1
|
Lin Y, Zhao L, Jin H, Gu Q, Lei L, Fang C, Pan X. Multifunctional applications of silk fibroin in biomedical engineering: A comprehensive review on innovations and impact. Int J Biol Macromol 2025; 309:143067. [PMID: 40222531 DOI: 10.1016/j.ijbiomac.2025.143067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/31/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Silk fibroin (SF) is a biomaterial naturally produced by certain insects (notably silkworms), animals such as spiders, or through recombinant methods in genetically modified organisms. Its exceptional mechanical properties, biocompatibility, degradability, and bioactivity have inspired extensive research. In biomedicine, SF has been utilized in various forms, including gels, membranes, microspheres, and more. It also demonstrates versatility for applications across medical devices, regenerative medicine, tissue engineering, and related fields. This review explores the current research status, advantages, limitations, and potential application pathways of SF in biomedical engineering. The objective is to stimulate innovative ideas and perspectives for research and applications involving silk.
Collapse
Affiliation(s)
- Yinglan Lin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China.; Ningxia Medical University, Yinchuan 750004, China
| | - Lifen Zhao
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Hairong Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China.; Ningxia Medical University, Yinchuan 750004, China
| | - Qiancheng Gu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China..
| | - Chunyan Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Xiaoyi Pan
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China..
| |
Collapse
|
2
|
Azadi A, Rafieian F, Sami M, Rezaei A. Investigating the effects of chitosan/ tragacanth gum/ polyvinyl alcohol composite coating incorporated with cinnamon essential oil nanoemulsion on safety and quality features of chicken breast fillets during storage in the refrigerator. Int J Biol Macromol 2023; 253:126481. [PMID: 37634769 DOI: 10.1016/j.ijbiomac.2023.126481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
The present study investigated the effects of composite coatings made of chitosan (CS), tragacanth gum (TG), and polyvinyl alcohol (PVA) containing cinnamon essential oil (CEO) on the shelf-life of refrigerated chicken breast fillets. The samples were treated with different coating dispersions, and coded as: T1 (distilled water as control), T2 (blank composite coating), and T3 (composite coating containing CEO). Results showed that incorporating CEO into CS/TG/PVA coatings could significantly increase the quality of chicken fillets. The obtained results showed that after 21 days, the total microbial population of lactic acid bacteria (LAB), psychrotrophic and mesophilic bacteria in T3 samples was less than T1 and T2 samples. In addition, the highest antioxidant activity (48.04 %) and total phenolic content (TPC) values (2.458 mg gallic acid /g), the best sensory characteristics and the lowest pH (5.73), total volatile basic nitrogen (TVB-N) (21.89 mg N/100 g), thiobarbituric acid reactive substances (TBARS) (1.678 mg malondialdehyde equivalent/kg) and percentage of cooking loss (30 %) were related to T3. Results disclosed that this composite coating is a promising technology to improve the shelf life of chicken fillets during storage.
Collapse
Affiliation(s)
- Aidin Azadi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Rafieian
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Masoud Sami
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Hasheminya SM, Dehghannya J, Ehsani A. Development of basil seed mucilage (a heteropolysaccharide) - Polyvinyl alcohol biopolymers incorporating zinc oxide nanoparticles. Int J Biol Macromol 2023; 253:127342. [PMID: 37838133 DOI: 10.1016/j.ijbiomac.2023.127342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/07/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023]
Abstract
The effect of zinc oxide nanoparticles (ZnONPs) on various properties of basil seed mucilage (a heteropolysaccharide)-polyvinyl alcohol (BSM-PVA) films was investigated. Increasing concentration of ZnONPs in BSM-PVA films reduced moisture content (from 24.73 to 17.09 %), water solubility (from 36.36 to 27.65 %), water vapor permeability (from 4.66 × 10-7 to 2.55 × 10-7 g·m/m2·Pa·h), oxygen permeability (from 2.96 to 2.13 cm3 μm/m2 d kPa), and elongation at break (from 40.34 to 29.44 %), and increased ultimate tensile strength (from 16.81 to 21.48 MPa). Color and light transmission were affected by ZnONPs concentrations. The lack of formation of new peaks, along with the displacement of peaks, indicated the formation of hydrogen bonds between ZnONPs and the film matrix. Dynamic mechanical-thermal analysis showed that storage modulus and glass transition temperature increased with the concentration of ZnONPs. Scanning electron microscopy images illustrated that the addition of ZnONPs improved film integrity. X-ray diffraction pattern showed that the crystal shape of nanoparticles was preserved in the film matrix. Films containing ZnONPs showed good antibacterial activity against Staphylococcus aureus (reductions ≥ 3 log CFU/cm2) and Escherichia coli (reductions ≥ 4 log CFU/cm2). Films containing ZnONPs also showed a suitable antifungal activity during the storage of wheat bread.
Collapse
Affiliation(s)
- Seyedeh-Maryam Hasheminya
- Department of Food Science and Technology, University of Tabriz, Tabriz 51666-16471, Iran; Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Dehghannya
- Department of Food Science and Technology, University of Tabriz, Tabriz 51666-16471, Iran.
| | - Ali Ehsani
- Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Sun X, Liang H, Wang H, Meng N, Jin S, Zhou N. Silk fibroin/polyvinyl alcohol composite film loaded with antibacterial AgNP/polydopamine-modified montmorillonite; characterization and antibacterial properties. Int J Biol Macromol 2023; 251:126368. [PMID: 37591434 DOI: 10.1016/j.ijbiomac.2023.126368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
In this study, a kind of nanocomposite film was fabricated via combining silk fibroin, polyvinyl alcohol (SF/PVA) and AgNP/polydopamine-modified Montmorillonite (AgNP/PDA-Mt). The structural characteristics and properties of the SF/PVA/AgNP/PDA-Mt nanocomposites films were identified using X-ray diffraction (XRD), Thermal gravimetric analyzer (TGA), Fourier transform infrared spectroscopy (FTIR), EDS-mapping analyses and Scanning electron microscope (SEM). The results indicated enhanced thermal performance of SF/PVA/AgNP/PDA-Mt nanocomposites with increased AgNP/PDA-Mt weight. The nanocomposite film exhibited excellent antibacterial activity against E. coli and S. aureus. The 2 % SF/PVA/AgNP/PDA-Mt film showed the highest zone of inhibition with an average inhibition circle diameter of 26.1 mm against E. coli and 20.61 mm against S. aureus. Cytotoxicity test results indicated that the nanocomposites films were biocompatible with L929 cells with a 100 % survival rate, which can be considered as one of the advantages of new nanocomposites films. These findings suggest that SF/PVA/AgNP/PDA-Mt films have potential clinical applications in wound dressing and antibacterial biomedical applications.
Collapse
Affiliation(s)
- Xuemei Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing normal university, Nanjing, PR china
| | - Han Liang
- School of Food Science and Pharmaceutical Engineering, Nanjing normal university, Nanjing, PR china
| | - Huiyan Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing normal university, Nanjing, PR china
| | - Na Meng
- School of Food Science and Pharmaceutical Engineering, Nanjing normal university, Nanjing, PR china.
| | - Suxing Jin
- School of Food Science and Pharmaceutical Engineering, Nanjing normal university, Nanjing, PR china.
| | - Ninglin Zhou
- Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing Normal University, Nanjing 210046, China; Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, China.
| |
Collapse
|
5
|
Hashem AH, El-Naggar ME, Abdelaziz AM, Abdelbary S, Hassan YR, Hasanin MS. Bio-based antimicrobial food packaging films based on hydroxypropyl starch/polyvinyl alcohol loaded with the biosynthesized zinc oxide nanoparticles. Int J Biol Macromol 2023; 249:126011. [PMID: 37517763 DOI: 10.1016/j.ijbiomac.2023.126011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
In the last decades, bio-based active food packaging materials have received much attention. It is known that the utilization of traditional materials for food packaging applications lack some critical characteristics such as resistance to the harmful microbes that cause a damage to the preserved foods. Therefore, the current study aimed to find an alternative packaging films comprises an efficient biopolymers. This research work was designed to prepare film mats using hydroxypropyl starch (HPS), polyvinyl alcohol (PVA), palmitic acid (PA) and biosynthesized zinc oxide nanoparticles (ZnONPs). The fabricated films were coded as 1H, 2H, 3H and 4H based on the utilized concentration of ZnONPs. The biosynthesized ZnONPs and the bio-based films loaded with ZnONPs were characterized. The results revealed that ZnONPs exhibited nearly spherical shape and size ∼40 nm. The surface structure of the produced bioactive packaging films exhibited smooth with homogeneous features, excellent mechanical and thermal stability properties. The prepared bioactive packaging film loaded with ZnONPs (4H) exhibited superior antibacterial activity among other films against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923 with inhibition zones 15.1 ± 0.76 and 12.1 ± 0.71 mm respectively. Correspondingly, packing film 4H exhibited potential antifungal activity toward Aspergillus niger RCMB 02724, A. flavus RCMB 02782, Penicillium expansum IMI 89372 and Fusarium oxysporum RCMB 001004 with inhibition zones (16 ± 1.0, 22 ± 0.90, 18.0 ± 1.1 and12.3 ± 0.57 mm respectively). Moreover, all prepared films did not show cytotoxicity on the normal cell line (Wi38) and recorded biodegradability properties that reached around 85 % after four weeks in soil. Based on these results, the antimicrobial films comprising HPS/PVA and loaded with the biosynthesized ZnONPs can be considered as a suitable film for food packaging purposes.
Collapse
Affiliation(s)
- Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt.
| | - Mehrez E El-Naggar
- Institute of Textile Research and Technology, National Research Centre, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| | - Amer M Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Salah Abdelbary
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Youssef R Hassan
- Packaging Materials Department, National Research Centre, 12622 Dokki, Cairo, Egypt
| | - Mohamed S Hasanin
- Institute of Chemical Industries Research, National Research Centre, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| |
Collapse
|
6
|
Tracey CT, Kryuchkova AV, Bhatt TK, Krivoshapkin PV, Krivoshapkina EF. Silk for post-harvest horticultural produce safety and quality control. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Electrospinning of Natural Biopolymers for Innovative Food Applications: A Review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Low JT, Yusoff NISM, Othman N, Wong T, Wahit MU. Silk fibroin‐based films in food packaging applications: A review. Compr Rev Food Sci Food Saf 2022; 21:2253-2273. [DOI: 10.1111/1541-4337.12939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Jia Tee Low
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
| | | | - Norhayani Othman
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
| | - Tuck‐Whye Wong
- Advanced Membrane Technology Research Centre (AMTEC) Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
| | - Mat Uzir Wahit
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
- Centre for Advanced Composite Materials (CACM) Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
| |
Collapse
|
9
|
Batra R, Bansal P, Yadav R, Purwar R, Kulanthaivel S, Mishra P. Enhancement of functional properties by blending cocoon extracted
Antheraea mylitta
silk fibroin with polyvinyl alcohol for applications in biomedical field. J Appl Polym Sci 2021. [DOI: 10.1002/app.51913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Radhika Batra
- Department of Applied Chemistry Delhi Technological University Delhi India
| | - Priya Bansal
- Department of Applied Chemistry Delhi Technological University Delhi India
| | - Reetu Yadav
- Department of Applied Chemistry Delhi Technological University Delhi India
| | - Roli Purwar
- Department of Applied Chemistry Delhi Technological University Delhi India
| | - Senthilguru Kulanthaivel
- Department of Biochemical Engineering and Biotechnology Indian Institute of Technology Delhi India
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology Indian Institute of Technology Delhi India
| |
Collapse
|
10
|
Zhang W, Li W, Li J, Chang X, Niu S, Wu T, Kong L, Zhang T, Tang M, Xue Y. Neurobehavior and neuron damage following prolonged exposure of silver nanoparticles with/without polyvinylpyrrolidone coating in Caenorhabditis elegans. J Appl Toxicol 2021; 41:2055-2067. [PMID: 33993517 DOI: 10.1002/jat.4197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/15/2021] [Accepted: 05/01/2021] [Indexed: 12/18/2022]
Abstract
Silver nanoparticles (AgNPs) have become widespread in the environment with increasing industrial applications. But the studies about their potential health risks are far from enough, especially in neurotoxic effects. This study aimed to investigate the neurotoxic effects of longer-term exposure (prolonged exposure for 48 h and chronic exposure for 6 days) of 20nm AgNPs with/without polyvinylpyrrolidone (PVP) coating at low concentrations (0.01-10 mg·L-1 ) to Caenorhabditis elegans. The results suggested that exposure to AgNPs induced damage to nematode survival, with the longest and relative average life span reduced. Exposure to AgNPs caused neurotoxicity on locomotion behaviors (head thrashes, body bends, pharyngeal pumping frequency, and defecation interval) and sensory perception behaviors (chemotaxis assay and thermotaxis assay), as well as impaired dopaminergic, GABAergic, and cholinergic neurons, except for glutamatergic, based on the alters fluorescence intensity, in a dose- and time-dependent manner. Further investigations suggested that the low-dose AgNPs (0.01-0.1 mg·L-1 ) exposure raises receptors of GABAergic and dopamine in C. elegans at the genetic level, whereas opposite results were observed at higher doses (1-10 mg·L-1 ), which implied that AgNPs could cause neurotoxicity by impairing neurotransmitter delivery. The PVP-AgNPs could cause a higher fatality rate and neurotoxicity at the same dose. Notably, AgNPs did not cause any deleterious effect on nematodes at the lowest dose of 0.01 mg·L-1 . In general, these results suggested that AgNPs possess the neurotoxic potential in C. elegans and provided useful information to understand the neurotoxicity of AgNPs, which would offer an inspiring perspective on the safe application.
Collapse
Affiliation(s)
- Wenli Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Wenhua Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Jiangyan Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xiaoru Chang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
11
|
Gao H, Yang H. Preparation and characterization of cinnamaldehyde/polyvinyl alcohol/silver nanoparticles ternary composite films. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2020. [DOI: 10.1080/1023666x.2020.1837587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hongfang Gao
- Weinan Vocational & Technical College, Weinan, P. R. China
| | - Hui Yang
- Shaanxi University of Science and Technology, Xi'an, P. R. China
| |
Collapse
|
12
|
Alfei S, Marengo B, Zuccari G. Nanotechnology application in food packaging: A plethora of opportunities versus pending risks assessment and public concerns. Food Res Int 2020; 137:109664. [PMID: 33233243 DOI: 10.1016/j.foodres.2020.109664] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/11/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023]
Abstract
Environmental factors, oxidation and microorganisms contamination, are the major causes for food spoilage, which leads to sensory features alteration, loss of quality, production of harmful chemicals and growth of foodborne pathogens capable to cause severe illness. Synthetic preservatives, traditional conserving methods and food packaging (FP), although effective in counteracting food spoilage, do not allow the real-time monitoring of food quality during storage and transportation and assent a relatively short shelf life. In addition, FP may protect food by the spoilage caused by external contaminations, but is ineffective against foodborne microorganisms. FP preservative functionalities could be improved adding edible natural antioxidants and antimicrobials, but such chemicals are easily degradable. Nowadays, thanks to nanotechnology techniques, it is possible to improve the FP performances, formulating and inserting more stable antioxidant/antimicrobial ingredients, improving mechanical properties and introducing intelligent functions. The state-of-the-art in the field of nanomaterial-based improved FP, the advantages that might derive from their extensive introduction on the market and the main concerns associated to the possible migration and toxicity of nanomaterials, frequently neglected in existing reviews, have been herein discussed.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DiFAR), University of Genoa, Genova (GE), Viale Cembrano, 4, I-16148, Italy.
| | - Barbara Marengo
- Department of Experimental Medicine - DIMES, University of Genoa, Genova (GE), Via Alberti L.B. 2, I- 16132, Italy
| | - Guendalina Zuccari
- Department of Pharmacy (DiFAR), University of Genoa, Genova (GE), Viale Cembrano, 4, I-16148, Italy
| |
Collapse
|
13
|
Mathew S, Jayakumar A, Kumar VP, Mathew J, Radhakrishnan E. One-step synthesis of eco-friendly boiled rice starch blended polyvinyl alcohol bionanocomposite films decorated with in situ generated silver nanoparticles for food packaging purpose. Int J Biol Macromol 2019; 139:475-485. [DOI: 10.1016/j.ijbiomac.2019.07.187] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/19/2019] [Accepted: 07/26/2019] [Indexed: 01/22/2023]
|
14
|
Shah A, Ali Buabeid M, Arafa ESA, Hussain I, Li L, Murtaza G. The wound healing and antibacterial potential of triple-component nanocomposite (chitosan-silver-sericin) films loaded with moxifloxacin. Int J Pharm 2019; 564:22-38. [PMID: 31002933 DOI: 10.1016/j.ijpharm.2019.04.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/12/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
AIM The current study reports the development and evaluation of chitosan-sericin-silver nanocomposite (CSSN) films without and with moxifloxacin (Mox). METHODOLOGY The film preparation method involved the in-situ synthesis of silver nanoparticles within the chitosan-sericin colloidal composite followed by preparation into a film by solvent casting technique. In-situ formation and the particle size analysis of the silver nanoparticles was performed via UV-Visible and zeta-size spectrometer. The prepared films were tested for swelling ratio, contents uniformity, in-vitro Mox release, and permeation analysis. The morphological (SEM), elemental (EDX), spectral (FT-IR), structural (XRD), and thermal (TGA and DSC) properties of the composites were also inspected. The antibacterial activity of the CSSN films was performed against seven pathogenic bacterial strains including five ATCC and two clinical strains. The potential wound healing activity of the composite films was evaluated on burn wound model induced in Sprague Dawley male rats. RESULTS The prepared films displayed good swelling profile with a sustained in-vitro Mox release and permeation profile; attaining maximum of 78.57% (CSSM3) release and 55.05% (CSSM1) permeation (CSSM1) in 24 h. The prepared films, particularly the Mox-loaded CSSN films displayed a promising antibacterial activity against all the tested strains with the activity being highest against MRSA (clinical isolates). The prepared films indicated a remarkable wound healing applications with successful fibrosis, collagen reorganization, neovascularization, and mild epidermal regeneration after 7 days of treatment with no silver ions detection in animal's blood. CONCLUSION The obtained findings strongly suggest the use of the prepared novel composite dressing for wound care applications.
Collapse
Affiliation(s)
- Aamna Shah
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| | - Manal Ali Buabeid
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - El-Shaimaa A Arafa
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Izhar Hussain
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| | - Lihong Li
- Department of Acupuncture, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus 54000, Pakistan.
| |
Collapse
|
15
|
Zhu Z, Zhang Y, Zhang Y, Shang Y, Zhang X, Wen Y. Preparation of PAN@TiO₂ Nanofibers for Fruit Packaging Materials with Efficient Photocatalytic Degradation of Ethylene. MATERIALS 2019; 12:ma12060896. [PMID: 30889799 PMCID: PMC6471531 DOI: 10.3390/ma12060896] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 12/28/2022]
Abstract
Ethylene causes faster deterioration of perishable crops during postharvest transportation and storage. The present study aimed to develop TiO2-coated nanofibers with efficient photocatalytic activities to enhance the degradation of fruit-emitted ethylene. The consecutive electrospinning of polyacrylonitrile (PAN) and TiO2 deposition was successfully performed to produce PAN@TiO2 nanofibers. The scanning electron microscopy results indicate the uniform distribution of TiO2 nanoparticles on the surface of the PAN nanofiber. The PAN@TiO2 composite nanofibers exhibited enhanced photocatalytic activity for ethylene degradation under low-intensity UV light irradiation. Furthermore, a tomato fruit-ripening test confirmed the effectiveness of the PAN@TiO2 nanofibers. The PAN@TiO2 nanofibers exhibited effective ethylene degradation and slowed the color shift and softening of the tomatoes during storage. The results suggest great potential for use of the PAN@TiO2 composite nanofibers as ethylene scavenging packaging material for fresh fruits and vegetables.
Collapse
Affiliation(s)
- Zhu Zhu
- Beijing Key Laboratory of Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Ye Zhang
- College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| | - Yibo Zhang
- College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| | - Yanli Shang
- College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| | - Xueji Zhang
- Beijing Key Laboratory of Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Yongqiang Wen
- Beijing Key Laboratory of Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, China.
| |
Collapse
|
16
|
Ai L, Wang Y, Tao G, Zhao P, Umar A, Wang P, He H. Polydopamine-Based Surface Modification of ZnO Nanoparticles on Sericin/Polyvinyl Alcohol Composite Film for Antibacterial Application. Molecules 2019; 24:E503. [PMID: 30704137 PMCID: PMC6384743 DOI: 10.3390/molecules24030503] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 01/19/2023] Open
Abstract
Silk sericin (SS) is a type of natural macromolecular protein with excellent hydrophilicity, biocompatibility and biodegradability, but also has very poor mechanical properties. To develop sericin-based wound dressings, we utilized polyvinyl alcohol (PVA) to reinforce the mechanical property of sericin by blending PVA and sericin, then modified zinc oxide nanoparticles (ZnO NPs) on SS/PVA film with the assistance of polydopamine (PDA) to endow SS/PVA film with antibacterial activity. Scanning electron microscopy, energy dispersive spectroscopy and X-ray powder diffraction demonstrated ZnO NPs were well grafted on PDA-SS/PVA film. Fourier transform infrared spectra suggested PDA coating and ZnONPs modification did not alter the structure of sericin and PVA. Water contact angle and swelling tests indicated the excellent hydrophilicity and swellability of ZnO NPs-PDA-SS/PVA composite film. Mass loss analysis showed ZnO NPs-PDA-SS/PVA film had excellent stability. The mechanical performance test suggested the improved tensile strength and elongation at break could meet the requirement of ZnO NPs-PDA-SS/PVA film in biomaterial applications. The antibacterial assay suggested the prepared ZnO NPs-PDA-SS/PVA composite film had a degree of antimicrobial activity against Escherichia coli and Staphylococcus aureus. The excellent hydrophilicity, swellability, stability, mechanical property and antibacterial activity greatly promote the possibility of ZnO NPs-PDA-SS/PVA composite film in antibacterial biomaterials application.
Collapse
Affiliation(s)
- Lisha Ai
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.
| | - Yejing Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.
- College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Gang Tao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronics Devices, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia.
| | - Peng Wang
- College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Huawei He
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
| |
Collapse
|
17
|
Song P, Zhang W, Xu C, Guan H, Tu Y, Wu G. Effects of silkworm variety on the mechanical and structural properties of silk. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/22243682.2018.1556334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Peng Song
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, P.R. China
| | - Wei Zhang
- School of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Chen Xu
- School of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Huaiyang Guan
- School of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Yu Tu
- School of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Guohua Wu
- School of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| |
Collapse
|
18
|
Tunable Physicochemical and Bactericidal Activity of Multicarboxylic-Acids-Crosslinked Polyvinyl Alcohol Membrane for Food Packaging Applications. ChemistrySelect 2018. [DOI: 10.1002/slct.201801851] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Huang Y, Mei L, Chen X, Wang Q. Recent Developments in Food Packaging Based on Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E830. [PMID: 30322162 PMCID: PMC6215134 DOI: 10.3390/nano8100830] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/29/2018] [Accepted: 10/08/2018] [Indexed: 01/27/2023]
Abstract
The increasing demand for high food quality and safety, and concerns of environment sustainable development have been encouraging researchers in the food industry to exploit the robust and green biodegradable nanocomposites, which provide new opportunities and challenges for the development of nanomaterials in the food industry. This review paper aims at summarizing the recent three years of research findings on the new development of nanomaterials for food packaging. Two categories of nanomaterials (i.e., inorganic and organic) are included. The synthetic methods, physical and chemical properties, biological activity, and applications in food systems and safety assessments of each nanomaterial are presented. This review also highlights the possible mechanisms of antimicrobial activity against bacteria of certain active nanomaterials and their health concerns. It concludes with an outlook of the nanomaterials functionalized in food packaging.
Collapse
Affiliation(s)
- Yukun Huang
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China.
| | - Lei Mei
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA.
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China.
| | - Qin Wang
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China.
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20740, USA.
| |
Collapse
|
20
|
Polydopamine-Assisted Silver Nanoparticle Self-Assembly on Sericin/Agar Film for Potential Wound Dressing Application. Int J Mol Sci 2018; 19:ijms19102875. [PMID: 30248951 PMCID: PMC6213261 DOI: 10.3390/ijms19102875] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 12/12/2022] Open
Abstract
Silver nanoparticles (AgNPs) are extensively applied for their broad-spectrum and excellent antibacterial ability in recent years. Polydopamine (PDA) has great advantages for synthesizing large amounts of AgNPs, as it has multiple sites for silver ion binding and phenolic hydroxyl structure to reduce silver ions to AgNPs. Here, we mixed sericin and agar solution and dried at 65 °C to prepare a sericin (SS)/Agar composite film, and then coated polydopamine (PDA) on the surface of SS/Agar film by soaking SS/Agar film into polydopamine solution, subsequently synthesizing high-density AgNPs with the assistance of PDA to yield antibacterial AgNPs-PDA- SS/Agar film. Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) spectra indicated the successful synthesis of high-density AgNPs on the surface of PDA-SS/Agar film. PDA coating and AgNPs modification did not affect the structure of sericin and agar. Furthermore, water contact angle, water absorption and mechanical property analysis showed that AgNPs-PDA-SS/Agar film had excellent hydrophilicity and proper mechanical properties. Inhibition zone and growth curve assays suggested the prepared film had excellent and long-lasting antibacterial ability. In addition, it had excellent cytocompatibility on the fibroblast NIH/3T3 cells. The film shows great potential as a novel kind of wound dressing.
Collapse
|
21
|
Wang Y, Cai R, Tao G, Wang P, Zuo H, Zhao P, Umar A, He H. A Novel AgNPs/Sericin/Agar Film with Enhanced Mechanical Property and Antibacterial Capability. Molecules 2018; 23:molecules23071821. [PMID: 30041405 PMCID: PMC6100604 DOI: 10.3390/molecules23071821] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 12/11/2022] Open
Abstract
Silk sericin is a protein from a silkworm's cocoon. It has good biocompatibility, hydrophilicity, bioactivity, and biodegradability. However, sericin could not be used in biomedical materials directly because of its frangible characteristic. To develop multifunctional sericin-based materials for biomedical purposes, we prepared a sericin/agar (SS/agar) composite film through the blending of sericin and agar and repetitive freeze-thawing. Then, we synthesized silver nanoparticles (AgNPs) in situ on the surface of the composite film to endow it with antibacterial activity. Water contact angle, swelling and losing ratio, and mechanical properties analysis indicated that the composite film had excellent mechanical property, hydrophilicity, hygroscopicity, and stability. Scanning electron microscopy and X-ray photoelectron spectroscopy analysis confirmed the successful modification of AgNPs on the composite film. X-ray powder diffraction showed the face-centered cubic structures of the AgNPs. This AgNPs modified composite film exhibited an excellent antibacterial capability against Escherichia coli and Staphylococcus aureus. Our study develops a novel AgNPs/sericin/agar composite film with enhanced mechanical performance and an antimicrobial property for potential biomedical applications.
Collapse
Affiliation(s)
- Yejing Wang
- College of Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| | - Rui Cai
- College of Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
| | - Gang Tao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| | - Peng Wang
- College of Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
| | - Hua Zuo
- College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing 400715, China.
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronics Devices, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia.
| | - Huawei He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
22
|
Liu L, Cai R, Wang Y, Tao G, Ai L, Wang P, Yang M, Zuo H, Zhao P, Shen H, Umar A, He H. Preparation and Characterization of AgNPs In Situ Synthesis on Polyelectrolyte Membrane Coated Sericin/Agar Film for Antimicrobial Applications. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1205. [PMID: 30011809 PMCID: PMC6073696 DOI: 10.3390/ma11071205] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/29/2018] [Accepted: 07/09/2018] [Indexed: 11/17/2022]
Abstract
Antibacterial materials are of great importance in preventing bacterial adhesion and reproduction in daily life. Silver nanoparticle (AgNP) is a broad-spectrum antibacterial nanomaterial that has attracted significant attentions for its ability to endow natural materials with antibacterial ability. Silk sericin (SS) has a great advantage for biomaterial application, as it is a natural protein with excellent hydrophilicity and biodegradability. In this study, we prepared AgNPs and polyelectrolyte membrane (PEM) modified SS/Agar films through the layer-by-layer adsorption technique and ultraviolet-assisted AgNPs synthesis method. The film was well characterized by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy. Other properties such as water contact angle, wettability and tensile strength, the release of silver were also studied. The antimicrobial activity of AgNPs-PEM-SS/Agar film was investigated against Escherichia coli and Staphylococcus aureus as the model microorganisms by the inhibition zone and bacterial growth curve assays. The results suggested that the AgNPs-PEM-SS/Agar film had excellent mechanical performance, high hydrophilicity, prominent water absorption ability, as well as outstanding and durable antibacterial activity. Therefore, the prepared novel AgNPs-PEM-SS/Agar composite film is proposed as a potentially favorable antibacterial biomaterial for biomedical applications.
Collapse
Affiliation(s)
- Liying Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Rui Cai
- College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Yejing Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Gang Tao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Lisha Ai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Peng Wang
- College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Meirong Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Hua Zuo
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
| | - Hong Shen
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronics Devices (PCSED), Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia.
| | - Huawei He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
| |
Collapse
|
23
|
Yang M, Wang Y, Tao G, Cai R, Wang P, Liu L, Ai L, Zuo H, Zhao P, Umar A, Mao C, He H. Fabrication of Sericin/Agrose Gel Loaded Lysozyme and Its Potential in Wound Dressing Application. NANOMATERIALS 2018; 8:nano8040235. [PMID: 29652825 PMCID: PMC5923565 DOI: 10.3390/nano8040235] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/24/2018] [Accepted: 04/04/2018] [Indexed: 01/19/2023]
Abstract
Sericin is a biomaterial resource for its significant biodegradability, biocompatibility, hydrophilicity, and reactivity. Designing a material with superabsorbent, antiseptic, and non-cytotoxic wound dressing properties is advantageous to reduce wound infection and promote wound healing. Herein, we propose an environment-friendly strategy to obtain an interpenetrating polymer network gel through blending sericin and agarose and freeze-drying. The physicochemical characterizations of the sericin/agarose gel including morphology, porosity, swelling behavior, crystallinity, secondary structure, and thermal property were well characterized. Subsequently, the lysozyme loaded sericin/agarose composite gel was successfully prepared by the solution impregnation method. To evaluate the potential of the lysozyme loaded sericin/agarose gel in wound dressing application, we analyzed the lysozyme loading and release, antimicrobial activity, and cytocompatibility of the resulting gel. The results showed the lysozyme loaded composite gel had high porosity, excellent water absorption property, and good antimicrobial activities against Escherichia coli and Staphylococcus aureus. Also, the lysozyme loaded gel showed excellent cytocompatibility on NIH3T3 and HEK293 cells. So, the lysozyme loaded sericin/agarose gel is a potential alternative biomaterial for wound dressing.
Collapse
Affiliation(s)
- Meirong Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| | - Yejing Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
- College of Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
| | - Gang Tao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| | - Rui Cai
- College of Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
| | - Peng Wang
- College of Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
| | - Liying Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| | - Lisha Ai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| | - Hua Zuo
- College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing 400715, China.
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronics Devices (PCSED), Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia.
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA.
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Huawei He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
24
|
Ullah Khan S, Saleh TA, Wahab A, Khan MHU, Khan D, Ullah Khan W, Rahim A, Kamal S, Ullah Khan F, Fahad S. Nanosilver: new ageless and versatile biomedical therapeutic scaffold. Int J Nanomedicine 2018; 13:733-762. [PMID: 29440898 PMCID: PMC5799856 DOI: 10.2147/ijn.s153167] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Silver nanotechnology has received tremendous attention in recent years, owing to its wide range of applications in various fields and its intrinsic therapeutic properties. In this review, an attempt is made to critically evaluate the chemical, physical, and biological synthesis of silver nanoparticles (AgNPs) as well as their efficacy in the field of theranostics including microbiology and parasitology. Moreover, an outlook is also provided regarding the performance of AgNPs against different biological systems such as bacteria, fungi, viruses, and parasites (leishmanial and malarial parasites) in curing certain fatal human diseases, with a special focus on cancer. The mechanism of action of AgNPs in different biological systems still remains enigmatic. Here, due to limited available literature, we only focused on AgNPs mechanism in biological systems including human (wound healing and apoptosis), bacteria, and viruses which may open new windows for future research to ensure the versatile application of AgNPs in cosmetics, electronics, and medical fields.
Collapse
Affiliation(s)
- Shahid Ullah Khan
- College of Plant Sciences and Technology
- National Key Laboratory of Crop Genetics Improvement, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Tawfik A Saleh
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Kohat
| | - Muhammad Hafeez Ullah Khan
- College of Plant Sciences and Technology
- National Key Laboratory of Crop Genetics Improvement, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Dilfaraz Khan
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Wasim Ullah Khan
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Abdur Rahim
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Sajid Kamal
- School of Biotechnology, Jiangnan University, Wuxi, People’s Republic of China
| | - Farman Ullah Khan
- Department of Chemistry, University of Science and Technology, Bannu
| | - Shah Fahad
- College of Plant Sciences and Technology
- Department of Agriculture, University of Swabi, Swabi, Pakistan
| |
Collapse
|
25
|
In Situ Synthesis of Silver Nanoparticles on the Polyelectrolyte-Coated Sericin/PVA Film for Enhanced Antibacterial Application. MATERIALS 2017; 10:ma10080967. [PMID: 28820482 PMCID: PMC5578333 DOI: 10.3390/ma10080967] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/26/2017] [Accepted: 08/17/2017] [Indexed: 12/03/2022]
Abstract
To develop silk sericin (SS) as a potential antibacterial biomaterial, a novel composite of polyelectrolyte multilayers (PEMs) coated sericin/poly(vinyl alcohol) (SS/PVA) film modified with silver nanoparticles (AgNPs) has been developed using a layer-by-layer assembly technique and ultraviolet-assisted AgNPs synthesis method. Ag ions were enriched by PEMs via the electrostatic attraction between Ag ions and PEMs, and then reduced to AgNPs in situ with the assistance of ultraviolet irradiation. PEMs facilitated the high-density growth of AgNPs and protected the synthesized AgNPs due to the formation of a 3D matrix, and thus endowed SS/PVA film with highly effective and durable antibacterial activity. Scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometry, Fourier transfer infrared spectroscopy, water contact angle, mechanical property and thermogravimetric analysis were applied to characterize SS/PVA, PEMs-SS/PVA and AgNPs-PEMs-SS/PVA films, respectively. AgNPs-PEMs-SS/PVA film has exhibited good mechanical performance, hydrophilicity, water absorption capability as well as excellent and durable antibacterial activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and good stability and degradability. This study has developed a simple method to design and prepare AgNPs-PEMs-SS/PVA film for potential antibacterial application.
Collapse
|