G.M.); (I.P.); (I.M.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Stefania Dinu
- Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania; (R.-C.R.); (L.-C.R.); (D.C.); (M.R.); (R.B.)
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, 9 No., Revolutiei Bv., 300041 Timisoara, Romania
| | - Iulia Pinzaru
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.-G.M.); (I.P.); (I.M.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Iasmina Marcovici
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.-G.M.); (I.P.); (I.M.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.-G.M.); (I.P.); (I.M.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Laura-Cristina Rusu
- Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania; (R.-C.R.); (L.-C.R.); (D.C.); (M.R.); (R.B.)
- Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Doina Chioran
- Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania; (R.-C.R.); (L.-C.R.); (D.C.); (M.R.); (R.B.)
| | - Mircea Rivis
- Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania; (R.-C.R.); (L.-C.R.); (D.C.); (M.R.); (R.B.)
| | - Roxana Buzatu
- Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy from Timisoara, 9 Revolutiei 1989 Ave., 300070 Timisoara, Romania; (R.-C.R.); (L.-C.R.); (D.C.); (M.R.); (R.B.)
| |
Collapse
|
12
|
Baloghová J, Michalková R, Baranová Z, Mojžišová G, Fedáková Z, Mojžiš J. Spice-Derived Phenolic Compounds: Potential for Skin Cancer Prevention and Therapy. Molecules 2023; 28:6251. [PMID: 37687080 PMCID: PMC10489044 DOI: 10.3390/molecules28176251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Skin cancer is a condition characterized by the abnormal growth of skin cells, primarily caused by exposure to ultraviolet (UV) radiation from the sun or artificial sources like tanning beds. Different types of skin cancer include melanoma, basal cell carcinoma, and squamous cell carcinoma. Despite the advancements in targeted therapies, there is still a need for a safer, highly efficient approach to preventing and treating cutaneous malignancies. Spices have a rich history dating back thousands of years and are renowned for their ability to enhance the flavor, taste, and color of food. Derived from various plant parts like seeds, fruits, bark, roots, or flowers, spices are important culinary ingredients. However, their value extends beyond the culinary realm. Some spices contain bioactive compounds, including phenolic compounds, which are known for their significant biological effects. These compounds have attracted attention in scientific research due to their potential health benefits, including their possible role in disease prevention and treatment, such as cancer. This review focuses on examining the potential of spice-derived phenolic compounds as preventive or therapeutic agents for managing skin cancers. By compiling and analyzing the available knowledge, this review aims to provide insights that can guide future research in identifying new anticancer phytochemicals and uncovering additional mechanisms for combating skin cancer.
Collapse
Affiliation(s)
- Janette Baloghová
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| | - Zuzana Baranová
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Gabriela Mojžišová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| | - Zuzana Fedáková
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| |
Collapse
|
13
|
Mondal A, Nayak AK, Chakraborty P, Banerjee S, Nandy BC. Natural Polymeric Nanobiocomposites for Anti-Cancer Drug Delivery Therapeutics: A Recent Update. Pharmaceutics 2023; 15:2064. [PMID: 37631276 PMCID: PMC10459560 DOI: 10.3390/pharmaceutics15082064] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is one of the most common lethal diseases and the leading cause of mortality worldwide. Effective cancer treatment is a global problem, and subsequent advancements in nanomedicine are useful as substitute management for anti-cancer agents. Nanotechnology, which is gaining popularity, enables fast-expanding delivery methods in science for curing diseases in a site-specific approach, utilizing natural bioactive substances because several studies have established that natural plant-based bioactive compounds can improve the effectiveness of chemotherapy. Bioactive, in combination with nanotechnology, is an exceptionally alluring and recent development in the fight against cancer. Along with their nutritional advantages, natural bioactive chemicals may be used as chemotherapeutic medications to manage cancer. Alginate, starch, xanthan gum, pectin, guar gum, hyaluronic acid, gelatin, albumin, collagen, cellulose, chitosan, and other biopolymers have been employed successfully in the delivery of medicinal products to particular sites. Due to their biodegradability, natural polymeric nanobiocomposites have garnered much interest in developing novel anti-cancer drug delivery methods. There are several techniques to create biopolymer-based nanoparticle systems. However, these systems must be created in an affordable and environmentally sustainable way to be more readily available, selective, and less hazardous to increase treatment effectiveness. Thus, an extensive comprehension of the various facets and recent developments in natural polymeric nanobiocomposites utilized to deliver anti-cancer drugs is imperative. The present article provides an overview of the latest research and developments in natural polymeric nanobiocomposites, particularly emphasizing their applications in the controlled and targeted delivery of anti-cancer drugs.
Collapse
Affiliation(s)
- Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751 003, India;
| | - Prithviraj Chakraborty
- Department of Pharmaceutics, Royal School of Pharmacy, The Assam Royal Global University, Guwahati 781 035, India;
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, India;
| | - Bankim Chandra Nandy
- Department of Pharmaceutics, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India;
| |
Collapse
|
14
|
Hernik D, Szczepańska E, Ghezzi MC, Brenna E, Włoch A, Pruchnik H, Mularczyk M, Marycz K, Olejniczak T, Boratyński F. Chemo-enzymatic synthesis and biological activity evaluation of propenylbenzene derivatives. Front Microbiol 2023; 14:1223123. [PMID: 37434714 PMCID: PMC10330721 DOI: 10.3389/fmicb.2023.1223123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
Propenylbenzenes, including isosafrole, anethole, isoeugenol, and their derivatives, are natural compounds found in essential oils from various plants. Compounds of this group are important and valuable, and are used in the flavour and fragrance industries as well as the pharmaceutical and cosmetic industries. The aim of this study was to develop an efficient process for synthesising oxygenated derivatives of these compounds and evaluate their potential biological activities. In this paper, we propose a two-step chemo-enzymatic method. The first step involves the synthesis of corresponding diols 1b-5b from propenylbenzenes 1a-5avia lipase catalysed epoxidation followed by epoxide hydrolysis. The second step involves the microbial oxidation of a diasteroisomeric mixture of diols 1b-5b to yield the corresponding hydroxy ketones 1c-4c, which in this study was performed on a preparative scale using Dietzia sp. DSM44016, Rhodococcus erythropolis DSM44534, R. erythropolis PCM2150, and Rhodococcus ruber PCM2166. Application of scaled-up processes allowed to obtain hydroxy ketones 1-4c with the following yield range 36-62.5%. The propenylbenzene derivatives thus obtained and the starting compounds were tested for various biological activities, including antimicrobial, antioxidant, haemolytic, and anticancer activities, and their impact on membrane fluidity. Fungistatic activity assay against selected strains of Candida albicans results in MIC50 value varied from 37 to 124 μg/mL for compounds 1a, 3a-c, 4a,b, and 5a,b. The highest antiradical activity was shown by propenylbenzenes 1-5a with a double bond in their structure with EC50 value ranged from 19 to 31 μg/mL. Haemolytic activity assay showed no cytotoxicity of the tested compounds on human RBCs whereas, compounds 2b-4b and 2c-4c affected the fluidity of the RBCs membrane. The tested compounds depending on their concentration showed different antiproliferative activity against HepG2, Caco-2, and MG63. The results indicate the potential utility of these compounds as fungistatics, antioxidants, and proliferation inhibitors of selected cell lines.
Collapse
Affiliation(s)
- Dawid Hernik
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Ewa Szczepańska
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Maria Chiara Ghezzi
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Elisabetta Brenna
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Aleksandra Włoch
- Department of Physics and Biophysics, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Hanna Pruchnik
- Department of Physics and Biophysics, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Malwina Mularczyk
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Teresa Olejniczak
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|