1
|
Jiang Y, Tan J, Liao S, Liu X, Yu W, Zhang Z, Liu Y. MicroRNA-6069 ASO inhibits the growth of hepatocellular carcinoma by PLEKHO1. Biochim Biophys Acta Gen Subj 2025; 1869:130774. [PMID: 39956470 DOI: 10.1016/j.bbagen.2025.130774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. And due to the low early diagnostic rate of liver cancer, many patients miss the optimal time for surgical resection, so it is necessitate to identificate the novel therapeutic targets. This study investigates the role of microRNA-6069 (miR-6069) in HCC pathogenesis. We analyzed miR-6069 expression in the TCGA-LIHC cohort, revealing significant upregulation in tumor tissues compared to adjacent normal tissues, and verified it in human tissues. MiR-6069 antisense oligonucleotide(ASO) effectively inhibits HCC cell proliferation in vitro and suppresses subcutaneous HCC tumor growth in nude mice without affecting their weight. Through bioinformatics analysis and immunohistochemistry, we identified PLEKHO1 as a target of miR-6069, and its expression is negatively correlated with miR-6069 expression. Furthermore, using immunohistochemical staining, quantitative PCR (QT-PCR), and Western blot (WB) analysis, we observed that the expression of PLEKHO1 significantly increased in the tumors of nude mice following miR-6069 ASO intervention, and affecting the expression of downstream molecules in the AKT/PI3K signaling pathway. These findings suggest that miR-6069 may influence HCC proliferation by modulating the AKT/PI3K signaling pathway.These findings highlight miR-6069 as a promising therapeutic target in HCC management.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Pothology, The Third Xiangya Hospital of Central South University, Central South Unixersity, Changsha 410013, China
| | - Juan Tan
- Department of Pothology, The Third Xiangya Hospital of Central South University, Central South Unixersity, Changsha 410013, China
| | - Shan Liao
- Department of Pothology, The Third Xiangya Hospital of Central South University, Central South Unixersity, Changsha 410013, China
| | - Xinrong Liu
- Department of Pothology, The Third Xiangya Hospital of Central South University, Central South Unixersity, Changsha 410013, China
| | - Wentao Yu
- Department of Pothology, The Third Xiangya Hospital of Central South University, Central South Unixersity, Changsha 410013, China
| | - Zhen Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Central South Unixersity, Changsha 410013, China.
| | - Yang Liu
- Department of Pothology, The Third Xiangya Hospital of Central South University, Central South Unixersity, Changsha 410013, China.
| |
Collapse
|
2
|
Mishra A, San Valentin EMD, Barcena AJR, Bolinas DKM, Bernardino MR, Canlas G, Ricks KA, Damasco JA, Melancon MP. Antibody-Targeted Bismuth Gadolinium Nanoconjugate for Image-Guided Radiotherapy of Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15097-15108. [PMID: 40026156 DOI: 10.1021/acsami.4c21949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Hepatocellular carcinoma (HCC), one of the most lethal cancers of the liver, has limited treatment options at advanced stages. Here, bismuth gadolinium (BiGd) nanoparticles (NPs) conjugated with anti-vascular endothelial growth factor antibody (aVEGF) are designed and tested for targeted image-guided radiation therapy against HCC. The BiGd NPs are synthesized using the sol-gel technique, functionalized with silica NPs, and labeled with fluorescent protamine-rhodamine B. For tumor targeting, the NPs are conjugated with aVEGF, and an in vitro study confirms the binding of the aVEGF-BiGd nanoconjugate to McA-RH7777 hepatoma cells. Biocompatibility of the aVEGF-BiGd nanoconjugate is evaluated using McA-RH7777 cells, with no cytotoxicity observed even at 250 μg/mL. Also, aVEGF-BiGd demonstrates in vivo microcomputed tomography contrast enhancement. NPs and/or radiation therapy (RT) is conducted in female BALB/c nude mice with subcutaneously implanted McA-RH7777 cells, and a significant reduction in tumor size is observed in the mice treated with the aVEGF-BiGd nanoconjugate and RT compared to other groups (p < 0.01). The combined effect of nanoconjugate and RT exhibits decreased vascularity, cell proliferation, and increased apoptosis. This study demonstrates the potential of the developed hybrid BiGd nanoconjugate for targeted and image-guided radiotherapy of HCC.
Collapse
Affiliation(s)
- Archana Mishra
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Erin Marie D San Valentin
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Allan John R Barcena
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Dominic Karl M Bolinas
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Marvin R Bernardino
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Gino Canlas
- Department of Chemistry, Lamar University, Beaumont, Texas 77710, United States
| | - Kaitlin A Ricks
- Department of Chemistry, Lamar University, Beaumont, Texas 77710, United States
| | - Jossana A Damasco
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Marites P Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas 77030, United States
| |
Collapse
|
3
|
Wan X, Zou Y, Zhou Q, Tang Q, Zhu G, Jia L, Yu X, Mo H, Yang X, Wang S. Tumor Prognostic Risk Model Related to Monocytes/Macrophages in Hepatocellular Carcinoma Based on Machine Learning and Multi-Omics. Biol Proced Online 2025; 27:9. [PMID: 40065214 PMCID: PMC11892220 DOI: 10.1186/s12575-025-00270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Tumor-associated macrophages (TAMs) are crucial in hepatocellular carcinoma (HCC) development and invasion. This study explores monocyte/ macrophage-associated gene expression profiles in HCC, constructs a prognostic model based on these genes, and examines its relationship with drug resistance and immune therapy responses. Single-cell RNA sequencing(scRNA-seq) data from 10 HCC tissue biopsy samples, totaling 24,597 cells, were obtained from the GEO database to identify monocyte/macrophage-associated genes. A prognostic model was constructed and validated using external datasets and Western blot. Relationships between the model, clinical correlates, drug sensitivity, and immune therapy responses were investigated. From scRNA-seq data, 2,799 monocyte/macrophage marker genes were identified. Using the TCGA dataset, a prognostic model based on the single-gene UQCRH was constructed, stratifying patients into high-risk and low-risk groups based on overall survival rates. High-risk group patients showed reduced survival rates and higher UQCRH expression in tumor tissues. Western blot analysis further confirmed the elevated expression of UQCRH in HCC cell lines. Spatial transcriptomics analysis revealed that high UQCRH expression co-localized with malignant cells in the tumor tissue. Drug sensitivity analysis revealed that the high-risk group had lower sensitivity to sorafenib and axitinib. Immune therapy response analysis indicated poorer outcomes in the high-risk group, with more pronounced APC inhibition and a weaker IFN-II response. Clinical indicator analysis showed a positive correlation between high UQCRH expression and tumor invasion. Enrichment analysis of UQCRH and associated molecules indicated involvement in oxidative phosphorylation and mitochondrial electron transport. This study introduces a prognostic model for HCC patients based on monocyte/macrophage marker genes. The single-gene model predicts HCC patient survival and treatment outcomes, identifying high-risk individuals with varying drug sensitivities and immune suppression states.
Collapse
Affiliation(s)
- Xinliang Wan
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Yongchun Zou
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Qichun Zhou
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Qing Tang
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Gangxing Zhu
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Luyu Jia
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Xiaoyan Yu
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Handan Mo
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Xiaobing Yang
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China.
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, 111 Dade Rd, Guangzhou, Guangdong Province, 510120, China.
| | - Sumei Wang
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China.
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, 111 Dade Rd, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
4
|
Wyżewski Z, Gregorczyk-Zboroch KP, Mielcarska MB, Świtlik W, Niedzielska A. Bid Protein: A Participant in the Apoptotic Network with Roles in Viral Infections. Int J Mol Sci 2025; 26:2385. [PMID: 40141030 PMCID: PMC11942203 DOI: 10.3390/ijms26062385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The BH3-interacting domain death agonist (Bid), a proapoptotic signaling molecule of the B-cell lymphoma 2 (Bcl-2) family, is a key regulator of mitochondrial outer membrane (MOM) permeability. Uniquely positioned at the intersection of extrinsic and intrinsic apoptosis pathways, Bid links death receptor signaling to the mitochondria-dependent cascade and can also be activated by endoplasmic reticulum (ER) stress. In its active forms, cleaved Bid (cBid) and truncated Bid (tBid), it disrupts MOM integrity via Bax/Bak-dependent and independent mechanisms. Apoptosis plays a dual role in viral infections, either promoting or counteracting viral propagation. Consequently, viruses modulate Bid signaling to favor their replication. The deregulation of Bid activity contributes to oncogenic transformation, inflammation, immunosuppression, neurotoxicity, and pathogen propagation during various viral infections. In this work, we explore Bid's structure, function, activation processes, and mitochondrial targeting. We describe its role in apoptosis induction and its involvement in infections with multiple viruses. Additionally, we discuss the therapeutic potential of Bid in antiviral strategies. Understanding Bid's signaling pathways offers valuable insights into host-virus interactions and the pathogenesis of infections. This knowledge may facilitate the development of novel therapeutic approaches to combat virus-associated diseases effectively.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland
| | - Karolina Paulina Gregorczyk-Zboroch
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| | - Matylda Barbara Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| | - Weronika Świtlik
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland;
| | - Adrianna Niedzielska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| |
Collapse
|
5
|
Xu D, Wang H, Bao Q, Jin K, Liu M, Liu W, Yan X, Wang L, Zhang Y, Wang G, Ma Y, Ma Z, Zhang C, Tang J, Wang S, Pang J, Xu T, Wang K, Xing B. The anti-PD-L1/CTLA-4 bispecific antibody KN046 plus lenvatinib in advanced unresectable or metastatic hepatocellular carcinoma: a phase II trial. Nat Commun 2025; 16:1443. [PMID: 39920148 PMCID: PMC11806070 DOI: 10.1038/s41467-025-56537-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
This open-label phase II trial (NCT04542837) aimed to evaluate the efficacy and safety of KN046 combined with lenvatinib in patients with advanced hepatocellular carcinoma (HCC), and explore the potential response biomarkers. Participants received KN046 5 mg/kg every 3 weeks and lenvatinib 12 or 8 mg once daily. The primary endpoints were safety, tolerability, dose-limiting toxicity (DLT), and objective response rate (ORR) according to RECIST v1.1. A total of fifty-five participants were enrolled. The results meet the pre-specified primary endpoints. No DLT was observed in the safety run-in period. The incidence of serious adverse events and grade ≥3 treatment-related adverse events (TRAEs) was 30.9% and 47.3%, respectively. Grade ≥3 immunotherapy-related adverse events occurred in 3 (5.5%) participants. Five (9.1%) participants discontinued treatment due to TRAEs, all of which were grade 1-2. The ORR was 45.5% (95% CI, 31.97-59.45). The median progression-free survival was 11.0 (95% CI, 8.21-15.24) months. The median overall survival (OS) was 16.4 (95% CI, 11.20-not estimable) months, and 12-month OS rate was 60.0% (95% CI, 45.87-71.55). Circulating tumor DNA status before the third cycle of treatment was associated with prognosis. In conclusion, First-line KN046 plus lenvatinib shows promising efficacy for advanced unresectable or metastatic HCC.
Collapse
Affiliation(s)
- Da Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepatopancreatobiliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hongwei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepatopancreatobiliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Quan Bao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepatopancreatobiliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Kemin Jin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepatopancreatobiliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ming Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepatopancreatobiliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wei Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepatopancreatobiliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoluan Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepatopancreatobiliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lijun Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepatopancreatobiliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Guangyu Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yue Ma
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Zhigang Ma
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Chunhui Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jiebing Tang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Sha Wang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Jiaohui Pang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Ting Xu
- Jiangsu Alphamab Biopharmaceuticals Co. Ltd, Suzhou, China
| | - Kun Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepatopancreatobiliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Baocai Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepatopancreatobiliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
6
|
Nakao IA, Almeida TC, Cardoso Reis AC, Coutinho GG, Hermenegildo AM, Cordeiro CF, da Silva GN, Dias DF, Brandão GC, Pinto Braga SF, de Souza TB. Discovery of a new dihydroeugenol-chalcone hybrid with cytotoxic and anti-migratory potential: A dual-action hit for cancer therapeutics. Bioorg Med Chem 2023; 96:117516. [PMID: 37944413 DOI: 10.1016/j.bmc.2023.117516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Cancer still represents a serious public health problem and one of the main problems related to the worsening of this disease is the ability of some tumors to develop metastasis. In this work, we synthesized a new series of chalcones and isoxazoles derived from eugenol and analogues as molecular hybrids and these compounds were evaluated against different tumor cell lines. This structural pattern was designed considering the cytotoxic potential already known for eugenol, chalcones and isoxazoles. Notably, chalcones 7, 9, 10, and 11 displayed significant activity (4.2-14.5 µM) against two cancer cell lines, surpassing the potency of the control drug doxorubicin. The reaction of chalcones with hydroxylamine hydrochloride provided the corresponding isoxazoles that were inactive against these cancer cells. The dihydroeugenol chalcone 7 showed the most promising results, demonstrating higher potency against HepG2 (CC50: 4.2 µM) and TOV-21G (CC50: 7.2 µM). Chalcone 7 was also three times less toxic than doxorubicin considering HepG2 cells, with a selectivity index greater than 11. Further investigations including clonogenic survival, cell cycle progression and cell migration assays confirmed the compelling antitumoral potential of chalcone 7, as it reduced long-term survival due to DNA fragmentation, inducing cell death and inhibiting HepG2 cells migration. Moreover, in silico studies involving docking and molecular dynamics revealed a consistent binding mode of chalcone 7 with metalloproteinases, particularly MMP-9, shedding light on its potential mechanism of action related to anti-migratory effects. These significant findings suggest the inclusion of compound 7 as a promising candidate for future studies in the field of cancer therapeutics.
Collapse
Affiliation(s)
- Izadora Amaral Nakao
- School of Pharmacy - Federal University of Ouro Preto, 35400-000 Ouro Preto, MG, Brazil
| | - Tamires Cunha Almeida
- School of Pharmacy - Federal University of Ouro Preto, 35400-000 Ouro Preto, MG, Brazil
| | | | | | | | | | | | | | - Geraldo Célio Brandão
- School of Pharmacy - Federal University of Ouro Preto, 35400-000 Ouro Preto, MG, Brazil
| | | | | |
Collapse
|