1
|
Nakashima M, Suga N, Fukumoto A, Yoshikawa S, Matsuda S. Comprehension of gut microbiota and microRNAs may contribute to the development of innovative treatment tactics against metabolic disorders and psychiatric disorders. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2024; 16:111-125. [PMID: 39850247 PMCID: PMC11751546 DOI: 10.62347/wazh2090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/25/2024] [Indexed: 01/25/2025]
Abstract
Metabolic syndrome is a group of pathological disorders increasing the risk of serious diseases including cardiovascular disease, stroke, type 2 diabetes. Global widespread of the metabolic syndrome has put a heavy social burden. Interestingly, a crucial link between the metabolic syndrome and a psychiatric disorder may frequently coexist, in which certain shared mechanisms might play a role for the pathogenesis. In fact, some microRNAs (miRNAs) have been detected in the overlap pathology, suggesting a common molecular mechanism for the development of both disorders. Subsequent studies have revealed that these miRNAs and several metabolites of gut microbiota such as short chain fatty acids (SCFAs) might be involved in the development of both disorders, in which the association between gut and brain might play key roles with engram memory for the modulation of immune cells. Additionally, the correlation between brain and immunity might also influence the development of several diseases/disorders including metabolic syndrome. Brain could possess several inflammatory responses as an information of pathological images termed engrams. In other words, preservation of the engram memory might be achieved by a meta-plasticity mechanism that shapes the alteration of neuron linkages for the development of immune-related diseases. Therefore, it might be rational that metabolic syndrome and psychiatric disorders may belong to a group of immune-related diseases. Disrupting in gut microbiota may threaten the body homeostasis, leading to initiate a cascade of health problems. This concept may contribute to the development of superior therapeutic application with the usage of some functional components in food against metabolic and psychiatric disorders. This paper reviews advances in understanding the regulatory mechanisms of miRNAs with the impact to gut, liver and brain, deliberating the probable therapeutic techniques against these disorders.
Collapse
Affiliation(s)
- Moeka Nakashima
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Naoko Suga
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Akari Fukumoto
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Sayuri Yoshikawa
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
2
|
Sutton ER, Beauvais A, Yaworski R, De Repentigny Y, Reilly A, Alves de Almeida MM, Deguise MO, Poulin KL, Parks RJ, Schneider BL, Kothary R. Liver SMN restoration rescues the Smn 2B/- mouse model of spinal muscular atrophy. EBioMedicine 2024; 110:105444. [PMID: 39515026 PMCID: PMC11583733 DOI: 10.1016/j.ebiom.2024.105444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The liver is a key metabolic organ, acting as a hub to metabolically connect various tissues. Spinal muscular atrophy (SMA) is a neuromuscular disorder whereby patients have an increased susceptibility to developing dyslipidaemia and liver steatosis. It remains unknown whether fatty liver is due to an intrinsic or extrinsic impact of survival motor neuron (SMN) protein depletion. METHODS Using an adeno-associated viral vector with a liver specific promoter (albumin), we restored SMN protein levels in the liver alone in Smn2B/- mice, a model of SMA. Experiments assessed central and peripheral impacts using immunoblot, immunohistochemistry, and electron microscopy techniques. FINDINGS We demonstrate that AAV9-albumin-SMN successfully expresses SMN protein in the liver with no detectable expression in the spinal cord or muscle in Smn2B/- mice. Liver intrinsic rescue of SMN protein was sufficient to increase survival of Smn2B/- mice. Fatty liver was ameliorated while key markers of liver function were also restored to normal levels. Certain peripheral pathologies were rescued including muscle size and pancreatic cell imbalance. Only a partial CNS recovery was seen using a liver therapeutic strategy alone. INTERPRETATION The fatty liver phenotype is a direct impact of liver intrinsic SMN protein loss. Correction of SMN protein levels in liver is enough to restore some aspects of disease in SMA. We conclude that the liver is an important contributor to whole-body pathology in Smn2B/- mice. FUNDING This work was funded by Muscular Dystrophy Association (USA) [grant number 963652 to R.K.]; the Canadian Institutes of Health Research [grant number PJT-186300 to R.K.].
Collapse
Affiliation(s)
- Emma R Sutton
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Ariane Beauvais
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Rebecca Yaworski
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Aoife Reilly
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | | | - Marc-Olivier Deguise
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Kathy L Poulin
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Robin J Parks
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, University of Ottawa, Ottawa, Canada
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Bertarelli Platform for Gene Therapy, Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Rashmi Kothary
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada; Department of Medicine, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
3
|
Song WJ, Cheon DH, Song H, Jung D, Chan Park H, Yeong Hwang J, Choi HJ, NamKoong C. Activation of ChAT+ neuron in dorsal motor vagus (DMV) increases blood glucose through the regulation of hepatic gene expression in mice. Brain Res 2024; 1829:148770. [PMID: 38266888 DOI: 10.1016/j.brainres.2024.148770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/26/2024]
Abstract
The brain and peripheral organs communicate through hormones and neural connections. Proper communication is required to maintain normal whole-body energy homeostasis. In addition to endocrine system, from the perspective of neural connections for metabolic homeostasis, the role of the sympathetic nervous system has been extensively studied, but understanding of the parasympathetic nervous system is limited. The liver plays a central role in glucose and lipid metabolism. This study aimed to clarify the innervation of parasympathetic nervous system in the liver and its functional roles in metabolic homeostasis. The liver-specific parasympathetic nervous system innervation (PNS) was shown by tissue clearing, immunofluorescence and transgenic mice at the three-dimensional histological level. The parasympathetic efferent signals were manipulated using a chemogenetic technique and the activation of ChAT+ parasympathetic neurons in dorsal motor vagus (DMV) results in the increased blood glucose through the elevated hepatic gluconeogenic and lipogenic gene expression in the liver. Thus, our study showed the evidence of ChAT+ parasympathetic neurons in the liver and its role for hepatic parasympathetic nervous signaling in glucose homeostasis through the regulation of hepatic gene expression.
Collapse
Affiliation(s)
- Woo-Jin Song
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy, Division of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Deok-Hyeon Cheon
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy, Division of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - HeeIn Song
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy, Division of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Daeun Jung
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy, Division of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hae Chan Park
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy, Division of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ju Yeong Hwang
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy, Division of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyung-Jin Choi
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy, Division of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; BK21Plus Biomedical Science Project Team, Seoul National University College of Medicine, Seoul, Republic of Korea; Wide River Institute of Immunology, Seoul National University College of Medicine, Hongchoen, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Cherl NamKoong
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy, Division of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Core Research Laboratory, Medical Science Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea.
| |
Collapse
|
4
|
Nakashima M, Suga N, Ikeda Y, Yoshikawa S, Matsuda S. Circular RNAs, Noncoding RNAs, and N6-methyladenosine Involved in the Development of MAFLD. Noncoding RNA 2024; 10:11. [PMID: 38392966 PMCID: PMC10893449 DOI: 10.3390/ncrna10010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Noncoding RNAs (ncRNAs), including circular RNAs (circRNAs) and N6-methyladenosine (m6A), have been shown to play a critical role in the development of various diseases including obesity and metabolic disorder-associated fatty liver disease (MAFLD). Obesity is a chronic disease caused by excessive fat accumulation in the body, which has recently become more prevalent and is the foremost risk factor for MAFLD. Causes of obesity may involve the interaction of genetic, behavioral, and social factors. m6A RNA methylation might add a novel inspiration for understanding the development of obesity and MAFLD with post-transcriptional regulation of gene expression. In particular, circRNAs, microRNAs (miRNAs), and m6A might be implicated in the progression of MAFLD. Interestingly, m6A modification can modulate the translation, degradation, and other functions of ncRNAs. miRNAs/circRNAs can also modulate m6A modifications by affecting writers, erasers, and readers. In turn, ncRNAs could modulate the expression of m6A regulators in different ways. However, there is limited evidence on how these ncRNAs and m6A interact to affect the promotion of liver diseases. It seems that m6A can occur in DNA, RNA, and proteins that may be associated with several biological properties. This study provides a mechanistic understanding of the association of m6A modification and ncRNAs with liver diseases, especially for MAFLD. Comprehension of the association between m6A modification and ncRNAs may contribute to the development of treatment tactics for MAFLD.
Collapse
Affiliation(s)
| | | | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
5
|
Murai T, Matsuda S. Pleiotropic Signaling by Reactive Oxygen Species Concerted with Dietary Phytochemicals and Microbial-Derived Metabolites as Potent Therapeutic Regulators of the Tumor Microenvironment. Antioxidants (Basel) 2023; 12:1056. [PMID: 37237922 PMCID: PMC10215163 DOI: 10.3390/antiox12051056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The excessive generation of reactive oxygen species (ROS) plays a pivotal role in the pathogenesis of diseases. ROS are central to cellular redox regulation and act as second messengers to activate redox-sensitive signals. Recent studies have revealed that certain sources of ROS can be beneficial or harmful to human health. Considering the essential and pleiotropic roles of ROS in basic physiological functions, future therapeutics should be designed to modulate the redox state. Dietary phytochemicals, microbiota, and metabolites derived from them can be expected to be developed as drugs to prevent or treat disorders in the tumor microenvironment.
Collapse
Affiliation(s)
- Toshiyuki Murai
- Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 565-0871, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
6
|
Tactics with Prebiotics for the Treatment of Metabolic Dysfunction-Associated Fatty Liver Disease via the Improvement of Mitophagy. Int J Mol Sci 2023; 24:ijms24065465. [PMID: 36982539 PMCID: PMC10049478 DOI: 10.3390/ijms24065465] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/14/2023] Open
Abstract
Mitophagy/autophagy plays a protective role in various forms of liver damage, by renovating cellular metabolism linking to sustain liver homeostasis. A characterized pathway for mitophagy is the phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)/Parkin-dependent signaling pathway. In particular, PINK1-mediated mitophagy could play an indispensable role in improving the metabolic dysfunction-associated fatty liver disease (MAFLD) which could precede to steatohepatitis (NASH), fibrosis, and hepatocellular carcinoma. In addition, the PI3K/AKT/mTOR pathway might regulate the various characteristics of cellular homeostasis including energy metabolism, cell proliferation, and/or cell protection. Therefore, targeting mitophagy with the alteration of PI3K/AKT/mTOR or PINK1/Parkin-dependent signaling to eliminate impaired mitochondria might be an attractive strategy for the treatment of MAFLD. In particular, the efficacy of prebiotics for the treatment of MAFLD has been suggested to be useful via the modulation of the PI3K/AKT/mTOR/AMPK pathway. Additionally, several edible phytochemicals could activate mitophagy for the improvement of mitochondrial damages, which could also be a promising option to treat MAFLD with providing liver protection. Here, the potential therapeutics with several phytochemicals has been discussed for the treatment of MAFLD. Tactics with a viewpoint of prospective probiotics might contribute to the development of therapeutic interventions.
Collapse
|