1
|
Shirzad M, Salahvarzi A, Razzaq S, Javid-Naderi MJ, Rahdar A, Fathi-Karkan S, Ghadami A, Kharaba Z, Romanholo Ferreira LF. Revolutionizing prostate cancer therapy: Artificial intelligence - Based nanocarriers for precision diagnosis and treatment. Crit Rev Oncol Hematol 2025; 208:104653. [PMID: 39923922 DOI: 10.1016/j.critrevonc.2025.104653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025] Open
Abstract
Prostate cancer is one of the major health challenges in the world and needs novel therapeutic approaches to overcome the limitations of conventional treatment. This review delineates the transformative potential of artificial intelligence (AL) in enhancing nanocarrier-based drug delivery systems for prostate cancer therapy. With its ability to optimize nanocarrier design and predict drug delivery kinetics, AI has revolutionized personalized treatment planning in oncology. We discuss how AI can be integrated with nanotechnology to address challenges related to tumor heterogeneity, drug resistance, and systemic toxicity. Emphasis is placed on strong AI-driven advancements in the design of nanocarriers, structural optimization, targeting of ligands, and pharmacokinetics. We also give an overview of how AI can better predict toxicity, reduce costs, and enable personalized medicine. While challenges persist in the way of data accessibility, regulatory hurdles, and interactions with the immune system, future directions based on explainable AI (XAI) models, integration of multimodal data, and green nanocarrier designs promise to move the field forward. Convergence between AI and nanotechnology has been one key step toward safer, more effective, and patient-tailored cancer therapy.
Collapse
Affiliation(s)
- Maryam Shirzad
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsaneh Salahvarzi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sobia Razzaq
- School of Pharmacy, University of Management and Technology, Lahore SPH, Punjab, Pakistan
| | - Mohammad Javad Javid-Naderi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran.
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd 94531-55166, Iran; Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Science, Bojnurd, Iran.
| | - Azam Ghadami
- Department of Chemical and Polymer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zelal Kharaba
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | | |
Collapse
|
2
|
Colledani D, Barbaranelli C, Anselmi P. Fast, smart, and adaptive: using machine learning to optimize mental health assessment and monitor change over time. Sci Rep 2025; 15:6492. [PMID: 39987277 PMCID: PMC11847009 DOI: 10.1038/s41598-025-91086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/18/2025] [Indexed: 02/24/2025] Open
Abstract
In mental health, accurate symptom assessment and precise measurement of patient conditions are crucial for clinical decision-making and effective treatment planning. Traditional assessment methods can be burdensome, especially for vulnerable populations, leading to decreased motivation and potentially unreliable results. Computerized Adaptive Testing (CAT) has emerged as a solution, offering efficient and personalized assessments. In particular, Machine Learning-based CAT (MT-based CATs) enables adaptive, rapid, and accurate evaluations that are more easily implementable than traditional methods. This approach bypasses typical item selection processes and the associated computational costs while avoiding the rigid assumptions of traditional CAT approaches. This study investigates the effectiveness of Machine Learning-Model Tree-based CAT (ML-MT-based CAT) in detecting changes in mental health measures collected at four time points (6-month intervals between February 2018 and December 2019). Three CATs measuring generalized anxiety, depression, and social anxiety were developed and tested on a dataset with responses from 564 participants. A cross-validation approach based on real data simulations was used. Results showed that ML-MT-based CATs produced estimates of trait levels comparable to full-length tests while reducing the number of items administered by 50% or more. In addition, ML-MT-based CATs captured changes in trait levels consistent with full-length tests, outperforming short static measures.
Collapse
Affiliation(s)
- Daiana Colledani
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185, Rome, Italy
| | - Claudio Barbaranelli
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185, Rome, Italy
| | - Pasquale Anselmi
- Department of Philosophy, Sociology, Education and Applied Psychology, University of Padua, Piazza Capitaniato 3, 35139, Padua, Italy.
| |
Collapse
|
3
|
Abdul Rasool Hassan B, Mohammed AH, Hallit S, Malaeb D, Hosseini H. Exploring the role of artificial intelligence in chemotherapy development, cancer diagnosis, and treatment: present achievements and future outlook. Front Oncol 2025; 15:1475893. [PMID: 39990683 PMCID: PMC11843581 DOI: 10.3389/fonc.2025.1475893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/13/2025] [Indexed: 02/25/2025] Open
Abstract
Background Artificial intelligence (AI) has emerged as a transformative tool in oncology, offering promising applications in chemotherapy development, cancer diagnosis, and predicting chemotherapy response. Despite its potential, debates persist regarding the predictive accuracy of AI technologies, particularly machine learning (ML) and deep learning (DL). Objective This review aims to explore the role of AI in forecasting outcomes related to chemotherapy development, cancer diagnosis, and treatment response, synthesizing current advancements and identifying critical gaps in the field. Methods A comprehensive literature search was conducted across PubMed, Embase, Web of Science, and Cochrane databases up to 2023. Keywords included "Artificial Intelligence (AI)," "Machine Learning (ML)," and "Deep Learning (DL)" combined with "chemotherapy development," "cancer diagnosis," and "cancer treatment." Articles published within the last four years and written in English were included. The Prediction Model Risk of Bias Assessment tool was utilized to assess the risk of bias in the selected studies. Conclusion This review underscores the substantial impact of AI, including ML and DL, on cancer diagnosis, chemotherapy innovation, and treatment response for both solid and hematological tumors. Evidence from recent studies highlights AI's potential to reduce cancer-related mortality by optimizing diagnostic accuracy, personalizing treatment plans, and improving therapeutic outcomes. Future research should focus on addressing challenges in clinical implementation, ethical considerations, and scalability to enhance AI's integration into oncology care.
Collapse
Affiliation(s)
| | | | - Souheil Hallit
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, Jounieh, Lebanon
- Department of Psychology, College of Humanities, Effat University, Jeddah, Saudi Arabia
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Diana Malaeb
- College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Hassan Hosseini
- Institut Coeur et Cerveau de l’Est Parisien (ICCE), UPEC-University Paris-Est, Creteil, France
- RAMSAY SANTÉ, Hôpital Paul D’Egine (HPPE), Champigny sur Marne, France
| |
Collapse
|
4
|
Rafanan J, Ghani N, Kazemeini S, Nadeem-Tariq A, Shih R, Vida TA. Modernizing Neuro-Oncology: The Impact of Imaging, Liquid Biopsies, and AI on Diagnosis and Treatment. Int J Mol Sci 2025; 26:917. [PMID: 39940686 PMCID: PMC11817476 DOI: 10.3390/ijms26030917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Advances in neuro-oncology have transformed the diagnosis and management of brain tumors, which are among the most challenging malignancies due to their high mortality rates and complex neurological effects. Despite advancements in surgery and chemoradiotherapy, the prognosis for glioblastoma multiforme (GBM) and brain metastases remains poor, underscoring the need for innovative diagnostic strategies. This review highlights recent advancements in imaging techniques, liquid biopsies, and artificial intelligence (AI) applications addressing current diagnostic challenges. Advanced imaging techniques, including diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS), improve the differentiation of tumor progression from treatment-related changes. Additionally, novel positron emission tomography (PET) radiotracers, such as 18F-fluoropivalate, 18F-fluoroethyltyrosine, and 18F-fluluciclovine, facilitate metabolic profiling of high-grade gliomas. Liquid biopsy, a minimally invasive technique, enables real-time monitoring of biomarkers such as circulating tumor DNA (ctDNA), extracellular vesicles (EVs), circulating tumor cells (CTCs), and tumor-educated platelets (TEPs), enhancing diagnostic precision. AI-driven algorithms, such as convolutional neural networks, integrate diagnostic tools to improve accuracy, reduce interobserver variability, and accelerate clinical decision-making. These innovations advance personalized neuro-oncological care, offering new opportunities to improve outcomes for patients with central nervous system tumors. We advocate for future research integrating these tools into clinical workflows, addressing accessibility challenges, and standardizing methodologies to ensure broad applicability in neuro-oncology.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas A. Vida
- Department of Medical Education, Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA; (J.R.); (N.G.); (S.K.); (A.N.-T.); (R.S.)
| |
Collapse
|
5
|
Ruff C, Bombach P, Roder C, Weinbrenner E, Artzner C, Zerweck L, Paulsen F, Hauser TK, Ernemann U, Gohla G. Multidisciplinary quantitative and qualitative assessment of IDH-mutant gliomas with full diagnostic deep learning image reconstruction. Eur J Radiol Open 2024; 13:100617. [PMID: 39717474 PMCID: PMC11664152 DOI: 10.1016/j.ejro.2024.100617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024] Open
Abstract
Rationale and Objectives: Diagnostic accuracy and therapeutic decision-making for IDH-mutant gliomas in tumor board reviews are based on MRI and multidisciplinary interactions. Materials and Methods This study explores the feasibility of deep learning-based reconstruction (DLR) in MRI for IDH-mutant gliomas. The research utilizes a multidisciplinary approach, engaging neuroradiologists, neurosurgeons, neuro-oncologists, and radiotherapists to evaluate qualitative aspects of DLR and conventional reconstructed (CR) sequences. Furthermore, quantitative image quality and tumor volumes according to Response Assessment in Neuro-Oncology (RANO) 2.0 standards were assessed. Results All DLR sequences consistently outperformed CR sequences (median of 4 for all) in qualitative image quality across all raters (p < 0.001 for all) and revealed higher SNR and CNR values (p < 0.001 for all). Preference for all DLR over CR was overwhelming, with ratings of 84 % from the neuroradiologist, 100 % from the neurosurgeon, 92 % from the neuro-oncologist, and 84 % from the radiation oncologist. The RANO 2.0 compliant measurements showed no significant difference between the CR and DRL sequences (p = 0.142). Conclusion This study demonstrates the clinical feasibility of DLR in MR imaging of IDH-mutant gliomas, with significant time savings of 29.6 % on average and non-inferior image quality to CR. DLR sequences received strong multidisciplinary preference, underscoring their potential for enhancing neuro-oncological decision-making and suitability for clinical implementation.
Collapse
Affiliation(s)
- Christer Ruff
- Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls-University Tuebingen, Tuebingen D-72076, Germany
| | - Paula Bombach
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tuebingen, Tuebingen D-72076, Germany
- Hertie Institute for Clinical Brain Research, Eberhard Karls University Tuebingen Center of Neuro-Oncology, Tuebingen D-72076, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen D-72070, Germany
| | - Constantin Roder
- Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tuebingen D-72070, Germany
- Department of Neurosurgery, University of Tuebingen, Tuebingen D-72076, Germany
| | - Eliane Weinbrenner
- Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls-University Tuebingen, Tuebingen D-72076, Germany
| | - Christoph Artzner
- Department of Diagnostic and Interventional Radiology, Diakonie Klinikum Stuttgart, Stuttgart D-70176, Germany
| | - Leonie Zerweck
- Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls-University Tuebingen, Tuebingen D-72076, Germany
| | - Frank Paulsen
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen D-72076, Germany
| | - Till-Karsten Hauser
- Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls-University Tuebingen, Tuebingen D-72076, Germany
| | - Ulrike Ernemann
- Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls-University Tuebingen, Tuebingen D-72076, Germany
| | - Georg Gohla
- Department of Diagnostic and Interventional Neuroradiology, Eberhard Karls-University Tuebingen, Tuebingen D-72076, Germany
| |
Collapse
|
6
|
Zeng L, Zhang HH. Robust brain MRI image classification with SIBOW-SVM. Comput Med Imaging Graph 2024; 118:102451. [PMID: 39515189 DOI: 10.1016/j.compmedimag.2024.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Primary Central Nervous System tumors in the brain are among the most aggressive diseases affecting humans. Early detection and classification of brain tumor types, whether benign or malignant, glial or non-glial, is critical for cancer prevention and treatment, ultimately improving human life expectancy. Magnetic Resonance Imaging (MRI) is the most effective technique for brain tumor detection, generating comprehensive brain scans. However, human examination can be error-prone and inefficient due to the complexity, size, and location variability of brain tumors. Recently, automated classification techniques using machine learning methods, such as Convolutional Neural Networks (CNNs), have demonstrated significantly higher accuracy than manual screening. However, deep learning-based image classification methods, including CNNs, face challenges in estimating class probabilities without proper model calibration (Guo et al., 2017; Minderer et al., 2021). In this paper, we propose a novel brain tumor image classification method called SIBOW-SVM, which integrates the Bag-of-Features model with SIFT feature extraction and weighted Support Vector Machines. This new approach can effectively extract hidden image features, enabling differentiation of various tumor types, provide accurate label predictions, and estimate probabilities of images belonging to each class, offering high-confidence classification decisions. We have also developed scalable and parallelable algorithms to facilitate the practical implementation of SIBOW-SVM for massive image datasets. To benchmark our method, we apply SIBOW-SVM to a public dataset of brain tumor MRI images containing four classes: glioma, meningioma, pituitary, and normal. Our results demonstrate that the new method outperforms state-of-the-art techniques, including CNNs, in terms of uncertainty quantification, classification accuracy, computational efficiency, and data robustness.
Collapse
Affiliation(s)
- Liyun Zeng
- Statistics and Data Science GIDP, University of Arizona, Tucson, Arizona 85721, USA
| | - Hao Helen Zhang
- Department of Mathematics, University of Arizona, Tucson, Arizona 85721, USA.
| |
Collapse
|
7
|
Wisnu Wardhana DP, Maliawan S, Mahadewa TGB, Rosyidi RM, Wiranata S. Radiomic Features as Artificial Intelligence Prognostic Models in Glioblastoma: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2024; 14:2354. [PMID: 39518322 PMCID: PMC11545697 DOI: 10.3390/diagnostics14212354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Glioblastoma, the predominant primary tumor among all central nervous systems, accounts for around 80% of cases. Prognosis in neuro-oncology involves assessing the disease's progression in different individuals, considering the time between the initial pathological diagnosis and the time until the disease worsens. A noninvasive therapeutic approach called radiomic features (RFs), which involves the application of artificial intelligence in MRI, has been developed to address this issue. This study aims to systematically gather evidence and evaluate the prognosis significance of radiomics in glioblastoma using RFs. METHODS We conducted an extensive search across the PubMed, ScienceDirect, EMBASE, Web of Science, and Cochrane databases to identify relevant original studies examining the use of RFs to evaluate the prognosis of patients with glioblastoma. This thorough search was completed on 25 July 2024. Our search terms included glioblastoma, MRI, magnetic resonance imaging, radiomics, and survival or prognosis. We included only English-language studies involving human subjects, excluding case reports, case series, and review studies. The studies were classified into two quality categories: those rated 4-6 were considered moderate-, whereas those rated 7-9 were high-quality using the Newcastle-Ottawa Scale (NOS). Hazard ratios (HRs) and their 95% confidence intervals (CIs) for OS and PFS were combined using random effects models. RESULTS In total, 253 studies were found in the initial search across the five databases. After screening the articles, 40 were excluded due to not meeting the eligibility criteria, and we included only 14 studies. All twelve OS and eight PFS trials were considered, involving 1.639 and 747 patients, respectively. The random effects model was used to calculate the pooled HRs for OS and PFS. The HR for OS was 3.59 (95% confidence interval [CI], 1.80-7.17), while the HR for PFS was 4.20 (95% CI, 1.02-17.32). CONCLUSIONS An RF-AI-based approach offers prognostic significance for OS and PFS in patients with glioblastoma.
Collapse
Affiliation(s)
- Dewa Putu Wisnu Wardhana
- Neurosurgery Division, Department of Surgery, Faculty of Medicine, Universitas Udayana, Udayana University Hospital, Denpasar 80361, Indonesia
| | - Sri Maliawan
- Neurosurgery Division, Department of Surgery, Faculty of Medicine, Universitas Udayana, Prof. Dr. IGNG Ngoerah General Hospital, Denpasar 80113, Indonesia
| | - Tjokorda Gde Bagus Mahadewa
- Neurosurgery Division, Department of Surgery, Faculty of Medicine, Universitas Udayana, Prof. Dr. IGNG Ngoerah General Hospital, Denpasar 80113, Indonesia
| | - Rohadi Muhammad Rosyidi
- Department of Neurosurgery, Medical Faculty of Mataram University, West Nusa Tenggara General Hospital, Mataram 84371, Indonesia
| | - Sinta Wiranata
- Faculty of Medicine, Universitas Udayana, Denpasar 80232, Indonesia
| |
Collapse
|
8
|
Shams A. Leveraging State-of-the-Art AI Algorithms in Personalized Oncology: From Transcriptomics to Treatment. Diagnostics (Basel) 2024; 14:2174. [PMID: 39410578 PMCID: PMC11476216 DOI: 10.3390/diagnostics14192174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Continuous breakthroughs in computational algorithms have positioned AI-based models as some of the most sophisticated technologies in the healthcare system. AI shows dynamic contributions in advancing various medical fields involving data interpretation and monitoring, imaging screening and diagnosis, and treatment response and survival prediction. Despite advances in clinical oncology, more effort must be employed to tailor therapeutic plans based on each patient's unique transcriptomic profile within the precision/personalized oncology frame. Furthermore, the standard analysis method is not compatible with the comprehensive deciphering of significant data streams, thus precluding the prediction of accurate treatment options. METHODOLOGY We proposed a novel approach that includes obtaining different tumour tissues and preparing RNA samples for comprehensive transcriptomic interpretation using specifically trained, programmed, and optimized AI-based models for extracting large data volumes, refining, and analyzing them. Next, the transcriptomic results will be scanned against an expansive drug library to predict the response of each target to the tested drugs. The obtained target-drug combination/s will be then validated using in vitro and in vivo experimental models. Finally, the best treatment combination option/s will be introduced to the patient. We also provided a comprehensive review discussing AI models' recent innovations and implementations to aid in molecular diagnosis and treatment planning. RESULTS The expected transcriptomic analysis generated by the AI-based algorithms will provide an inclusive genomic profile for each patient, containing statistical and bioinformatics analyses, identification of the dysregulated pathways, detection of the targeted genes, and recognition of molecular biomarkers. Subjecting these results to the prediction and pairing AI-based processes will result in statistical graphs presenting each target's likely response rate to various treatment options. Different in vitro and in vivo investigations will further validate the selection of the target drug/s pairs. CONCLUSIONS Leveraging AI models will provide more rigorous manipulation of large-scale datasets on specific cancer care paths. Such a strategy would shape treatment according to each patient's demand, thus fortifying the avenue of personalized/precision medicine. Undoubtedly, this will assist in improving the oncology domain and alleviate the burden of clinicians in the coming decade.
Collapse
Affiliation(s)
- Anwar Shams
- Department of Pharmacology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; or ; Tel.: +00966-548638099
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif 26432, Saudi Arabia
- High Altitude Research Center, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
9
|
Wanjari M, Mittal G, Prasad R. Using AI to navigate complex neurosurgical procedures in rare gliomas. Neurosurg Rev 2024; 47:649. [PMID: 39302487 DOI: 10.1007/s10143-024-02910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Affiliation(s)
- Mayur Wanjari
- Department of Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, India.
| | - Gaurav Mittal
- Department of Medicine, Mahatma Gandhi Institute of Medical Sciences, Wardha, India
| | - Roshan Prasad
- Department of Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, India
| |
Collapse
|
10
|
Gürsoy E, Kaya Y. Brain-GCN-Net: Graph-Convolutional Neural Network for brain tumor identification. Comput Biol Med 2024; 180:108971. [PMID: 39106672 DOI: 10.1016/j.compbiomed.2024.108971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND The intersection of artificial intelligence and medical image analysis has ushered in a new era of innovation and changed the landscape of brain tumor detection and diagnosis. Correct detection and classification of brain tumors based on medical images is crucial for early diagnosis and effective treatment. Convolutional Neural Network (CNN) models are widely used for disease detection. However, they are sometimes unable to sufficiently recognize the complex features of medical images. METHODS This paper proposes a fused Deep Learning (DL) model that combines Graph Neural Networks (GNN), which recognize relational dependencies of image regions, and CNN, which captures spatial features, is proposed to improve brain tumor detection. By integrating these two architectures, our model achieves a more comprehensive representation of brain tumor images and improves classification performance. The proposed model is evaluated on a public dataset of 10847 MRI images. The results show that the proposed model outperforms the existing pre-trained models and traditional CNN architectures. RESULTS The fused DL model achieves 93.68% accuracy in brain tumor classification. The results indicate that the proposed model outperforms the existing pre-trained models and traditional CNN architectures. CONCLUSION The numerical results suggest that the model should be further investigated for potential use in clinical trials to improve clinical decision-making.
Collapse
Affiliation(s)
- Ercan Gürsoy
- Department of Computer Engineering, Adana Alparslan Turkes Science and Technology University, Adana, 01250, Turkey.
| | - Yasin Kaya
- Department of Artificial Intelligence Engineering, Adana Alparslan Turkes Science and Technology University, Adana, 01250, Turkey.
| |
Collapse
|
11
|
Abidin ZU, Naqvi RA, Haider A, Kim HS, Jeong D, Lee SW. Recent deep learning-based brain tumor segmentation models using multi-modality magnetic resonance imaging: a prospective survey. Front Bioeng Biotechnol 2024; 12:1392807. [PMID: 39104626 PMCID: PMC11298476 DOI: 10.3389/fbioe.2024.1392807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/14/2024] [Indexed: 08/07/2024] Open
Abstract
Radiologists encounter significant challenges when segmenting and determining brain tumors in patients because this information assists in treatment planning. The utilization of artificial intelligence (AI), especially deep learning (DL), has emerged as a useful tool in healthcare, aiding radiologists in their diagnostic processes. This empowers radiologists to understand the biology of tumors better and provide personalized care to patients with brain tumors. The segmentation of brain tumors using multi-modal magnetic resonance imaging (MRI) images has received considerable attention. In this survey, we first discuss multi-modal and available magnetic resonance imaging modalities and their properties. Subsequently, we discuss the most recent DL-based models for brain tumor segmentation using multi-modal MRI. We divide this section into three parts based on the architecture: the first is for models that use the backbone of convolutional neural networks (CNN), the second is for vision transformer-based models, and the third is for hybrid models that use both convolutional neural networks and transformer in the architecture. In addition, in-depth statistical analysis is performed of the recent publication, frequently used datasets, and evaluation metrics for segmentation tasks. Finally, open research challenges are identified and suggested promising future directions for brain tumor segmentation to improve diagnostic accuracy and treatment outcomes for patients with brain tumors. This aligns with public health goals to use health technologies for better healthcare delivery and population health management.
Collapse
Affiliation(s)
- Zain Ul Abidin
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul, Republic of Korea
| | - Rizwan Ali Naqvi
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul, Republic of Korea
| | - Amir Haider
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul, Republic of Korea
| | - Hyung Seok Kim
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul, Republic of Korea
| | - Daesik Jeong
- College of Convergence Engineering, Sangmyung University, Seoul, Republic of Korea
| | - Seung Won Lee
- School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
12
|
Khalighi S, Reddy K, Midya A, Pandav KB, Madabhushi A, Abedalthagafi M. Artificial intelligence in neuro-oncology: advances and challenges in brain tumor diagnosis, prognosis, and precision treatment. NPJ Precis Oncol 2024; 8:80. [PMID: 38553633 PMCID: PMC10980741 DOI: 10.1038/s41698-024-00575-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
This review delves into the most recent advancements in applying artificial intelligence (AI) within neuro-oncology, specifically emphasizing work on gliomas, a class of brain tumors that represent a significant global health issue. AI has brought transformative innovations to brain tumor management, utilizing imaging, histopathological, and genomic tools for efficient detection, categorization, outcome prediction, and treatment planning. Assessing its influence across all facets of malignant brain tumor management- diagnosis, prognosis, and therapy- AI models outperform human evaluations in terms of accuracy and specificity. Their ability to discern molecular aspects from imaging may reduce reliance on invasive diagnostics and may accelerate the time to molecular diagnoses. The review covers AI techniques, from classical machine learning to deep learning, highlighting current applications and challenges. Promising directions for future research include multimodal data integration, generative AI, large medical language models, precise tumor delineation and characterization, and addressing racial and gender disparities. Adaptive personalized treatment strategies are also emphasized for optimizing clinical outcomes. Ethical, legal, and social implications are discussed, advocating for transparency and fairness in AI integration for neuro-oncology and providing a holistic understanding of its transformative impact on patient care.
Collapse
Affiliation(s)
- Sirvan Khalighi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Kartik Reddy
- Department of Radiology, Emory University, Atlanta, GA, USA
| | - Abhishek Midya
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Krunal Balvantbhai Pandav
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Anant Madabhushi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Atlanta Veterans Administration Medical Center, Atlanta, GA, USA.
| | - Malak Abedalthagafi
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA.
- The Cell and Molecular Biology Program, Winship Cancer Institute, Atlanta, GA, USA.
| |
Collapse
|
13
|
Onciul R, Brehar FM, Toader C, Covache-Busuioc RA, Glavan LA, Bratu BG, Costin HP, Dumitrascu DI, Serban M, Ciurea AV. Deciphering Glioblastoma: Fundamental and Novel Insights into the Biology and Therapeutic Strategies of Gliomas. Curr Issues Mol Biol 2024; 46:2402-2443. [PMID: 38534769 DOI: 10.3390/cimb46030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Gliomas constitute a diverse and complex array of tumors within the central nervous system (CNS), characterized by a wide range of prognostic outcomes and responses to therapeutic interventions. This literature review endeavors to conduct a thorough investigation of gliomas, with a particular emphasis on glioblastoma (GBM), beginning with their classification and epidemiological characteristics, evaluating their relative importance within the CNS tumor spectrum. We examine the immunological context of gliomas, unveiling the intricate immune environment and its ramifications for disease progression and therapeutic strategies. Moreover, we accentuate critical developments in understanding tumor behavior, focusing on recent research breakthroughs in treatment responses and the elucidation of cellular signaling pathways. Analyzing the most novel transcriptomic studies, we investigate the variations in gene expression patterns in glioma cells, assessing the prognostic and therapeutic implications of these genetic alterations. Furthermore, the role of epigenetic modifications in the pathogenesis of gliomas is underscored, suggesting that such changes are fundamental to tumor evolution and possible therapeutic advancements. In the end, this comparative oncological analysis situates GBM within the wider context of neoplasms, delineating both distinct and shared characteristics with other types of tumors.
Collapse
Affiliation(s)
- Razvan Onciul
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Emergency University Hospital, 050098 Bucharest, Romania
| | - Felix-Mircea Brehar
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Neurosurgery, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Corneliu Toader
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | | | - Luca-Andrei Glavan
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Horia Petre Costin
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Matei Serban
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
14
|
Habeeb M, Vengateswaran HT, You HW, Saddhono K, Aher KB, Bhavar GB. Nanomedicine facilitated cell signaling blockade: difficulties and strategies to overcome glioblastoma. J Mater Chem B 2024; 12:1677-1705. [PMID: 38288615 DOI: 10.1039/d3tb02485g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive and lethal type of brain tumor with complex and diverse molecular signaling pathways involved that are in its development and progression. Despite numerous attempts to develop effective treatments, the survival rate remains low. Therefore, understanding the molecular mechanisms of these pathways can aid in the development of targeted therapies for the treatment of glioblastoma. Nanomedicines have shown potential in targeting and blocking signaling pathways involved in glioblastoma. Nanomedicines can be engineered to specifically target tumor sites, bypass the blood-brain barrier (BBB), and release drugs over an extended period. However, current nanomedicine strategies also face limitations, including poor stability, toxicity, and low therapeutic efficacy. Therefore, novel and advanced nanomedicine-based strategies must be developed for enhanced drug delivery. In this review, we highlight risk factors and chemotherapeutics for the treatment of glioblastoma. Further, we discuss different nanoformulations fabricated using synthetic and natural materials for treatment and diagnosis to selectively target signaling pathways involved in GBM. Furthermore, we discuss current clinical strategies and the role of artificial intelligence in the field of nanomedicine for targeting GBM.
Collapse
Affiliation(s)
- Mohammad Habeeb
- Department of Pharmaceutics, Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai-600048, India.
| | - Hariharan Thirumalai Vengateswaran
- Department of Pharmaceutics, Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai-600048, India.
| | - Huay Woon You
- Pusat PERMATA@Pintar Negara, Universiti Kebangsaan 43600, Bangi, Selangor, Malaysia
| | - Kundharu Saddhono
- Faculty of Teacher Training and Education, Universitas Sebelas Maret, 57126, Indonesia
| | - Kiran Balasaheb Aher
- Department of Pharmaceutical Quality Assurance, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| | - Girija Balasaheb Bhavar
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| |
Collapse
|
15
|
Bekbolatova M, Mayer J, Ong CW, Toma M. Transformative Potential of AI in Healthcare: Definitions, Applications, and Navigating the Ethical Landscape and Public Perspectives. Healthcare (Basel) 2024; 12:125. [PMID: 38255014 PMCID: PMC10815906 DOI: 10.3390/healthcare12020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Artificial intelligence (AI) has emerged as a crucial tool in healthcare with the primary aim of improving patient outcomes and optimizing healthcare delivery. By harnessing machine learning algorithms, natural language processing, and computer vision, AI enables the analysis of complex medical data. The integration of AI into healthcare systems aims to support clinicians, personalize patient care, and enhance population health, all while addressing the challenges posed by rising costs and limited resources. As a subdivision of computer science, AI focuses on the development of advanced algorithms capable of performing complex tasks that were once reliant on human intelligence. The ultimate goal is to achieve human-level performance with improved efficiency and accuracy in problem-solving and task execution, thereby reducing the need for human intervention. Various industries, including engineering, media/entertainment, finance, and education, have already reaped significant benefits by incorporating AI systems into their operations. Notably, the healthcare sector has witnessed rapid growth in the utilization of AI technology. Nevertheless, there remains untapped potential for AI to truly revolutionize the industry. It is important to note that despite concerns about job displacement, AI in healthcare should not be viewed as a threat to human workers. Instead, AI systems are designed to augment and support healthcare professionals, freeing up their time to focus on more complex and critical tasks. By automating routine and repetitive tasks, AI can alleviate the burden on healthcare professionals, allowing them to dedicate more attention to patient care and meaningful interactions. However, legal and ethical challenges must be addressed when embracing AI technology in medicine, alongside comprehensive public education to ensure widespread acceptance.
Collapse
Affiliation(s)
- Molly Bekbolatova
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Jonathan Mayer
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Chi Wei Ong
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Milan Toma
- Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
16
|
Martínez-Fonseca R, Vargas-De-León C, Reyes-Carreto R, Godínez-Jaimes F. Bayesian analysis of the effect of exosomes in a mouse xenograft model of chronic myeloid leukemia. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:19504-19526. [PMID: 38052612 DOI: 10.3934/mbe.2023864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The aim of this work is to estimate the effect of Imatinib, exosomes, and Imatinib-exosomes mixture in chronic myeloid leukemia (CML). For this purpose, mathematical models based on Gompertzian and logistic growth differential equations were proposed. The models contained parameters representing the effects of the three components on CML proliferation. Parameters estimation was performed under the Bayesian statistical approach. Experimental data reported in the literature were used, corresponding to four trials of a human leukemia xenograft in BALB/c female rats over a period of forty days. The models were fitted to the following growth dynamics: normal tumor growth, growth with exosomes, growth with Imatinib, and growth with exosomes-Imatinib mixture. For the proposed logistic growth model, it was determined that when using Imatinib treatment the growth rate is 0.93 (95% CrI: 84.33-99.64) slower and reduces the tumor volume to approximately 10% (95% CrI : 8.67-10.81). In the presence of exosome treatment, the growth rate is 0.83 (95% CrI: 1.52-16.59) faster and the tumor volume is expanded by 40% (95% CrI: 25.36-57.28). Finally, in the presence of Imatinib-exosomes mixture treatment, the growth rate is 0.82 (95% CrI: 76.87-88.51) slower and the tumor volume is reduced by 95% (95% CrI: 86.76-99.85). It is concluded that the presence of exosomes partially inactivates the effect of the Imatinib drug on tumor growth in a mouse xenograft model.
Collapse
Affiliation(s)
- Rafael Martínez-Fonseca
- Facultad de Matemáticas, Universidad Autónoma de Guerrero, Ciudad Universitaria s/n Chilpancingo, Guerrero, Mexico
| | - Cruz Vargas-De-León
- División de Investigación, Hospital Juárez de Mexico, Ciudad de México 07760, Mexico
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Ramón Reyes-Carreto
- Facultad de Matemáticas, Universidad Autónoma de Guerrero, Ciudad Universitaria s/n Chilpancingo, Guerrero, Mexico
| | - Flaviano Godínez-Jaimes
- Facultad de Matemáticas, Universidad Autónoma de Guerrero, Ciudad Universitaria s/n Chilpancingo, Guerrero, Mexico
| |
Collapse
|