1
|
Prasad Kumara PAAS, Cooper PR, Cathro P, Gould M, Dias G, Ratnayake J. Bioceramics in Endodontics: Limitations and Future Innovations-A Review. Dent J (Basel) 2025; 13:157. [PMID: 40277487 PMCID: PMC12026347 DOI: 10.3390/dj13040157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Bioceramic materials for endodontic treatments have gradually transformed over the years into materials with enhanced biocompatibility and chemical and mechanical properties compared to earlier generations. In endodontics procedures, these materials are used as restorative material in applications such as root-end fillings, pulp capping, perforations repair, and apexification repair procedures. However, they have far from ideal mechanical and handling properties, biocompatibility issues, aesthetic concerns due to tooth discolouration, limited antibacterial activity, and affordability, which are amongst several key limitations. Notably, bioceramic materials are popular due to their biocompatibility, sealing ability, and durability, consequently surpassing traditional materials such as gutta-percha and zinc oxide-eugenol sealers. A lack of recent advancements in the field, combined with nanomaterials, has improved the formulations of these materials to overcome these limitations. The existing literature emphasises the benefits of bioceramics while underreporting their poor mechanical properties, handling difficulties, cost, and various other drawbacks. The key gaps identified in the literature are the insufficient coverage of emerging materials, narrow scope, limited insights into future developments, and underreporting of failures and complications of the existing materials. Consequently, this review aims to highlight the key limitations of various endodontic materials, primarily focusing on calcium silicate, calcium phosphate, and bioactive glass-based materials, which are the most abundantly used materials in dentistry. Based on the literature, bioceramic materials in endodontics have significantly improved over recent years, with different combinations of materials and technology compared to earlier generations while preserving many of their original properties, with some having affordable costs. This review also identified key innovations that could shape the future of endodontic materials, highlighting the ongoing evolution and advancements in endodontic treatments.
Collapse
Affiliation(s)
| | - Paul Roy Cooper
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand; (P.A.A.S.P.K.); (P.C.); (M.G.)
| | - Peter Cathro
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand; (P.A.A.S.P.K.); (P.C.); (M.G.)
| | - Maree Gould
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand; (P.A.A.S.P.K.); (P.C.); (M.G.)
| | - George Dias
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand;
| | - Jithendra Ratnayake
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand; (P.A.A.S.P.K.); (P.C.); (M.G.)
| |
Collapse
|
2
|
Naguib G, Mously H, Mazhar J, Alkanfari I, Binmahfooz A, Zahran M, Hamed MT. Bond strength and surface roughness assessment of novel antimicrobial polymeric coated dental cement. DISCOVER NANO 2024; 19:123. [PMID: 39105979 PMCID: PMC11303365 DOI: 10.1186/s11671-024-04074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/27/2024] [Indexed: 08/07/2024]
Abstract
Resin cement integrated with zein-incorporated magnesium oxide nanoparticles has previously been found to inhibit oral microbes and decrease bacterial biofilm. However, the bond strength and surface features of this biomaterial have yet to be investigated. The objective of this study was to evaluate the shear bond strength, mode of fracture, and surface roughness of resin cement modified with zein-incorporated magnesium oxide nanoparticles. Characterization of the cement was performed by X-ray diffraction, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy. 126 human teeth were divided into 3 groups and cemented to lithium disilicate ceramic using resin cement with zein-incorporated magnesium oxide nanoparticles at concentrations of 0%, 1%, and 2% (n = 42). 21 samples of each group were subjected to the shear bond strength test, while the other 21 underwent thermocycling for 10,000 cycles before the test, after which all samples were evaluated for the mode of fracture. To assess surface roughness, resin cement disks were analyzed by a profilometer before and after undergoing thermocycling for 10,000 cycles. The shear bond strength of the cement with 1% and 2% nanoparticles was significantly higher than the control before thermocycling. The mode of fracture was found to be mainly adhesive with all groups, with the unmodified cement presenting the highest cohesive failure. There was no significant difference in surface roughness between the groups before or after thermocycling. The addition of zein-incorporated magnesium oxide nanoparticles to resin cement improved or maintained the shear bond strength and surface roughness of the resin cement.
Collapse
Affiliation(s)
- Ghada Naguib
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Oral Biology, Cairo University School of Dentistry, Cairo, Egypt.
| | - Hisham Mously
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Ibrahim Alkanfari
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulelah Binmahfooz
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Zahran
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed T Hamed
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Fixed Prosthodontics, Cairo University School of Dentistry, Cairo, Egypt
| |
Collapse
|
3
|
Vlajić Tovilović T, Petrović S, Lazarević M, Pavić A, Plačkić N, Milovanović A, Milošević M, Miletic V, Veljović D, Radunović M. Effect of Acetylsalicylic Acid on Biological Properties of Novel Cement Based on Calcium Phosphate Doped with Ions of Strontium, Copper, and Zinc. Int J Mol Sci 2024; 25:7940. [PMID: 39063181 PMCID: PMC11276672 DOI: 10.3390/ijms25147940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to compare the biological properties of newly synthesized cements based on calcium phosphate with a commercially used cement, mineral trioxide aggregate (MTA). Strontium (Sr)-, Copper (Cu)-, and Zinc (Zn)-doped hydroxyapatite (miHAp) powder was obtained through hydrothermal synthesis and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectrometry (EDX). Calcium phosphate cement (CPC) was produced by mixing miHAp powder with a 20 wt.% citric acid solution, followed by the assessment of its compressive strength, setting time, and in vitro bioactivity. Acetylsalicylic acid (ASA) was added to the CPC, resulting in CPCA. Biological tests were conducted on CPC, CPCA, and MTA. The biocompatibility of the cement extracts was evaluated in vitro using human dental pulp stem cells (hDPSCs) and in vivo using a zebrafish model. Antibiofilm and antimicrobial effect (quantified by CFUs/mL) were assessed against Streptococcus mutans and Lactobacillus rhamnosus. None of the tested materials showed toxicity, while CPCA even increased hDPSCs proliferation. CPCA showed a better safety profile than MTA and CPC, and no toxic or immunomodulatory effects on the zebrafish model. CPCA exhibited similar antibiofilm effects against S. mutans and L. rhamnosus to MTA.
Collapse
Affiliation(s)
- Tamara Vlajić Tovilović
- School of Dental Medicine, University of Belgrade, 11 000 Belgrade, Serbia; (T.V.T.); (S.P.); (M.L.)
| | - Sanja Petrović
- School of Dental Medicine, University of Belgrade, 11 000 Belgrade, Serbia; (T.V.T.); (S.P.); (M.L.)
| | - Miloš Lazarević
- School of Dental Medicine, University of Belgrade, 11 000 Belgrade, Serbia; (T.V.T.); (S.P.); (M.L.)
| | - Aleksandar Pavić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11 000 Belgrade, Serbia; (A.P.); (N.P.)
| | - Nikola Plačkić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11 000 Belgrade, Serbia; (A.P.); (N.P.)
| | - Aleksa Milovanović
- Faculty of Mechanical Engineering, University of Belgrade, 11 000 Belgrade, Serbia; (A.M.); (M.M.)
| | - Miloš Milošević
- Faculty of Mechanical Engineering, University of Belgrade, 11 000 Belgrade, Serbia; (A.M.); (M.M.)
| | - Vesna Miletic
- Faculty of Medicine and Health, Sydney Dental School, University of Sydney, Surry Hills, NSW 2010, Australia;
| | - Djordje Veljović
- Faculty of Technology and Metallurgy, University of Belgrade, 11 000 Belgrade, Serbia
| | - Milena Radunović
- School of Dental Medicine, University of Belgrade, 11 000 Belgrade, Serbia; (T.V.T.); (S.P.); (M.L.)
| |
Collapse
|
4
|
Potocka W, Assy Z, Bikker FJ, Laine ML. Current and Potential Applications of Monoterpenes and Their Derivatives in Oral Health Care. Molecules 2023; 28:7178. [PMID: 37894657 PMCID: PMC10609285 DOI: 10.3390/molecules28207178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Plant products have been employed in medicine for centuries. As the world becomes more health-conscious, there is a growing interest in natural and minimally processed products for oral health care. This has led to an increase in research into the bioactive compounds found in plant products, particularly monoterpenes. Monoterpenes are known to have beneficial biological properties, but the specific mechanisms by which they exert their effects are not yet fully understood. Despite this, some monoterpenes are already being used in oral health care. For example, thymol, which has antibacterial properties, is an ingredient in varnish used for caries prevention. In addition to this, monoterpenes have also demonstrated antifungal, antiviral, and anti-inflammatory properties, making them versatile for various applications. As research continues, there is potential for even more discoveries regarding the benefits of monoterpenes in oral health care. This narrative literature review gives an overview of the biological properties and current and potential applications of selected monoterpenes and their derivatives in oral health care. These compounds demonstrate promising potential for future medical development, and their applications in future research are expected to expand.
Collapse
Affiliation(s)
- Wiktoria Potocka
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Z.A.); (F.J.B.)
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
| | - Zainab Assy
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Z.A.); (F.J.B.)
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; (Z.A.); (F.J.B.)
| | - Marja L. Laine
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
| |
Collapse
|
5
|
Demir-Oğuz Ö, Boccaccini AR, Loca D. Injectable bone cements: What benefits the combination of calcium phosphates and bioactive glasses could bring? Bioact Mater 2023; 19:217-236. [PMID: 35510175 PMCID: PMC9048153 DOI: 10.1016/j.bioactmat.2022.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
Out of the wide range of calcium phosphate (CaP) biomaterials, calcium phosphate bone cements (CPCs) have attracted increased attention since their discovery in the 1980s due to their valuable properties such as bioactivity, osteoconductivity, injectability, hardening ability through a low-temperature setting reaction and moldability. Thereafter numerous researches have been performed to enhance the properties of CPCs. Nonetheless, low mechanical performance of CPCs limits their clinical application in load bearing regions of bone. Also, the in vivo resorption and replacement of CPC with new bone tissue is still controversial, thus further improvements of high clinical importance are required. Bioactive glasses (BGs) are biocompatible and able to bond to bone, stimulating new bone growth while dissolving over time. In the last decades extensive research has been performed analyzing the role of BGs in combination with different CaPs. Thus, the focal point of this review paper is to summarize the available research data on how injectable CPC properties could be improved or affected by the addition of BG as a secondary powder phase. It was found that despite the variances of setting time and compressive strength results, desirable injectable properties of bone cements can be achieved by the inclusion of BGs into CPCs. The published data also revealed that the degradation rate of CPCs is significantly improved by BG addition. Moreover, the presence of BG in CPCs improves the in vitro osteogenic differentiation and cell response as well as the tissue-material interaction in vivo. Properties of injectable calcium phosphate bone cements and bioactive glasses are discussed. Benefits that BG addition to CPC could bring are highlighted. Desirable injectable properties of bone cements can be achieved by the inclusion of BGs into CPCs. The presence of BG in CPC advances in vitro and in vivo response of the composites. Future research direction of BG containing injectable CPC composites are provided.
Collapse
|
6
|
Kumar N, Maher N, Amin F, Ghabbani H, Zafar MS, Rodríguez-Lozano FJ, Oñate-Sánchez RE. Biomimetic Approaches in Clinical Endodontics. Biomimetics (Basel) 2022; 7:biomimetics7040229. [PMID: 36546929 PMCID: PMC9775094 DOI: 10.3390/biomimetics7040229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
In the last few decades, biomimetic concepts have been widely adopted in various biomedical fields, including clinical dentistry. Endodontics is an important sub-branch of dentistry which deals with the different conditions of pulp to prevent tooth loss. Traditionally, common procedures, namely pulp capping, root canal treatment, apexification, and apexigonesis, have been considered for the treatment of different pulp conditions using selected materials. However, clinically to regenerate dental pulp, tissue engineering has been advocated as a feasible approach. Currently, new trends are emerging in terms of regenerative endodontics which have led to the replacement of diseased and non-vital teeth into the functional and healthy dentine-pulp complex. Root- canal therapy is the standard management option when dental pulp is damaged irreversibly. This treatment modality involves soft-tissue removal and then filling that gap through the obturation technique with a synthetic material. The formation of tubular dentine and pulp-like tissue formation occurs when stem cells are transplanted into the root canal with an appropriate scaffold material. To sum up tissue engineering approach includes three components: (1) scaffold, (2) differentiation, growth, and factors, and (3) the recruitment of stem cells within the pulp or from the periapical region. The aim of this paper is to thoroughly review and discuss various pulp-regenerative approaches and materials used in regenerative endodontics which may highlight the current trends and future research prospects in this particular area.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
- Correspondence: ; Tel.: +92-333-2818500
| | - Nazrah Maher
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Faiza Amin
- Department of Science of Dental Materials, Dow Dental College, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Hani Ghabbani
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | | | - Ricardo E. Oñate-Sánchez
- Department of Special Care in Dentistry, Hospital Morales Meseguer, IMIB-Arrixaca, University of Murcia, 30008 Murcia, Spain
| |
Collapse
|
7
|
Naguib GH, Nassar HM, Hamed MT. Antimicrobial properties of dental cements modified with zein-coated magnesium oxide nanoparticles. Bioact Mater 2021; 8:49-56. [PMID: 34541386 PMCID: PMC8424389 DOI: 10.1016/j.bioactmat.2021.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/29/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to test the antimicrobial properties of dental cements modified with magnesium oxide (MgO) nanoparticles. Zein-modified MgO nanoparticles (zMgO) in concentrations (0.0, 0.3, 0.5, and 1.0%) were mixed with dental cements (Fuji II, Rely X Temp E, Ionoglass Cem, Es Temp NE, and System P link). Eight discs were fabricated from each zMgO-cement pair for a total of 32 specimens for each cement. Characterization of the dental cements incorporating zMgO was done by X-ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM). The antimicrobial properties of the mixtures were tested using direct contact and agar diffusion assays against Streptococcus mutans, Staphylococcus aureus, Enterococcus faecalis, and Candida albicans. Data was analyzed using two-way analysis of variance and LSD post hoc test at 0.05 significance level. XRD spectra showed sharp peaks of zMgO indicating its high crystalline nature, while the amorphous dental cements with zMgO had broad peaks. FESEM analysis showed a uniform distribution of the zMgO nanoparticles in the cement. There were significant inhibition zone values associated with all concentrations of zMgO-cement mixtures tested compared to controls (p < 0.001) with a dose-response recorded only with Fuji II. Optical density values were significantly lower in zMgO groups compared to controls for all microorganisms. The effect was most prominent with Rely X against C. albicans and S. aureus. Dental cements containing zMgO showed significant antimicrobial properties that were dependent on the specific initial cement substrate. Antimicrobial nanoparticles (NPs) are widely used in dental materials to improve their biological properties. Magnesium Oxide (MgO) NPs are novel antimicrobial agents. Incorporation of MgO NPs in dental cements aids in minimizing bacterial colonization at the restoration margin. Zein polymer facilitates the dispersion of MgO NPs and avoid its agglomeration. Zein polymer effectively enhances the performance of MgO NPs.
Collapse
Affiliation(s)
- Ghada H. Naguib
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Corresponding author. Dr. Ghada Naguib Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, P.O.Box 80209, Jeddah, 21589, Saudi Arabia.
| | - Hani M. Nassar
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed T. Hamed
- Department of Oral and Maxillofacial Prosthodontics, King Abdulaziz University, Faculty of Dentistry, Jeddah, Saudi Arabia
- Department of Fixed Prosthodontics, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Wu S, Lei L, Zhang H, Liu J, Weir MD, Schneider A, Zhao L, Liu J, Xu HH. Nanographene oxide‐calcium phosphate to inhibit
Staphylococcus aureus
infection and support stem cells for bone tissue engineering. J Tissue Eng Regen Med 2020; 14:1779-1791. [PMID: 33025745 DOI: 10.1002/term.3139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Shizhou Wu
- Department of Orthopedic Surgery, West China Hospital Sichuan University Chengdu China
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics University of Maryland Dental School Baltimore MD USA
| | - Lei Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Hui Zhang
- Department of Orthopedic Surgery, West China Hospital Sichuan University Chengdu China
| | - Jin Liu
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics University of Maryland Dental School Baltimore MD USA
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shannxi Province for Dental and Maxillofacial Diseases, College of Stomatology Xi'an Jiaotong University Xi'an China
| | - Michael D. Weir
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics University of Maryland Dental School Baltimore MD USA
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences University of Maryland School of Dentistry Baltimore MD USA
| | - Liang Zhao
- Department of Orthopedic Surgery, Nanfang Hospital Southern Medical University Guangzhou China
| | - Jun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan University Chengdu China
| | - Hockin H.K. Xu
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics University of Maryland Dental School Baltimore MD USA
- Marlene and Stewart Greenebaum Cancer Center University of Maryland School of Medicine Baltimore MD USA
- Center for Stem Cell Biology and Regenerative Medicine University of Maryland School of Medicine Baltimore MD USA
| |
Collapse
|
9
|
Chang KC, Chen WC, Chen CH, Ko CL, Liu SM, Chen JC. Chemical cross-linking on gelatin-hyaluronan loaded with hinokitiol for the preparation of guided tissue regeneration hydrogel membranes with antibacterial and biocompatible properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111576. [PMID: 33321622 DOI: 10.1016/j.msec.2020.111576] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022]
Abstract
The mechanical properties and structural stability of hydrogels and their performance in antidegradation can be enhanced by cross-linking them with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC). However, residual EDC compromises the biocompatibility of cross-linked hydrogels and the formability of un-cross-linked hydrogels. In this study, a facile process for preparing hydrogel regenerative membranes exerting antibacterial effects and containing gelatin/hyaluronic acid (G/HA) through solution casting was proposed. The membranes were cross-linked with EDC (G/HA-Ec-0H) and impregnated with two concentrations of the antibacterial agent of hinokitiol (G/HA-Ec-2H and G/HA-Ec-4H). Amide bonds formed, and the rate of active amino acid fixation was higher than 90%, which was directly proportional to the degree of cross-linking. The G/HA-Ec-2H and G/HA-Ec-4H groups with hinokitiol showed good antibacterial properties. The rate of hydrogel degradation decreased, and the integrity of sample morphology was maintained at more than 80% for over 3 days in the immersion. Then, the hydrogel structures relaxed and disintegrated through a rapid degradation reaction within 24 h. The biocompatibility results showed that low concentrations of hinokitiol did not affect cell viability. Moreover, hydrogel membranes after 14 days of cell incubation showed good cell adhesion and proliferation. In summary, the membrane biostability of the cross-linked gelatin/hyaluronan hydrogels was enhanced by EDC at a biocompatible concentration, and the functionalized group of G/HA-Ec-2H shows potential as a biodegradable material for biocompatible tissue-guarded regeneration membranes with antibacterial properties.
Collapse
Affiliation(s)
- Kai-Chi Chang
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Wen-Cheng Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan; Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chih-Hua Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Chia-Ling Ko
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Shih-Ming Liu
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407, Taiwan
| | - Jian-Chih Chen
- Department of Orthopedics, Faculty of Medical School, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Chang KC, Lin DJ, Wu YR, Chang CW, Chen CH, Ko CL, Chen WC. Characterization of genipin-crosslinked gelatin/hyaluronic acid-based hydrogel membranes and loaded with hinokitiol: In vitro evaluation of antibacterial activity and biocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110074. [DOI: 10.1016/j.msec.2019.110074] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/26/2019] [Accepted: 08/10/2019] [Indexed: 12/15/2022]
|
11
|
Cichoń E, Ślósarczyk A, Zima A. Influence of Selected Surfactants on Physicochemical Properties of Calcium Phosphate Bone Cements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13656-13662. [PMID: 31553615 DOI: 10.1021/acs.langmuir.9b02415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The influence of the three nonionic surface active agents such as Tween 20, Tween 80, and Tetronic 90R4 on hydrolysis, setting reaction, microstructure, and mechanical properties of alpha tricalcium phosphate (α-TCP) based materials was determined. The study revealed that the addition of any of the surfactants mentioned above slightly prolonged the setting time of the tested cements (up to 5 min). On the other hand, it was found that surfactants influence the long-term hydrolysis reaction. The addition of surfactants also affected the microstructure of the final materials, especially after incubation in a simulated body fluid. Surface active agents also had an impact on mechanical behavior of the obtained cements. Sorbitan esters, Tween 20 and Tween 80, decreased compressive strength in comparison to the reference material (6.56 ± 1.59 MPa) to 3.54 ± 1.18 and 3.68 ± 1.03 MPa, respectively. Interestingly, Tetronic 90R4, never used before as an additive to calcium phosphate bone cements (CPCs) caused a 2-fold increase of this value (up to 13.28 ± 1.59 MPa). All the developed materials exhibited bioactivity in vitro. The obtained results shed new light on surfactants as CPCs additives. They should not only be considered as foaming agent or binders, but also they deserve more attention as modifiers affecting the physicochemical properties of α-TCP based materials.
Collapse
Affiliation(s)
- Ewelina Cichoń
- Faculty of Material Science and Ceramics , AGH University of Science and Technology , Al. Mickiewicza 30 , 30-059 Krakow , Poland
| | - Anna Ślósarczyk
- Faculty of Material Science and Ceramics , AGH University of Science and Technology , Al. Mickiewicza 30 , 30-059 Krakow , Poland
| | - Aneta Zima
- Faculty of Material Science and Ceramics , AGH University of Science and Technology , Al. Mickiewicza 30 , 30-059 Krakow , Poland
| |
Collapse
|
12
|
Dorozhkin SV. Calcium orthophosphates as a dental regenerative material. ADVANCED DENTAL BIOMATERIALS 2019:377-452. [DOI: 10.1016/b978-0-08-102476-8.00016-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|