1
|
Kuznetsov NV, Statsenko Y, Ljubisavljevic M. An Update on Neuroaging on Earth and in Spaceflight. Int J Mol Sci 2025; 26:1738. [PMID: 40004201 PMCID: PMC11855577 DOI: 10.3390/ijms26041738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Over 400 articles on the pathophysiology of brain aging, neuroaging, and neurodegeneration were reviewed, with a focus on epigenetic mechanisms and numerous non-coding RNAs. In particular, this review the accent is on microRNAs, the discovery of whose pivotal role in gene regulation was recognized by the 2024 Nobel Prize in Physiology or Medicine. Aging is not a gradual process that can be easily modeled and described. Instead, multiple temporal processes occur during aging, and they can lead to mosaic changes that are not uniform in pace. The rate of change depends on a combination of external and internal factors and can be boosted in accelerated aging. The rate can decrease in decelerated aging due to individual structural and functional reserves created by cognitive, physical training, or pharmacological interventions. Neuroaging can be caused by genetic changes, epigenetic modifications, oxidative stress, inflammation, lifestyle, and environmental factors, which are especially noticeable in space environments where adaptive changes can trigger aging-like processes. Numerous candidate molecular biomarkers specific to neuroaging need to be validated to develop diagnostics and countermeasures.
Collapse
Affiliation(s)
- Nik V. Kuznetsov
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
| | - Yauhen Statsenko
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Milos Ljubisavljevic
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
2
|
Guo X, Zhou Y, Li X, Mu J. Resistance exercise training improves disuse-induced skeletal muscle atrophy in humans: a meta-analysis of randomized controlled trials. BMC Musculoskelet Disord 2025; 26:134. [PMID: 39920735 PMCID: PMC11806896 DOI: 10.1186/s12891-025-08384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND This meta-analysis aimed to determine whether resistance exercise training (RET) can attenuate the loss of muscle volume and function in anti-gravitational muscles, especially quadriceps and calf muscles, during immobilization/disuse conditions. METHODS A comprehensive literature search was conducted to identify randomized controlled trials comparing RET vs. no exercise during immobilization/disuse. Searches were conducted in databases including Web of Science, PubMed, EBOSCO, and Cochrane Library, without imposing a time limit until 20 March, 2023. Studies reporting outcomes related to muscle volume, MVC, peak power, concentric peak force, eccentric peak force, isometric MVC torque of knee extension, isometric MVC torque of knee flexion were included. Data were pooled using random-effects models. RESULTS Eleven randomized controlled trials were finally included. RET elicited substantial benefits for preserving quadriceps muscle volume (n = 5, MD = 252.56, 95% CI = 151.92, 353.21, p < 0.001). RET demonstrated a statistically significant preventive effect on the reduction of MVC in both quadriceps (n = 4, MD = 338.59, 95% CI = 247.49, 429.69, p < 0.001) and calf muscles (n = 3, MD = 478.59, 95% CI = 160.42, 796.77, p < 0.01). Peak power of quadriceps muscles (n = 4, MD = 166.08, 95% CI = 28.44, 303.73, p < 0.05) and calf muscles (n = 2, MD = 176.58, 95% CI = 102.36, 250.79, p < 0.001) were elevated after RET intervention. RET significantly ameliorated the weakening of both concentric and eccentric peak force in quadriceps (concentric: n = 2, MD = 470.95, 95% CI = 355.45, 586.44, p < 0.001; eccentric: n = 1, MD = 351.51, 95% CI = 254.43, 448.58, p < 0.001) and calf muscles (concentric: n = 2, MD = 867.52, 95% CI = 548.18, 1186.86, p < 0.001; eccentric: n = 1, MD = 899.86, 95% CI = 558.17, 1241.55, p < 0.001). Additionally, the diminishing of isometric MVC torques of knee extension (n = 6, MD = 41.85, 95% CI = 20.93, 62.77, p < 0.001) and knee flexion (n = 4, MD = 13.20, 95% CI = 8.12, 18.77, p < 0.001) were enhanced significantly after RET intervention. CONCLUSIONS RET effectively minimized deterioration of muscle volume and muscle function during immobilization/disuse, particularly in anti-gravitational muscles. RET should be recommended to maintain muscle and neuromuscular health for spaceflight, bed rest, immobilization/disuse conditions. Further research is needed to explore the effects of RET in more diverse populations and under various disuse conditions. More high-quality research will be required to demonstrate the aforementioned benefits conclusively.
Collapse
Affiliation(s)
- Xian Guo
- Sport Science School, Beijing Sport University, Beijing, 100084, China.
- Beijing Sports Nutrition Engineering Research Center, Beijing, 100084, China.
| | - Yanbing Zhou
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, 78712, USA
| | - Xinxin Li
- Sport Science School, Beijing Sport University, Beijing, 100084, China
| | - Jinhao Mu
- Sport Science School, Beijing Sport University, Beijing, 100084, China
| |
Collapse
|
3
|
Parafati M, Thwin Z, Malany LK, Coen PM, Malany S. Microgravity Accelerates Skeletal Muscle Degeneration: Functional and Transcriptomic Insights from a Muscle Lab-on-Chip Model Onboard the ISS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.26.634580. [PMID: 39974935 PMCID: PMC11838239 DOI: 10.1101/2025.01.26.634580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Microgravity accelerates skeletal muscle degeneration, mimicking aging, yet its effects on human muscle cell function and signaling remain underexplored. Using a muscle lab-on-chip model onboard the International Space Station, we examined how microgravity and electrically stimulated contractions influence muscle biology and age-related muscle changes. Our 3D bioengineered muscle model, cultured for 21 days (12 days in microgravity), included myobundles from young, active and older, sedentary individuals, with and without electrically stimulated contraction. Real-time data collected within an autonomous Space Tango CubeLab™ showed reduced contraction magnitude in microgravity. Global transcriptomic analysis revealed increased gene expression and particularly mitochondrial-related gene expression in microgravity for the electrically stimulated younger myobundles, while the older myobundles were less responsive. Moreover, a comparative analysis using a skeletal muscle aging gene expression database revealed that certain age-induced genes showed changes in expression in myobundles from the younger cohort when exposed to microgravity, whereas these genes remained unchanged in myobundles from the older cohort. Younger, electrically stimulated myobundles in microgravity exhibited higher expression of 45 aging genes involved in key aging pathways related to inflammation and immune function, mitochondrial dysfunction, and cellular stress; and decreased expression of 41 aging genes associated with inflammation, and cell growth. This study highlights a unique age-related molecular signature in muscle cells exposed to microgravity and underscores electrical stimulation as a potential countermeasure. These insights advance understanding of skeletal muscle aging and microgravity-induced degeneration, informing strategies for mitigating age-related muscle atrophy in space and on Earth.
Collapse
Affiliation(s)
- Maddalena Parafati
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA
| | - Zon Thwin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA
| | | | - Paul M. Coen
- Translational Research Institute, AdventHealth, Orlando, Florida 32804, USA
| | - Siobhan Malany
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
4
|
Mason CE, Green J, Adamopoulos KI, Afshin EE, Baechle JJ, Basner M, Bailey SM, Bielski L, Borg J, Borg J, Broddrick JT, Burke M, Caicedo A, Castañeda V, Chatterjee S, Chin CR, Church G, Costes SV, De Vlaminck I, Desai RI, Dhir R, Diaz JE, Etlin SM, Feinstein Z, Furman D, Garcia-Medina JS, Garrett-Bakelman F, Giacomello S, Gupta A, Hassanin A, Houerbi N, Irby I, Javorsky E, Jirak P, Jones CW, Kamal KY, Kangas BD, Karouia F, Kim J, Kim JH, Kleinman AS, Lam T, Lawler JM, Lee JA, Limoli CL, Lucaci A, MacKay M, McDonald JT, Melnick AM, Meydan C, Mieczkowski J, Muratani M, Najjar D, Othman MA, Overbey EG, Paar V, Park J, Paul AM, Perdyan A, Proszynski J, Reynolds RJ, Ronca AE, Rubins K, Ryon KA, Sanders LM, Glowe PS, Shevde Y, Schmidt MA, Scott RT, Shirah B, Sienkiewicz K, Sierra MA, Siew K, Theriot CA, Tierney BT, Venkateswaran K, Hirschberg JW, Walsh SB, Walter C, Winer DA, Yu M, Zea L, Mateus J, Beheshti A. A second space age spanning omics, platforms and medicine across orbits. Nature 2024; 632:995-1008. [PMID: 38862027 DOI: 10.1038/s41586-024-07586-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
The recent acceleration of commercial, private and multi-national spaceflight has created an unprecedented level of activity in low Earth orbit, concomitant with the largest-ever number of crewed missions entering space and preparations for exploration-class (lasting longer than one year) missions. Such rapid advancement into space from many new companies, countries and space-related entities has enabled a 'second space age'. This era is also poised to leverage, for the first time, modern tools and methods of molecular biology and precision medicine, thus enabling precision aerospace medicine for the crews. The applications of these biomedical technologies and algorithms are diverse, and encompass multi-omic, single-cell and spatial biology tools to investigate human and microbial responses to spaceflight. Additionally, they extend to the development of new imaging techniques, real-time cognitive assessments, physiological monitoring and personalized risk profiles tailored for astronauts. Furthermore, these technologies enable advancements in pharmacogenomics, as well as the identification of novel spaceflight biomarkers and the development of corresponding countermeasures. In this Perspective, we highlight some of the recent biomedical research from the National Aeronautics and Space Administration, Japan Aerospace Exploration Agency, European Space Agency and other space agencies, and detail the entrance of the commercial spaceflight sector (including SpaceX, Blue Origin, Axiom and Sierra Space) into aerospace medicine and space biology, the first aerospace medicine biobank, and various upcoming missions that will utilize these tools to ensure a permanent human presence beyond low Earth orbit, venturing out to other planets and moons.
Collapse
Affiliation(s)
- Christopher E Mason
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA.
- The WorldQuant Initiative for Quantitative Prediction, New York, NY, USA.
| | | | - Konstantinos I Adamopoulos
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Biomedical Engineering Laboratory, School of Electrical and Computer Engineering, National University of Athens, Athens, Greece
| | - Evan E Afshin
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Jordan J Baechle
- Buck Artificial Intelligence Platform, Buck Institute for Research on Aging, Novato, CA, USA
| | - Mathias Basner
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Luca Bielski
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Josef Borg
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Joseph Borg
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Jared T Broddrick
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Marissa Burke
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, USA
| | - Andrés Caicedo
- Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Escuela de Medicina, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Verónica Castañeda
- Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Molecular Biology and Bioinformatics Lab, Program in Molecular Biology and Bioinformatics, Center for Biomedical Research and Innovation (CIIB), Universidad de los Andes, Santiago, Chile
| | | | - Christopher R Chin
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | | | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Iwijn De Vlaminck
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Rajeev I Desai
- Integrative Neurochemistry Laboratory, Behavioral Biology Program, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Raja Dhir
- Seed Health, Venice, CA, USA
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Juan Esteban Diaz
- Data Science Institute, School of Business, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Sofia M Etlin
- Department of Astrobiology, Cornell University, New York, NY, USA
| | - Zachary Feinstein
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
- Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Research in Translational Medicine, Universidad Austral, CONICET, Pilar, Argentina
| | - J Sebastian Garcia-Medina
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Francine Garrett-Bakelman
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Stefania Giacomello
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Amira Hassanin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nadia Houerbi
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Iris Irby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Emilia Javorsky
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Future of Life Institute, Campbell, CA, USA
| | - Peter Jirak
- Paracelsus Medical University, Salzburg, Austria
- Department of Internal Medicine, Hospital Gmünd, Lower Austria, Austria
| | - Christopher W Jones
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Khaled Y Kamal
- Redox Biology and Cell Signaling Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
- Department of Kinesiology, Iowa State University, Ames, USA
| | - Brian D Kangas
- Behavioral Biology Program, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Fathi Karouia
- Blue Marble Institute of Science, Exobiology Branch NASA Ames Research Center, Moffett Field, CA, USA
- Space Research Within Reach, San Francisco, CA, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- BioServe Space Technologies, Smead Aerospace Engineering Science Department, University of Colorado Boulder, Boulder, CO, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Joo Hyun Kim
- Redox Biology and Cell Signaling Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Ashley S Kleinman
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Try Lam
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - John M Lawler
- Redox Biology and Cell Signaling Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Jessica A Lee
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | - Alexander Lucaci
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Matthew MacKay
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - J Tyson McDonald
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington, D.C., USA
| | - Ari M Melnick
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Jakub Mieczkowski
- International Research Agenda 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Deena Najjar
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Mariam A Othman
- Redox Biology and Cell Signaling Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, USA
| | - Eliah G Overbey
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- BioAstra, New York, NY, USA
| | - Vera Paar
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Jiwoon Park
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Amber M Paul
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, USA
| | - Adrian Perdyan
- International Research Agenda 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jacqueline Proszynski
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Robert J Reynolds
- University of Texas Medical Branch, Galveston, TX, USA
- KBR, Inc., Houston, TX, USA
| | - April E Ronca
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Wake Forest Medical School, Dept of Obstetrics and Gynecology, Winston-Salem, NC, USA
| | | | - Krista A Ryon
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Lauren M Sanders
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | | | - Yash Shevde
- Ursa Biotechnology Corporation, Ursa Bio, New York, NY, USA
| | | | - Ryan T Scott
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Bader Shirah
- Department of Neuroscience, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - Karolina Sienkiewicz
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Maria A Sierra
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Keith Siew
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
| | | | - Braden T Tierney
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | | | - Jeremy Wain Hirschberg
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Stephen B Walsh
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
| | - Claire Walter
- Department of Physiology and Biophysics and Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Daniel A Winer
- Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Cellular and Molecular Biology, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Min Yu
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Luis Zea
- Smead Aerospace Engineering Sciences Department, University of Colorado Boulder, Boulder, CO, USA
- Jaguar Space, LLC, Erie, CO, USA
| | - Jaime Mateus
- Space Exploration Technologies Corporation (SpaceX), Hawthorne, CA, USA
| | - Afshin Beheshti
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Mo X, Zhang Y, Wang Z, Zhou X, Zhang Z, Fang Y, Fan Z, Guo Y, Zhang T, Xiong Z. Satellite-Based On-Orbit Printing of 3D Tumor Models. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309618. [PMID: 38145905 DOI: 10.1002/adma.202309618] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Space three dimension (3D) bioprinting provides a precise and bionic tumor model for evaluating the compound effect of the space environment on tumors, thereby providing insight into the progress of the disease and potential treatments. However, space 3D bioprinting faces several challenges, including prelaunch uncertainty, possible liquid leakage, long-term culture in space, automatic equipment control, data acquisition, and transmission. Here, a novel satellite-based 3D bioprinting device with high structural strength, small volume, and low weight (<6 kg) is developed. A microgel-based biphasic thermosensitive bioink and suspension medium that supports the on-orbit printing and in situ culture of complex tumor models is developed. An intelligent control algorithm that enables the automatic control of 3D printing, autofocusing, fluorescence imaging, and data transfer back to the ground is developed. To the authors' knowledge, this is the first time that on-orbit printing of tumor models is achieved in space with stable morphology and moderate viability via a satellite. It is found that 3D tumor models are more sensitive to antitumor drugs in space than on Earth. This study opens up a new avenue for 3D bioprinting in space and offers new possibilities for future research in space life science and medicine.
Collapse
Affiliation(s)
- Xingwu Mo
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Yanmei Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zixuan Wang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Xianhao Zhou
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zhenrui Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zilian Fan
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Yihan Guo
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| |
Collapse
|
6
|
Pacelli C, Ferranti F, Del Bianco M. Special Issue: 'Advances in Space Biology'. Life (Basel) 2024; 14:931. [PMID: 39202673 PMCID: PMC11355448 DOI: 10.3390/life14080931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/12/2024] [Indexed: 09/03/2024] Open
Abstract
As we enter a new era of space exploration, space biology is at the forefront of both robotic and human space programs [...].
Collapse
Affiliation(s)
- Claudia Pacelli
- Italian Space Agency, Via del Politecnico s.n.c., 00133 Rome, Italy
- Centre for Space Life Sciences, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Francesca Ferranti
- Italian Space Agency, Via del Politecnico s.n.c., 00133 Rome, Italy
- Centre for Space Life Sciences, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Marta Del Bianco
- Italian Space Agency, Via del Politecnico s.n.c., 00133 Rome, Italy
- Centre for Space Life Sciences, Viale Regina Elena, 299, 00161 Rome, Italy
| |
Collapse
|
7
|
Camera A, Tabetah M, Castañeda V, Kim J, Galsinh AS, Haro-Vinueza A, Salinas I, Seylani A, Arif S, Das S, Mori MA, Carano A, de Oliveira LC, Muratani M, Barker R, Zaksas V, Goel C, Dimokidis E, Taylor DM, Jeong J, Overbey E, Meydan C, Porterfield DM, Díaz JE, Caicedo A, Schisler JC, Laiakis EC, Mason CE, Kim MS, Karouia F, Szewczyk NJ, Beheshti A. Aging and putative frailty biomarkers are altered by spaceflight. Sci Rep 2024; 14:13098. [PMID: 38862573 PMCID: PMC11166946 DOI: 10.1038/s41598-024-57948-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/23/2024] [Indexed: 06/13/2024] Open
Abstract
Human space exploration poses inherent risks to astronauts' health, leading to molecular changes that can significantly impact their well-being. These alterations encompass genomic instability, mitochondrial dysfunction, increased inflammation, homeostatic dysregulation, and various epigenomic changes. Remarkably, these changes bear similarities to those observed during the aging process on Earth. However, our understanding of the connection between these molecular shifts and disease development in space remains limited. Frailty syndrome, a clinical syndrome associated with biological aging, has not been comprehensively investigated during spaceflight. To bridge this knowledge gap, we leveraged murine data obtained from NASA's GeneLab, along with astronaut data gathered from the JAXA and Inspiration4 missions. Our objective was to assess the presence of biological markers and pathways related to frailty, aging, and sarcopenia within the spaceflight context. Through our analysis, we identified notable changes in gene expression patterns that may be indicative of the development of a frailty-like condition during space missions. These findings suggest that the parallels between spaceflight and the aging process may extend to encompass frailty as well. Consequently, further investigations exploring the utility of a frailty index in monitoring astronaut health appear to be warranted.
Collapse
Affiliation(s)
- Andrea Camera
- Intitute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Marshall Tabetah
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | | | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Aman Singh Galsinh
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Alissen Haro-Vinueza
- Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Ivonne Salinas
- Escuela de Medicina, Colegio de Ciencias de La Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Allen Seylani
- Riverside-School of Medicine, University of California, Riverside, CA, USA
| | - Shehbeel Arif
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Saswati Das
- Atal Bihari Vajpayee Institute of Medical Sciences, Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Anthony Carano
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | | | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Richard Barker
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| | - Victoria Zaksas
- Center for Translational Data Science, University of Chicago, Chicago, IL, 60637, USA
- Clever Research Lab, Springfield, IL, 62704, USA
| | - Chirag Goel
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | - Deanne M Taylor
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19041, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jisu Jeong
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Eliah Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - D Marshall Porterfield
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Juan Esteban Díaz
- Data Science Institute, School of Business, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Andrés Caicedo
- Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Jonathan C Schisler
- McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Evagelia C Laiakis
- Department of Oncology, Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Man S Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Fathi Karouia
- Blue Marble Space Institute of Science, Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
- Space Research Within Reach, San Francisco, CA, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Nathaniel J Szewczyk
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
| |
Collapse
|
8
|
Parafati M, Giza S, Shenoy TS, Mojica-Santiago JA, Hopf M, Malany LK, Platt D, Moore I, Jacobs ZA, Kuehl P, Rexroat J, Barnett G, Schmidt CE, McLamb WT, Clements T, Coen PM, Malany S. Human skeletal muscle tissue chip autonomous payload reveals changes in fiber type and metabolic gene expression due to spaceflight. NPJ Microgravity 2023; 9:77. [PMID: 37714852 PMCID: PMC10504373 DOI: 10.1038/s41526-023-00322-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/16/2023] [Indexed: 09/17/2023] Open
Abstract
Microphysiological systems provide the opportunity to model accelerated changes at the human tissue level in the extreme space environment. Spaceflight-induced muscle atrophy experienced by astronauts shares similar physiological changes to muscle wasting in older adults, known as sarcopenia. These shared attributes provide a rationale for investigating molecular changes in muscle cells exposed to spaceflight that may mimic the underlying pathophysiology of sarcopenia. We report the results from three-dimensional myobundles derived from muscle biopsies from young and older adults, integrated into an autonomous CubeLab™, and flown to the International Space Station (ISS) aboard SpaceX CRS-21 as part of the NIH/NASA funded Tissue Chips in Space program. Global transcriptomic RNA-Seq analyses comparing the myobundles in space and on the ground revealed downregulation of shared transcripts related to myoblast proliferation and muscle differentiation. The analyses also revealed downregulated differentially expressed gene pathways related to muscle metabolism unique to myobundles derived from the older cohort exposed to the space environment compared to ground controls. Gene classes related to inflammatory pathways were downregulated in flight samples cultured from the younger cohort compared to ground controls. Our muscle tissue chip platform provides an approach to studying the cell autonomous effects of spaceflight on muscle cell biology that may not be appreciated on the whole organ or organism level and sets the stage for continued data collection from muscle tissue chip experimentation in microgravity. We also report on the challenges and opportunities for conducting autonomous tissue-on-chip CubeLabTM payloads on the ISS.
Collapse
Affiliation(s)
- Maddalena Parafati
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Shelby Giza
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Tushar S Shenoy
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Jorge A Mojica-Santiago
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32610, USA
| | - Meghan Hopf
- Translational Research Institute, AdventHealth, Orlando, FL, 32804, USA
| | | | - Don Platt
- Micro Aerospace Solutions, INC, Melbourne, FL, 32935, USA
| | | | | | - Paul Kuehl
- Space Tango, LLC, Lexington, KY, 40505, USA
| | | | | | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32610, USA
| | | | | | - Paul M Coen
- Translational Research Institute, AdventHealth, Orlando, FL, 32804, USA
| | - Siobhan Malany
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
9
|
Malhan D, Schoenrock B, Yalçin M, Blottner D, Relόgio A. Circadian regulation in aging: Implications for spaceflight and life on earth. Aging Cell 2023; 22:e13935. [PMID: 37493006 PMCID: PMC10497835 DOI: 10.1111/acel.13935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
Alterations in the circadian system are characteristic of aging on Earth. With the decline in physiological processes due to aging, several health concerns including vision loss, cardiovascular disorders, cognitive impairments, and muscle mass loss arise in elderly populations. Similar health risks are reported as "red flag" risks among astronauts during and after a long-term Space exploration journey. However, little is known about the common molecular alterations underlying terrestrial aging and space-related aging in astronauts, and controversial conclusions have been recently reported. In light of the regulatory role of the circadian clock in the maintenance of human health, we review here the overlapping role of the circadian clock both on aging on Earth and spaceflight with a focus on the four most affected systems: visual, cardiovascular, central nervous, and musculoskeletal systems. In this review, we briefly introduce the regulatory role of the circadian clock in specific cellular processes followed by alterations in those processes due to aging. We next summarize the known molecular alterations associated with spaceflight, highlighting involved clock-regulated genes in space flown Drosophila, nematodes, small mammals, and astronauts. Finally, we discuss common genes that are altered in terms of their expression due to aging on Earth and spaceflight. Altogether, the data elaborated in this review strengthen our hypothesis regarding the timely need to include circadian dysregulation as an emerging hallmark of aging on Earth and beyond.
Collapse
Affiliation(s)
- Deeksha Malhan
- Institute for Systems Medicine and Faculty of Human MedicineMSH Medical School HamburgHamburgGermany
| | - Britt Schoenrock
- Institute of Integrative NeuroanatomyCharité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Müge Yalçin
- Institute for Systems Medicine and Faculty of Human MedicineMSH Medical School HamburgHamburgGermany
- Institute for Theoretical Biology (ITB)Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Dieter Blottner
- Institute of Integrative NeuroanatomyCharité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Neuromuscular System and Neuromuscular SignalingBerlin Center of Space Medicine & Extreme EnvironmentsBerlinGermany
| | - Angela Relόgio
- Institute for Systems Medicine and Faculty of Human MedicineMSH Medical School HamburgHamburgGermany
- Institute for Theoretical Biology (ITB)Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| |
Collapse
|
10
|
Rengo C, Valletta A, Liccardo D, Spagnuolo G, Corbi G, De Luca F, Lauria MR, Perrotta A, Rengo G, Ferrara N, Rengo S, Valletta R, Cannavo A. Healthy aging: when periodontal health matters. JOURNAL OF GERONTOLOGY AND GERIATRICS 2023. [DOI: 10.36150/2499-6564-n580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
11
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|