1
|
Demir T, Moloney C, Mahalingam D. Threading the Needle: Navigating Novel Immunotherapeutics in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2025; 17:715. [PMID: 40075563 PMCID: PMC11898821 DOI: 10.3390/cancers17050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/08/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with a poor prognosis. Currently, chemotherapy is the only option for most patients with advanced-stage PDAC. Further, conventional immunotherapies and targeted therapies improve survival outcomes only in rare PDAC patient subgroups. To date, combinatory immunotherapeutic strategies to overcome the immune-hostile PDAC tumor microenvironment (TME) have resulted in limited efficacy in clinical studies. However, efforts are ongoing to develop new treatment strategies for patients with PDAC with the evolving knowledge of the TME, molecular characterization, and immune resistance mechanisms. Further, the growing arsenal of various immunotherapeutic agents, including novel classes of immune checkpoint inhibitors and oncolytic, chimeric antigen receptor T cell, and vaccine therapies, reinforces these efforts. This review will focus on the place of immunotherapy and future possible strategies in PDAC.
Collapse
Affiliation(s)
| | | | - Devalingam Mahalingam
- Developmental Therapeutics, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (T.D.); (C.M.)
| |
Collapse
|
2
|
Louie AD, Huntington KE, Lee Y, Mompoint J, Wu LJ, Lee S, Miner TJ, El-Deiry WS. TRAIL receptor agonist TLY012 in combination with PD-1 inhibition promotes tumor regression in an immune-competent mouse model of pancreatic ductal adenocarcinoma. Am J Cancer Res 2025; 15:286-298. [PMID: 39949937 PMCID: PMC11815385 DOI: 10.62347/roat5658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/12/2025] [Indexed: 02/16/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an immunosuppressed, apoptosis-resistant phenotype. TLY012 is pegylated recombinant Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL), an orphan drug for chronic pancreatitis and systemic sclerosis. Innate immune TRAIL signaling suppresses cancer. We hypothesized that the combination of immune checkpoint-blocking anti-PD-1 antibody and TLY012 would have synergistic anti-tumor efficacy in immune-competent PDAC-bearing mice. PDAC tumor-bearing C57Bl/6 mice treated with 10 mg/kg anti-mouse PD-1 antibody twice weekly and 10 mg/kg TLY012 three times weekly had reduced tumor growth and tumor volume at 70 days compared to either drug alone (all P < 0.005). B-cell activating factor (BAFF), which promotes PDAC tumors, decreased to 44% of control mice with dual treatment at 7 days and remained decreased at 3 months. Long-term dual treatment showed the highest plasma levels of proinflammatory cytokines interferon-gamma (average 5.6 times control level, P=0.046), CCL5 (average 14.1 times control level, P=0.048), and interleukin-3 (IL-3, average 71.1 times control level, P=0.0053). Flow cytometry showed trends toward decreased circulating regulatory T cells, increased NK cells, and a higher proportion of CD8+ T cells within tumors in the dual treatment group. In summary, the combination of anti-PD-1 and TLY012 prevented the growth of PDAC in an immunocompetent mouse model while increasing tumor-infiltrating CD8+ T cells, decreasing circulating T-regulatory cells and altering plasma cytokine expression of CCL5, interferon-gamma, and IL-3 to promote proinflammatory, antitumor effects. Combining TLY012 and anti-mouse PD-1 modifies immune cell and cytokine levels to induce a more proinflammatory immune environment that contributes to decreased PDAC tumor growth.
Collapse
Affiliation(s)
- Anna D Louie
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI 02912, USA
- Department of Surgery, Warren Alpert Medical School of Brown University and Lifespan Health SystemProvidence, RI 02912, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI 02912, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI 02912, USA
| | - Kelsey E Huntington
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI 02912, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI 02912, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI 02912, USA
| | - Young Lee
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI 02912, USA
| | - Jared Mompoint
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI 02912, USA
| | - Laura Jinxuan Wu
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI 02912, USA
| | - Seulki Lee
- D&D Pharmatech4th Floor, I&C Building 24, Pangyo-ro 255 beon-gil, Bundang-gu Seongnam-si, Gyeonggi-do 13486, South Korea
| | - Thomas J Miner
- Department of Surgery, Warren Alpert Medical School of Brown University and Lifespan Health SystemProvidence, RI 02912, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI 02912, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI 02912, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI 02912, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI 02912, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI 02912, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan and Brown UniversityProvidence, RI 02912, USA
| |
Collapse
|
3
|
Geisler A, Dieringer B, Elsner L, Klopfleisch R, Kurreck J, Fechner H. Oncolytic Coxsackievirus B3 Strain PD-H Is Effective Against a Broad Spectrum of Pancreatic Cancer Cell Lines and Induces a Growth Delay in Pancreatic KPC Cell Tumors In Vivo. Int J Mol Sci 2024; 25:11224. [PMID: 39457005 PMCID: PMC11508574 DOI: 10.3390/ijms252011224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Pancreatic cancer is one of the deadliest cancers globally, with limited success from existing therapies, including chemotherapies and immunotherapies like checkpoint inhibitors for patients with advanced pancreatic ductal adenocarcinoma (PDAC). A promising new approach is the use of oncolytic viruses (OV), a form of immunotherapy that has been demonstrated clinical effectiveness in various cancers. Here we investigated the potential of the oncolytic coxsackievirus B3 strain (CVB3) PD-H as a new treatment for pancreatic cancer. In vitro, PD-H exhibited robust replication, as measured by plaque assays, and potent lytic activity, as assessed by XTT assays, in most pancreatic tumor cell lines, outperforming two other coxsackievirus strains tested, H3N-375/1TS and CVA21. Thus, H3N-375/1TS showed efficient replication and lytic efficiency in distinctly fewer tumor cell lines, while most tumor cells were resistant to CVA21. The oncolytic efficiency of the three OV largely correlated with mRNA expression levels of viral receptors and their ability to induce apoptosis, as measured by cleaved caspase 3/7 activity in the tumor cells. In a syngeneic mouse model with subcutaneous pancreatic tumors, intratumoral administration of PD-H significantly inhibited tumor growth but did not completely stop tumor progression. Importantly, no virus-related side effects were observed. Although pancreatic tumors respond to PD-H treatment, its therapeutic efficacy is limited. Combining PD-H with other treatments, such as those aiming at reducing the desmoplastic stroma which impedes viral infection and spread within the tumor, may enhance its efficacy.
Collapse
Affiliation(s)
- Anja Geisler
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany (H.F.)
| | - Babette Dieringer
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany (H.F.)
| | - Leslie Elsner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany (H.F.)
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany (H.F.)
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany (H.F.)
| |
Collapse
|
4
|
Ouissam AJ, Hind C, Sami Aziz B, Said A. Inhibition of the PI3K/AKT/mTOR pathway in pancreatic cancer: is it a worthwhile endeavor? Ther Adv Med Oncol 2024; 16:17588359241284911. [PMID: 39399412 PMCID: PMC11468005 DOI: 10.1177/17588359241284911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Pancreatic cancer (PC) is an aggressive disease that is challenging to treat and is associated with a high mortality rate. The most common type of PC is pancreatic ductal adenocarcinoma (PDAC), and the existing treatment options are insufficient for PDAC patients. Due to the complexity and heterogeneity of PDAC, personalized medicine is necessary for effectively treating this illness. To achieve this, it is essential to understand the mechanism of PDAC carcinogenesis. Targeted therapies are a promising strategy to improve patient outcomes. Aberrant activation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway plays a crucial role in PC pathogenesis, from initiation to progression. This review provides a comprehensive overview of the current state of knowledge regarding the PI3K pathway in PDAC, summarizes clinical data on PI3K pathway inhibition in PDAC, and explores potential effective combinations that are a promising direction requiring further investigation in PDAC.
Collapse
Affiliation(s)
- Al Jarroudi Ouissam
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Chibani Hind
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Brahmi Sami Aziz
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Afqir Said
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| |
Collapse
|
5
|
Lee H, Bae AN, Yang H, Lee JH, Park JH. Modulation of PRC1 Promotes Anticancer Effects in Pancreatic Cancer. Cancers (Basel) 2024; 16:3310. [PMID: 39409930 PMCID: PMC11475828 DOI: 10.3390/cancers16193310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Pancreatic cancer, while relatively uncommon, is extrapolated to become the second leading cause of cancer-related deaths worldwide. Despite identifying well-known markers like the KRAS gene, the exact regulation of pancreatic cancer progression remains elusive. Methods: Clinical value of PRC1 was analyzed using bioinformatics database. The role of PRC1 was further evaluated through cell-based assays, including viability, wound healing, and sensitivity with the drug. Results: We demonstrate that PRC1 was significantly overexpressed in pancreatic cancer compared to pancreases without cancer, as revealed through human databases and cell lines analysis. Furthermore, high PRC1 expression had a negative correlation with CD4+ T cells, which are crucial for the immune response against cancers. Additionally, PRC1 showed a positive correlation with established pancreatic cancer markers. Silencing PRC1 expression using siRNA significantly inhibited cancer cell proliferation and viability and increased chemotherapeutic drug sensitivity. Conclusions: These findings suggest that targeting PRC1 in pancreatic cancer may enhance immune cell infiltration and inhibit cancer cell proliferation, offering a promising avenue for developing anticancer therapies.
Collapse
Affiliation(s)
| | | | | | | | - Jong Ho Park
- Department of Anatomy, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
6
|
Laface C, Ricci AD, Vallarelli S, Ostuni C, Rizzo A, Ambrogio F, Centonze M, Schirizzi A, De Leonardis G, D’Alessandro R, Lotesoriere C, Giannelli G. Autotaxin-Lysophosphatidate Axis: Promoter of Cancer Development and Possible Therapeutic Implications. Int J Mol Sci 2024; 25:7737. [PMID: 39062979 PMCID: PMC11277072 DOI: 10.3390/ijms25147737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Autotaxin (ATX) is a member of the ectonucleotide pyrophosphate/phosphodiesterase (ENPP) family; it is encoded by the ENPP2 gene. ATX is a secreted glycoprotein and catalyzes the hydrolysis of lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA is responsible for the transduction of various signal pathways through the interaction with at least six G protein-coupled receptors, LPA Receptors 1 to 6 (LPAR1-6). The ATX-LPA axis is involved in various physiological and pathological processes, such as angiogenesis, embryonic development, inflammation, fibrosis, and obesity. However, significant research also reported its connection to carcinogenesis, immune escape, metastasis, tumor microenvironment, cancer stem cells, and therapeutic resistance. Moreover, several studies suggested ATX and LPA as relevant biomarkers and/or therapeutic targets. In this review of the literature, we aimed to deepen knowledge about the role of the ATX-LPA axis as a promoter of cancer development, progression and invasion, and therapeutic resistance. Finally, we explored its potential application as a prognostic/predictive biomarker and therapeutic target for tumor treatment.
Collapse
Affiliation(s)
- Carmelo Laface
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Angela Dalia Ricci
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Simona Vallarelli
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Carmela Ostuni
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Alessandro Rizzo
- Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Francesca Ambrogio
- Section of Dermatology and Venereology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Centonze
- Personalized Medicine Laboratory, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| | - Annalisa Schirizzi
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Giampiero De Leonardis
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Rosalba D’Alessandro
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Claudio Lotesoriere
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| |
Collapse
|
7
|
Du Q, Yu Z, Zhang Z, Yang J, Jonckheere N, Shi S, Wang W, Xu J, Liu J, Yu X. Identification of pancreatic adenocarcinoma immune subtype associated with tumor neoantigen from aberrant alternative splicing. J Gastrointest Oncol 2024; 15:1179-1197. [PMID: 38989416 PMCID: PMC11231849 DOI: 10.21037/jgo-24-340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) is referred to as an immunologically "cold" tumor that responds poorly to immunotherapy. A fundamental theory that explains the low immunogenicity of PAAD is the dramatically low tumor mutation burden (TMB) of PAAD tumors, which fails to induce sufficient immune response. Alternative splicing of pre-mRNA, which could alter the proteomic diversity of many cancers, has been reported to be involved in neoantigen production. Therefore, we aim to identify novel PAAD antigens and immune subtypes through systematic bioinformatics research. Methods Data for splicing analysis were downloaded from The Cancer Genome Atlas (TCGA) SpliceSeq database. Among the available algorithms, we chose CIBERSORT to evaluate the immune cell distribution among PAADs. The TCGA-PAAD expression matrix was used to construct a co-expression network. Single-cell analysis was performed based on the Seurat workflow. Results Integrated analysis of aberrantly upregulated genes, alternatively spliced genes, genes associated with nonsense-mediated RNA decay (NMD) factors, antigen presentation and overall survival (OS) in TCGA-PAAD revealed that PLEC is a promising neoantigen for PAAD-targeted therapy. We identified a C2 TCGA-PAAD subtype that had better prognosis and more CD8+ T-cell infiltration. We propose a novel immune subtyping system for PAAD to indicate patient prognosis and opportunities for immunotherapy, such as immune checkpoint (ICP) inhibitors. Conclusions In conclusion, the present study used a transcriptome-guided approach to screen neoantigen candidates based on alternative splicing, NMD factors, and antigen-presenting signatures for PAAD. A prognosis model with guidance of immunotherapy will aid in patient selection for appropriate treatment.
Collapse
Affiliation(s)
- Qiong Du
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhan Yu
- State Key Laboratory of Radiation Medicine and Protection/Proton & Heavy Ion Medical Research Center, Soochow University, Suzhou, China
- Radiation Oncology Department, Shanghai Concord Medical Cancer Center, Shanghai, China
| | - Zifeng Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jianhui Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Nicolas Jonckheere
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Wang M, Liu L, Li X, Jiang W, Xiao J, Hao Q, Wang J, Reddy AV, Talbot A, Ikuta S, Tian D, Ren L. Solute carrier family 16 member 1 as a potential prognostic factor for pancreatic ductal adenocarcinoma and its influence on tumor immunity. J Gastrointest Oncol 2024; 15:730-746. [PMID: 38756638 PMCID: PMC11094506 DOI: 10.21037/jgo-24-147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Background Solute carrier family 16 member 1 (SLC16A1) serves as a biomarker in numerous types of cancer. Tumor immune infiltration has drawn increasing attention in cancer progression and treatment. The objective of our study was to explore the association between SLC16A1 and the tumor immune microenvironment in pancreatic ductal adenocarcinoma (PDAC). Methods Data were obtained from The Cancer Genome Atlas. The xCell web tool was used to calculate the proportion of immune cells according to SLC16A1 expression. To further explore the mechanism of SLC16A1, immunity-related genes were screened from differentially expressed genes through weighted gene coexpression network analysis, examined via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, and filtrated using univariate Cox regression and least absolute shrinkage and selection operator regression model combined correlation analysis (P<0.05). Next, CIBERSORT was used to analyze the correlation between immune cells and five important genes. SLC16A1 expression and its clinical role in pancreatic cancer was clarified via immunohistochemical staining experiments. Finally, the effects of SLC16A1 on the results of cancer immunity were evaluated by in vitro experiments. Results SLC16A1 was overexpressed in PDAC tissues and could be an independent prognostic factor. SLC16A1 was significantly negatively correlated with overall survival and suppressed the tumor immunity of PDAC. In clinic, SLC16A1 expression was significantly positively correlated with tumor progression and poor prognosis. We also found that SLC16A1 could suppress the antitumor ability of CD8+ T cells. Conclusions SLC16A1 is a biomarker for the prognosis of PDAC and can influence the immune environment of PDAC. These findings provide new insights into the treatment of PDAC.
Collapse
Affiliation(s)
- Meng Wang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin, China
| | - Lin Liu
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xinze Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wenna Jiang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jiawei Xiao
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Qianhui Hao
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jiayi Wang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | | | - Alice Talbot
- Department of Oncology, St. John of God Hospital, Subiaco, WA, Australia
| | - Shinichi Ikuta
- Department of Surgery, Meiwa Hospital, Nishinomiya, Hyogo, Japan
| | - Derun Tian
- Department of Clinical Laboratory Diagnostics, Tianjin Medical University, Tianjin, China
- Department of Human Anatomy and Histology, Tianjin Medical University, Tianjin, China
| | - Li Ren
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
9
|
Gu X, Minko T. Targeted Nanoparticle-Based Diagnostic and Treatment Options for Pancreatic Cancer. Cancers (Basel) 2024; 16:1589. [PMID: 38672671 PMCID: PMC11048786 DOI: 10.3390/cancers16081589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest cancers, presents significant challenges in diagnosis and treatment due to its aggressive, metastatic nature and lack of early detection methods. A key obstacle in PDAC treatment is the highly complex tumor environment characterized by dense stroma surrounding the tumor, which hinders effective drug delivery. Nanotechnology can offer innovative solutions to these challenges, particularly in creating novel drug delivery systems for existing anticancer drugs for PDAC, such as gemcitabine and paclitaxel. By using customization methods such as incorporating conjugated targeting ligands, tumor-penetrating peptides, and therapeutic nucleic acids, these nanoparticle-based systems enhance drug solubility, extend circulation time, improve tumor targeting, and control drug release, thereby minimizing side effects and toxicity in healthy tissues. Moreover, nanoparticles have also shown potential in precise diagnostic methods for PDAC. This literature review will delve into targeted mechanisms, pathways, and approaches in treating pancreatic cancer. Additional emphasis is placed on the study of nanoparticle-based delivery systems, with a brief mention of those in clinical trials. Overall, the overview illustrates the significant advances in nanomedicine, underscoring its role in transcending the constraints of conventional PDAC therapies and diagnostics.
Collapse
Affiliation(s)
- Xin Gu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
10
|
Czaplicka A, Lachota M, Pączek L, Zagożdżon R, Kaleta B. Chimeric Antigen Receptor T Cell Therapy for Pancreatic Cancer: A Review of Current Evidence. Cells 2024; 13:101. [PMID: 38201305 PMCID: PMC10777940 DOI: 10.3390/cells13010101] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of malignant and non-malignant disorders. CARs are synthetic transmembrane receptors expressed on genetically modified immune effector cells, including T cells, natural killer (NK) cells, or macrophages, which are able to recognize specific surface antigens on target cells and eliminate them. CAR-modified immune cells mediate cytotoxic antitumor effects via numerous mechanisms, including the perforin and granzyme pathway, Fas and Fas Ligand (FasL) pathway, and cytokine secretion. High hopes are associated with the prospective use of the CAR-T strategy against solid cancers, especially the ones resistant to standard oncological therapies, such as pancreatic cancer (PC). Herein, we summarize the current pre-clinical and clinical studies evaluating potential tumor-associated antigens (TAA), CAR-T cell toxicities, and their efficacy in PC.
Collapse
Affiliation(s)
- Agata Czaplicka
- Department of Internal Medicine and Gastroenterology, Mazovian “Bródnowski” Hospital, 03-242 Warsaw, Poland;
| | - Mieszko Lachota
- Laboratory of Cellular and Genetic Therapies, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.L.); (R.Z.)
| | - Leszek Pączek
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland;
| | - Radosław Zagożdżon
- Laboratory of Cellular and Genetic Therapies, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.L.); (R.Z.)
| | - Beata Kaleta
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland;
| |
Collapse
|
11
|
Cheng D, Hu J, Wu X, Wang B, Chen R, Zhao W, Fang C, Ji M. PD-1 blockade combined with gemcitabine plus nab-paclitaxel is superior to chemotherapy alone in the management of unresectable stage III/IV pancreatic cancer: a retrospective real-world study. Front Oncol 2023; 13:1281545. [PMID: 37965469 PMCID: PMC10641475 DOI: 10.3389/fonc.2023.1281545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Background Pancreatic cancer (PC) is widely recognized as one of the most malignant forms of cancer worldwide. Monotherapy with immune checkpoint inhibitors (ICI) has shown limited efficacy in treating this disease. There was controversy surrounding whether combining ICI with chemotherapy provided superior outcomes compared to chemotherapy alone. Methods In this study, patients diagnosed with unresectable stage III/IV pancreatic cancer (PC) were classified as receiving programmed cell death protein 1 (PD-1) blockade plus gemcitabine and nab-paclitaxel (AG regimen) (PD-1/chemo, n=27, 50.9%) or chemotherapy alone (chemo, n=26, 49.1%) arm. The primary study endpoints included progression-free survival (PFS) and overall survival (OS), with an additional assessment of treatment-related adverse events graded as three or higher. Chi-square (χ2) statistics were employed to analyze the clinical differences between the two groups, while Kaplan-Meier curves were used to assess the difference in PFS and OS. Statistical significance was defined as P-values less than 0.05 (P < 0.05). Results The median follow-up duration was 22 months (range 1-28 months). In the PD-1/chemo arm, the median PFS was eight months, whereas it was 3.5 months in the chemo arm (HR=0.459, 95% CI: 0.252-0.846, P=0.002). Furthermore, the median OS was 15 months in the PD-1/chemo arm and eight months in the chemo arm (HR=0.345, 95% CI: 0.183-0.653, P<0.001). Within the PD-1/chemo arm, 15 (55.6%) patients experienced grade 3 treatment-related adverse events, compared to 13 (50.0%) patients in the chemo arm. Conclusions PD-1 blockade combined with nab-paclitaxel plus gemcitabine demonstrated superior efficacy to chemotherapy alone for unresectable stage III/IV PC patients. Future studies were warranted to identify immunosensitive patient subgroups within the PC population, ultimately leading to the development of more efficacious therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cheng Fang
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Mei Ji
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
12
|
Laface C, Memeo R. Clinical Updates for Gastrointestinal Malignancies. J Pers Med 2023; 13:1424. [PMID: 37763191 PMCID: PMC10533174 DOI: 10.3390/jpm13091424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Gastrointestinal (GI) cancers include hepatobiliary tumors, pancreatic cancer (PC), neuroendocrine tumors of the gastrointestinal tract, small bowel carcinomas, gastric cancer (GC), anal canal cancer, primary gastric and intestinal lymphomas, gastrointestinal stromal tumors (GISTs) and the most frequent colorectal cancer (CRC) [...].
Collapse
Affiliation(s)
- Carmelo Laface
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Riccardo Memeo
- Unit of Hepato-Pancreatic-Biliary Surgery, “F. Miulli” General Regional Hospital, 70021 Acquaviva Delle Fonti, Italy
| |
Collapse
|