1
|
Kumar A, Singh A. Surface Modification of Magnesium Alloy AZ91D Using Nanopowder Mixed Electrical Discharge Machining for Biodegradable Implant. J Long Term Eff Med Implants 2024; 34:83-94. [PMID: 38842236 DOI: 10.1615/jlongtermeffmedimplants.2024049752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Powder-mixed electrical discharge machining (PMEDM) enhances the effectiveness of the electric discharge machining process. It has been used on the Mg alloy AZ91D to address biodegradation concerns in implants. By combining nano-conductive powder particles with the dielectric fluid, PMEDM creates a functional surface. Process parameters like pulse on time, pulse off time, peak current, and powder concentration are examined to optimize material removal rate (MRR), surface roughness (SR), and white layer thickness (WLT). The optimization of input parameters was completed using the Taguchi L9 technique and further analyzed using ANOVA technique that illustrates Ton and pulse-off time as more significant process parameters for powder mixed electric discharge machining as compared with electric potential and peak current. The optimal surface roughness value is found to be 2.215 μm at 3A pulse current and 15 μs Toff time which suggest the material to be suitable for implants.
Collapse
Affiliation(s)
| | - Abhishek Singh
- Department of Chemistry, Dayanand Brajendra Swarup College (DBS) College, Kanpur 208006, India
| |
Collapse
|
2
|
Steglich D, Besson J, Reinke I, Helmholz H, Luczak M, Garamus VM, Wiese B, Höche D, Cyron CJ, Willumeit-Römer R. Strength and ductility loss of Magnesium-Gadolinium due to corrosion in physiological environment: Experiments and modeling. J Mech Behav Biomed Mater 2023; 144:105939. [PMID: 37348169 DOI: 10.1016/j.jmbbm.2023.105939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023]
Abstract
We propose a computational framework to study the effect of corrosion on the mechanical strength of magnesium (Mg) samples. Our work is motivated by the need to predict the residual strength of biomedical Mg implants after a given period of degradation in a physiological environment. To model corrosion, a mass-diffusion type model is used that accounts for localised corrosion using Weibull statistics. The overall mass loss is prescribed (e.g., based on experimental data). The mechanical behaviour of the Mg samples is modeled by a state-of-the-art Cazacu-Plunkett-Barlat plasticity model with a coupled damage model. This allowed us to study how Mg degradation in immersed samples reduces the mechanical strength over time. We performed a large number of in vitro corrosion experiments and mechanical tests to validate our computational framework. Our framework could predict both the experimentally observed loss of mechanical strength and the ductility due to corrosion for both tension and compression tests.
Collapse
Affiliation(s)
- Dirk Steglich
- Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany.
| | - Jacques Besson
- Centre des Matériaux, PSL Research University, Mines ParisTech, UMR CNRS 7633, BP 87, 91003 Evry Cedex, France
| | - Inken Reinke
- Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Heike Helmholz
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Monika Luczak
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Vasil M Garamus
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Björn Wiese
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Daniel Höche
- Institute of Surface Science, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Christian J Cyron
- Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany; Institute for Continuum and Material Mechanics, Hamburg University of Technology, Eissendorfer Str. 42, 21073 Hamburg, Germany
| | - Regine Willumeit-Römer
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| |
Collapse
|
3
|
Bita T, Antoniac A, Ciuca I, Miculescu M, Cotrut CM, Paltanea G, Dura H, Corneschi I, Antoniac I, Carstoc ID, Bodog AD. Effect of Fluoride Coatings on the Corrosion Behavior of Mg-Zn-Ca-Mn Alloys for Medical Application. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4508. [PMID: 37444822 DOI: 10.3390/ma16134508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
The most critical shortcoming of magnesium alloys from the point of view of medical devices is the high corrosion rate, which is not well-correlated with clinical needs. It is well- known that rapid degradation occurs when an implant made of Mg-based alloys is placed inside the human body. Consequently, the implant loses its mechanical properties and failure can occur even if it is not completely degraded. The corrosion products that appear after Mg-based alloy degradation, such as H2 and OH- can have an essential role in decreasing biocompatibility due to the H2 accumulation process in the tissues near the implant. In order to control the degradation process of the Mg-based alloys, different coatings could be applied. The aim of the current paper is to evaluate the effect of fluoride coatings on the corrosion behavior of magnesium alloys from the system Mg-Zn-Ca-Mn potentially used for orthopedic trauma implants. The main functional properties required for the magnesium alloys to be used as implant materials, such as surface properties and corrosion behavior, were studied before and after surface modifications by fluoride conversion, with and without preliminary sandblasting, of two magnesium alloys from the system Mg-Zn-Ca-Mn. The experimental results showed that chemical conversion treatment with hydrofluoric acid is useful as a method of increasing corrosion resistance for the experimental magnesium alloys from the Mg-Zn-Ca-Mn system. Also, high surface free energy values obtained for the alloys treated with hydrofluoric acid correlated with wettability lead to the conclusion that there is an increased chance for biological factor adsorption and cell proliferation. Chemical conversion treatment with hydrofluoric acid is useful as a method of increasing corrosion resistance for the experimental Mg-Zn-Ca-Mn alloys.
Collapse
Affiliation(s)
- Tiberiu Bita
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Ion Ciuca
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Marian Miculescu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Cosmin Mihai Cotrut
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Horatiu Dura
- Faculty of Medicine, Lucian Blaga University of Sibiu, 2A Lucian Blaga Street, 550169 Sibiu, Romania
| | - Iuliana Corneschi
- Romfire Protect Solution S.R.L., 39 Drumul Taberei, District 6, 061359 Bucharest, Romania
| | - Iulian Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
- Academy of Romania Scientist, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Ioana Dana Carstoc
- Faculty of Medicine, Lucian Blaga University of Sibiu, 2A Lucian Blaga Street, 550169 Sibiu, Romania
| | - Alin Danut Bodog
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania
| |
Collapse
|
4
|
Davis R, Singh A, Debnath K, Keshri AK, Soares P, Sopchenski L, Terryn HA, Prakash V. Surface modification of biodegradable Mg alloy by adapting µEDM capabilities with cryogenically-treated tool electrodes. THE INTERNATIONAL JOURNAL, ADVANCED MANUFACTURING TECHNOLOGY 2023; 126:4617-4636. [PMID: 37197058 PMCID: PMC10122982 DOI: 10.1007/s00170-023-11395-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/29/2023] [Indexed: 05/19/2023]
Abstract
Biomaterials are engineered to develop an interaction with living cells for therapeutic and diagnostic purposes. The last decade reported a tremendously rising shift in the requirement for miniaturized biomedical implants exhibiting high precision and comprising various biomaterials such as non-biodegradable titanium (Ti) alloys and biodegradable magnesium (Mg) alloys. The excellent mechanical properties and lightweight characteristics of Mg AZ91D alloy make it an emerging material for biomedical applications. In this regard, micro-electric discharge machining (µEDM) is an excellent method that can be used to make micro-components with high dimensional accuracy. In the present research, attempts were made to improve the µEDM capabilities by using cryogenically-treated copper (CTCTE) and brass tool electrodes (CTBTE) amid machining of biodegradable Mg AZ91D alloy, followed by their comparison with a pair of untreated copper (UCTE) and brass tool electrodes (UBTE) in terms of minimum machining-time and dimensional-irregularity. To investigate the possible modification on the surfaces achieved with minimum machining-time and dimensional-irregularity, the morphology, chemistry, micro-hardness, corrosion resistance, topography, and wettability of these surfaces were further examined. The surface produced by CTCTE exhibited the minimum surface micro-cracks and craters, acceptable recast layer thickness (2.6 µm), 17.45% improved micro-hardness, satisfactory corrosion resistance, adequate surface roughness (Ra: 1.08 µm), and suitable hydrophobic behavior (contact angle: 119°), confirming improved biodegradation rate. Additionally, a comparative analysis among the tool electrodes revealed that cryogenically-treated tool electrodes outperformed the untreated ones. CTCTE-induced modification on the Mg AZ91D alloy surface suggests its suitability in biodegradable medical implant applications.
Collapse
Affiliation(s)
- Rahul Davis
- Department of Mechanical Engineering, Vaugh Institute of Agricultural Engineering and Technology, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007 India
| | - Abhishek Singh
- Department of Mechanical Engineering, National Institute of Technology Patna, Patna, 800005 India
| | - Kishore Debnath
- Department of Mechanical Engineering, National Institute of Technology Meghalaya, Shillong, 793003 India
| | - Anup Kumar Keshri
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Patna, Patna, 801106 India
| | - Paulo Soares
- Department of Mechanical Engineering, Pontifícia Universidade Católica Do Paraná, Curitiba, PR 80215-901 Brazil
| | - Luciane Sopchenski
- Department of Materials and Chemistry, Research Group Electrochemical and Surface Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Herman A. Terryn
- Department of Materials and Chemistry, Research Group Electrochemical and Surface Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ved Prakash
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Patna, Patna, 801106 India
| |
Collapse
|
5
|
Quinn C, Van Gaalen K, McHugh PE, Kopp A, Vaughan TJ. An enhanced phenomenological model to predict surface-based localised corrosion of magnesium alloys for medical use. J Mech Behav Biomed Mater 2023; 138:105637. [PMID: 36610284 DOI: 10.1016/j.jmbbm.2022.105637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
This study developed an enhanced phenomenological model for the predictions of surface-based localised corrosion of magnesium alloys for use in medical applications. The modelling framework extended previous surface-based approaches by considering the role of β-phase components throughout the material volume to better predict spatial and temporal aspects of surface-based corrosion in magnesium alloys. This enhanced surface-based corrosion model offers many advantages as it (i) captures multi-directional pitting, (ii) captures various pit morphologies, (iii) eliminates mesh sizing effects, (iv) reduces computational cost through custom time controls (v) offers control of pit sizing and (vi) produces corrosion rates that are independent of pitting parameter values. The model was fully implemented in three dimensions within the finite element framework and shows excellent potential to enable robust predictions of the long-term performance of magnesium-based implants undergoing corrosion.
Collapse
Affiliation(s)
- Conall Quinn
- Biomedical Engineering and Biomechanics Research Centre, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Kerstin Van Gaalen
- Biomedical Engineering and Biomechanics Research Centre, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland; Meotec GmbH, 52068, Aachen, Germany
| | - Peter E McHugh
- Biomedical Engineering and Biomechanics Research Centre, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | | | - Ted J Vaughan
- Biomedical Engineering and Biomechanics Research Centre, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland.
| |
Collapse
|
6
|
Davis R, Singh A, Debnath K, Soares P, Och SH, Keshri AK, Sopchenski L, Terryn HA. Enhanced abrasive-mixed- µ-EDM performance towards improved surface characteristics of biodegradable Mg AZ31B alloy. THE INTERNATIONAL JOURNAL, ADVANCED MANUFACTURING TECHNOLOGY 2022; 124:2685-2700. [PMID: 36567894 PMCID: PMC9758470 DOI: 10.1007/s00170-022-10673-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/06/2022] [Indexed: 05/29/2023]
Abstract
The non-degradable metallic implants, such as bone screws, often act as the source of dysfunction and harmful corrosion products in the aqueous environment inside the human body. Many of these implants are fixed either temporarily or permanently into the human body, and therefore, both need to match tight tolerances with a remarkably finished surface to eradicate burrs or striations. In this regard, the new generation of degradable magnesium (Mg) alloy implants with excellent osseointegration and low elasticity (like that of human bone), minimizing stress shielding, have been identified as potential candidates to challenge surgical procedures reintervention. However, the biological response of an implant toward the cells in vivo can be predominantly regulated by modifying the surface chemistry, morphology, and corrosion characteristics. Powder or abrasive-mixed-micro-electric discharge machining (A-M-µ-EDM) is gaining attention for executing precision machining and achieving a simultaneous surface modification on micro-manufactured surfaces, suitable for clinical applications. Therefore, the present research aimed at improving the surface characteristics of Mg AZ31B alloy via an augmented performance of A-M-µ-EDM by adopting copper and brass-micro-electrodes (C-µ-E and B-µ-E) in association with distinct abrasive particle concentrations (APCs: 0, 1.5, 3, 4.5, and 6 g/l) of bioactive zinc abrasives. To enhance the A-M-µ-EDM capabilities, the experiments were designed with a one-variable-at-a-time (OVAT) strategy, and the trial runs were conducted using different combinations of µ-electrodes and APCs. The superior performance of A-M-µ-EDM was noticed with the fusion of C-µ-E and 3 g/l APC in terms of minimum machining time (MT) and dimensional deviation (DD). The additional outcomes of this work reported favorable improvements in surface morphology, chemistry, topography, wettability, microhardness, and corrosion resistance on the A-M-µ-EDMed sample of interest.
Collapse
Affiliation(s)
- Rahul Davis
- Department of Mechanical Engineering, Vaugh Institute of Agricultural Engineering and Technology, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007 India
| | - Abhishek Singh
- Department of Mechanical Engineering, National Institute of Technology Patna, Patna, 800005 India
| | - Kishore Debnath
- Department of Mechanical Engineering, National Institute of Technology Meghalaya, Shillong, 793003 India
| | - Paulo Soares
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901 Brazil
| | - Stephan Hennings Och
- Department of Mechanical Engineering, Federal University of Paraná, Curitiba, PR Brazil
| | - Anup Kumar Keshri
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Patna, Patna, 801106 India
| | - Luciane Sopchenski
- Department of Materials and Chemistry, Research Group Electrochemical and Surface Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Herman A. Terryn
- Department of Materials and Chemistry, Research Group Electrochemical and Surface Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
7
|
Vaghefinazari B, Wierzbicka E, Visser P, Posner R, Arrabal R, Matykina E, Mohedano M, Blawert C, Zheludkevich M, Lamaka S. Chromate-Free Corrosion Protection Strategies for Magnesium Alloys-A Review: PART I-Pre-Treatment and Conversion Coating. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8676. [PMID: 36500170 PMCID: PMC9736347 DOI: 10.3390/ma15238676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 05/02/2023]
Abstract
Corrosion protection systems based on hexavalent chromium are traditionally perceived to be a panacea for many engineering metals including magnesium alloys. However, bans and strict application regulations attributed to environmental concerns and the carcinogenic nature of hexavalent chromium have driven a considerable amount of effort into developing safer and more environmentally friendly alternative techniques that provide the desired corrosion protection performance for magnesium and its alloys. Part I of this review series considers the various pre-treatment methods as the earliest step involved in the preparation of Mg surfaces for the purpose of further anti-corrosion treatments. The decisive effect of pre-treatment on the corrosion properties of both bare and coated magnesium is discussed. The second section of this review covers the fundamentals and performance of conventional and state-of-the-art conversion coating formulations including phosphate-based, rare-earth-based, vanadate, fluoride-based, and LDH. In addition, the advantages and challenges of each conversion coating formulation are discussed to accommodate the perspectives on their application and future development. Several auspicious corrosion protection performances have been reported as the outcome of extensive ongoing research dedicated to the development of conversion coatings, which can potentially replace hazardous chromium(VI)-based technologies in industries.
Collapse
Affiliation(s)
- Bahram Vaghefinazari
- Institute of Surface Science, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Ewa Wierzbicka
- Departamento de Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Department of Functional Materials and Hydrogen Technology, Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw, Poland
| | | | - Ralf Posner
- Henkel AG & Co., KGaA, 40589 Düsseldorf, Germany
| | - Raúl Arrabal
- Departamento de Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Endzhe Matykina
- Departamento de Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Marta Mohedano
- Departamento de Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carsten Blawert
- Institute of Surface Science, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Mikhail Zheludkevich
- Institute of Surface Science, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Sviatlana Lamaka
- Institute of Surface Science, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| |
Collapse
|
8
|
Chen J, Dai J, Qian J, Li W, Li R, Pang D, Wan G, Li P, Xu S. Influence of Surface Roughness on Biodegradability and Cytocompatibility of High-Purity Magnesium. MATERIALS 2022; 15:ma15113991. [PMID: 35683285 PMCID: PMC9182346 DOI: 10.3390/ma15113991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/16/2022]
Abstract
High-purity magnesium (Mg) is a promising biodegradable metal for oral and maxillofacial implants. Appropriate surface roughness plays a critical role in the degradation behavior and the related cellular processes of biodegradable Mg-based metals. Nevertheless, the most optimized surface roughness has been questionable, especially for Mg-based oral and maxillofacial implants. Three representative scales of surface roughness were investigated in this study, including smooth (Sa < 0.5 µm), moderately rough (Sa between 1.0−2.0 µm), and rough (Sa > 2.0 µm). The results indicated that the degradation rate of the Mg specimen in the cell culture medium was significantly accelerated with increased surface roughness. Furthermore, an extract test revealed that Mg with different roughness did not induce an evident cytotoxic effect. Nonetheless, the smooth Mg surface had an adversely affected cell attachment. Therefore, the high-purity Mg with a moderately rough surface exhibited the most optimized balance between biodegradability and overall cytocompatibility.
Collapse
Affiliation(s)
- Jiahao Chen
- Department of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China; (J.C.); (J.D.)
| | - Jingtao Dai
- Department of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China; (J.C.); (J.D.)
| | - Junyu Qian
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.Q.); (G.W.)
| | - Weirong Li
- Medical Device Division, Dongguan Eontec Co., Ltd., Dongguan 523662, China; (W.L.); (R.L.); (D.P.)
| | - Ronghui Li
- Medical Device Division, Dongguan Eontec Co., Ltd., Dongguan 523662, China; (W.L.); (R.L.); (D.P.)
| | - Dong Pang
- Medical Device Division, Dongguan Eontec Co., Ltd., Dongguan 523662, China; (W.L.); (R.L.); (D.P.)
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.Q.); (G.W.)
| | - Ping Li
- Department of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China; (J.C.); (J.D.)
- Correspondence: (P.L.); (S.X.)
| | - Shulan Xu
- Department of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China; (J.C.); (J.D.)
- Correspondence: (P.L.); (S.X.)
| |
Collapse
|
9
|
Quan PH, Antoniac I, Miculescu F, Antoniac A, Păltânea VM, Robu A, Bița AI, Miculescu M, Saceleanu A, Bodog AD, Saceleanu V. Fluoride Treatment and In Vitro Corrosion Behavior of Mg-Nd-Y-Zn-Zr Alloys Type. MATERIALS 2022; 15:ma15020566. [PMID: 35057284 PMCID: PMC8779082 DOI: 10.3390/ma15020566] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/26/2022]
Abstract
Fluoride conversion coatings on Mg present many advantages, among which one can find the reduction of the corrosion rate under “in vivo” or “in vitro” conditions and the promotion of the calcium phosphate deposition. Moreover, the fluoride ions released from MgF2 do not present cytotoxic effects and inhibit the biofilm formation, and thus these treated alloys are very suitable for cardiovascular stents and biodegradable orthopedic implants. In this paper, the biodegradation behavior of four new magnesium biodegradable alloys that have been developed in the laboratory conditions, before and after surface modifications by fluoride conversion (and sandblasting) coatings, are analyzed. We performed structural and surface analysis (XRD, SEM, contact angle) before and after applying different surface treatments. Furthermore, we studied the electrochemical behavior and biodegradation of all experimental samples after immersion test performed in NaCl solution. For a better evaluation, we also used LM and SEM for evaluation of the corroded samples after immersion test. The results showed an improved corrosion resistance for HF treated alloy in the NaCl solution. The chemical composition, uniformity, thickness and stability of the layers generated on the surface of the alloys significantly influence their corrosion behavior. Our study reveals that HF treatment is a beneficial way to improve the biofunctional properties required for the studied magnesium alloys to be used as biomaterials for manufacturing the orthopedic implants.
Collapse
Affiliation(s)
- Pham Hong Quan
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Iulian Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
- Academy of Romania Scientist, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Florin Miculescu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Veronica Manescu Păltânea
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Alina Robu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Ana-Iulia Bița
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Marian Miculescu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Adriana Saceleanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, 2A Lucian Blaga Street, 550169 Sibiu, Romania
| | - Alin Dănuț Bodog
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania
| | - Vicentiu Saceleanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, 2A Lucian Blaga Street, 550169 Sibiu, Romania
| |
Collapse
|
10
|
Sun Y, Helmholz H, Will O, Damm T, Wiese B, Luczak M, Peschke E, Luthringer-Feyerabend B, Ebel T, Hövener JB, Glüer C, Willumeit-Römer R. Dynamic in vivo monitoring of fracture healing process in response to magnesium implant with multimodal imaging: Pilot longitudinal study in a rat external fixation model. Biomater Sci 2022; 10:1532-1543. [DOI: 10.1039/d2bm00051b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rodent models are commonly used in pre-clinical research of magnesium (Mg) -based and other types of biomaterials for fracture treatment. Most studies selected unstable fixation methods, and there is a...
Collapse
|
11
|
Special Issue "Absorbable Metals for Biomedical Applications". MATERIALS 2021; 14:ma14143835. [PMID: 34300754 PMCID: PMC8306265 DOI: 10.3390/ma14143835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022]
|
12
|
Ibrahim AMH, Takacova M, Jelenska L, Csaderova L, Balog M, Kopacek J, Svastova E, Krizik P. The effect of surface modification of TiMg composite on the in-vitro degradation response, cell survival, adhesion, and proliferation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112259. [PMID: 34225844 DOI: 10.1016/j.msec.2021.112259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022]
Abstract
This study is aimed to evaluate the influence of mechanical surface treatment on the degradation response, cell survival, adhesion, and proliferation of a TiMg composite material. Two sets of the TiMg samples with different surface characteristics were studied: i) as-machined samples (TiMg-T) and ii) samples with a mechanically modified surface (TiMg-P). Surface roughness was determined using a confocal microscope. Degradation rates (DR) were evaluated in artificial Plasma, HBSS, and NaCl 0.9%. The cell viability was evaluated using an MTT assay. The initial cell adhesion and spreading were investigated using the direct contact assay. An xCELLigence system was employed to provide real-time cell proliferation. The focal adhesion and cell morphological changes were also examined. The DR of TiMg-P decreased by ⁓5 times compared with that of TiMg-T. Surface of the TiMg-P specimens after 72 h exposure to either HBSS or Plasma was passivated by a layer enriched with bioactive Ca/P species. The cell viability of L929 and Saos-2 after 72 h incubation for TiMg-P was 94.6% and 94.8% compared with 73.8% and 74.3% obtained for TiMg-T, respectively. The direct contact assay showed that the initial adhesion and spreading of the L929 cells incubated with TiMg-P was more pronounced compared with that of TiMg-T. The proliferation rate of Saos-2 cells incubated with TiMg-P was higher when compared with that of TiMg-T, and was almost comparable to that of the DMEM-blank between the 24 and 72 h interval. TiMg-P had a pronounced difference in the number and area of Focal Adhesions (FA) compared with that of TiMg-T. The morphology of cells incubated with TiMg-P was not altered. The results confirmed that the smooth and less strained surface of the TiMg-P samples effectively improved the in-vitro degradation response, cell survival, adhesion, and proliferation.
Collapse
Affiliation(s)
- Ahmed Mohamed Hassan Ibrahim
- Institute of Materials and Machine Mechanics, The Slovak Academy of Sciences, Dubravska cesta 9, 84513 Bratislava, Slovakia; Centre of Excellence for Advanced Materials Application, The Slovak Academy of Sciences, Dubravska cesta 9, 84511 Bratislava, Slovakia; Institute of Materials Science, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, Paulinska 16, 91724 Trnava, Slovakia
| | - Martina Takacova
- Biomedical Research Center, Institute of Virology, Department of Cancer Biology, The Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Lenka Jelenska
- Biomedical Research Center, Institute of Virology, Department of Cancer Biology, The Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Lucia Csaderova
- Biomedical Research Center, Institute of Virology, Department of Cancer Biology, The Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Martin Balog
- Institute of Materials and Machine Mechanics, The Slovak Academy of Sciences, Dubravska cesta 9, 84513 Bratislava, Slovakia; Centre of Excellence for Advanced Materials Application, The Slovak Academy of Sciences, Dubravska cesta 9, 84511 Bratislava, Slovakia.
| | - Juraj Kopacek
- Centre of Excellence for Advanced Materials Application, The Slovak Academy of Sciences, Dubravska cesta 9, 84511 Bratislava, Slovakia; Biomedical Research Center, Institute of Virology, Department of Cancer Biology, The Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Eliska Svastova
- Centre of Excellence for Advanced Materials Application, The Slovak Academy of Sciences, Dubravska cesta 9, 84511 Bratislava, Slovakia; Biomedical Research Center, Institute of Virology, Department of Cancer Biology, The Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Peter Krizik
- Institute of Materials and Machine Mechanics, The Slovak Academy of Sciences, Dubravska cesta 9, 84513 Bratislava, Slovakia
| |
Collapse
|
13
|
In Vitro Physical-Chemical Behaviour Assessment of 3D-Printed CoCrMo Alloy for Orthopaedic Implants. METALS 2021. [DOI: 10.3390/met11060857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this study, a CoCrMo-based metallic alloy was manufactured using a 3D-printing method with metallic powder and a laser-based 3D printer. The obtained material was immersed in a simulated body fluid (SBF) similar to blood plasma and kept 2 months at 37 °C and in relative motion against the SBF in order to mimic the real motion of body fluids against an implant. At determined time intervals (24, 72, 168, 336, and 1344 h), both the metallic sample and SBF were characterized from a physical-chemical point of view in order to assess the alloy’s behaviour in the SBF. Firstly, the CoCrMo based metallic sample was characterized by scanning electron microscopy (SEM) for assessing surface corrosion and X-ray diffraction (XRD) for determining if and/or what kind of spontaneous protective layer was formed on the surface; secondly, the SBF was characterized by pH, electrical conductivity (EC), and inductively coupled plasma mass spectroscopy (ICP-MS) for assessing the metal ion release. We determined that a 3D-printed CoCrMo alloy does not represent a potential biological hazard in terms of the concentration of metal ion releases, since it forms, in a relatively short period of time, a protective CoCr layer on its exposed surface.
Collapse
|
14
|
Chow DHK, Wang J, Wan P, Zheng L, Ong MTY, Huang L, Tong W, Tan L, Yang K, Qin L. Biodegradable magnesium pins enhanced the healing of transverse patellar fracture in rabbits. Bioact Mater 2021; 6:4176-4185. [PMID: 33997501 PMCID: PMC8099917 DOI: 10.1016/j.bioactmat.2021.03.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
Displaced fractures of patella often require open reduction surgery and internal fixation to restore the extensor continuity and articular congruity. Fracture fixation with biodegradable magnesium (Mg) pins enhanced fracture healing. We hypothesized that fixation with Mg pins and their degradation over time would enhance healing of patellar fracture radiologically, mechanically, and histologically. Transverse patellar fracture surgery was performed on thirty-two 18-weeks old female New Zealand White Rabbits. The fracture was fixed with a pin made of stainless steel or pure Mg, and a figure-of-eight stainless steel band wire. Samples were harvested at week 8 or 12, and assessed with microCT, tensile testing, microindentation, and histology. Microarchitectural analysis showed that Mg group showed 12% higher in the ratio of bone volume to tissue volume at week 8, and 38.4% higher of bone volume at week 12. Tensile testing showed that the failure load and stiffness of Mg group were 66.9% and 104% higher than the control group at week 8, respectively. At week 12, Mg group was 60.8% higher in ultimate strength than the control group. Microindentation showed that, compared to the Control group, Mg group showed 49.9% higher Vickers hardness and 31% higher elastic modulus at week 8 and 12, respectively. At week 12, the new bone of Mg group remodelled to laminar bone, but those of the control group remained woven bone-like. Fixation of transverse patellar fracture with Mg pins and its degradation enhanced new bone formation and mechanical properties of the repaired patella compared to the Control group. Kirschner wires (K-wire) with tension band wire is widely used fixation implants for repairing of displaced patellar fractures. Fixation of patellar fracture with Mg pins enhanced new bone formation and mechanical properties of the repaired patella. With a stainless steel tension band wire, Mg pins may be an alternative to K-wire for fixation of patellar fractures.
Collapse
Affiliation(s)
- Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiali Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Peng Wan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China.,School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Michael Tim Yun Ong
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Le Huang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lili Tan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
15
|
Influence of surface condition on the degradation behaviour and biocompatibility of additively manufactured WE43. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112016. [PMID: 33947530 DOI: 10.1016/j.msec.2021.112016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/10/2021] [Accepted: 03/05/2021] [Indexed: 11/24/2022]
Abstract
The further development of future Magnesium based biodegradable implants must consider not only the freedom of design, but also comprise implant volume reduction, as both aspects are crucial for the development of higher functionalised implants, such as plate systems or scaffold grafts in bone replacement therapy. As conventional manufacturing methods such as turning and milling are often accompanied by limitations concerning implant design and functionality, the process of laser powder bed fusion (LPBF) specifically for Magnesium alloys was recently introduced. In addition, the control of the degradation rate remains a key aspect regarding biodegradable implants. Recent studies focusing on the degradation behaviour of additively manufactured Magnesium scaffolds disclosed additional intricacies when compared to conventionally manufactured Magnesium parts, as a notably larger surface area was exposed to the immersion medium and scaffold struts degraded non-uniformly. Moreover, chemical etching as post processing technique is applied to remove sintered powder particles from the surface, altering surface chemistry. In this study, cylindrical Magnesium specimens were manufactured by LPBF and surfaces were consecutively modified by phosphoric etching and machining. Degradation behaviour and biocompatibility were then investigated, revealing that etched samples exhibited the overall lowest degradation rates, but experienced large pit formation, while the reduction of surface roughness resulted in a delay of degradation.
Collapse
|
16
|
Structure and Corrosion Behavior of TiO2 Thin Films Deposited by ALD on a Biomedical Magnesium Alloy. COATINGS 2021. [DOI: 10.3390/coatings11010070] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Magnesium alloys have been investigated as temporary biomaterials for orthopedic applications. Despite their high osseointegration and mechanical (bone-like) properties, Mg alloys quickly degrade in simulated physiological media. Surface coatings can be deposited onto Mg alloys to slow the corrosion rate of these biomaterials in chloride-rich environments. TiO2 films show high potential for improving the corrosion resistance of magnesium alloys. This article presents the structural observations and corrosion behavior of TiO2 thin films deposited onto a MgCa2Zn1Gd3 alloy using atomic layer deposition (ALD). Surface morphologies were observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM), and Raman analysis of the deposited TiO2 films was also carried out. The corrosion behavior of the uncoated alloy and the alloy coated with TiO2 was measured in Ringer’s solution at 37 °C using electrochemical and immersion tests. The microscopic observations of the TiO2 thin films with a thickness of about 52.5 and 70 nm showed that the surface morphology was homogeneous without visible defects on the TiO2 surface. The electrochemical and immersion test results showed that the thin films decreased the corrosion rate of the studied Mg-based alloy, and the corrosion resistance was higher in the thicker TiO2 film.
Collapse
|
17
|
Lin J, Nguyen NYT, Zhang C, Ha A, Liu HH. Antimicrobial Properties of MgO Nanostructures on Magnesium Substrates. ACS OMEGA 2020; 5:24613-24627. [PMID: 33015479 PMCID: PMC7528336 DOI: 10.1021/acsomega.0c03151] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/25/2020] [Indexed: 05/19/2023]
Abstract
Magnesium (Mg) and its alloys have attracted increasing attention in recent years as medical implants for repairing musculoskeletal injuries because of their promising mechanical and biological properties. However, rapid degradation of Mg and its alloys in physiological fluids limited their clinical translation because the accumulation of hydrogen (H2) gas and fast release of OH- ions could adversely affect the healing process. Moreover, infection is a major concern for internally implanted devices because it could lead to biofilm formation, prevent host cell attachment on the implants, and interfere osseointegration, resulting in implant failure or other complications. Fabricating nanostructured magnesium oxide (MgO) on magnesium (Mg) substrates is promising in addressing both problems because it could slow down the degradation process and improve the antimicrobial activity. In this study, nanostructured MgO layers were created on Mg substrates using two different surface treatment techniques, i.e., anodization and electrophoretic deposition (EPD), and cultured with Staphylococcus aureus in vitro to determine their antimicrobial properties. At the end of the 24-h bacterial culture, the nanostructured MgO layers on Mg prepared by anodization or EPD both showed significant bactericidal effect against S. aureus. Thus, nanostructured MgO layers on Mg are promising for reducing implant-related infections and complications and should be further explored for clinical translation toward antimicrobial biodegradable implants.
Collapse
Affiliation(s)
- Jiajia Lin
- Material
Science & Engineering Program, University
of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Nhu-Y Thi Nguyen
- Microbiology
Program, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Chaoxing Zhang
- Material
Science & Engineering Program, University
of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Alexandra Ha
- Department
of Bioengineering, University of California,
Riverside, 900 University
Avenue, Riverside, California 92521, United States
| | - Huinan Hannah Liu
- Material
Science & Engineering Program, University
of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
- Microbiology
Program, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
- Department
of Bioengineering, University of California,
Riverside, 900 University
Avenue, Riverside, California 92521, United States
| |
Collapse
|
18
|
Kania A, Nolbrzak P, Radoń A, Niemiec-Cyganek A, Babilas R. Effect of the Thickness of TiO 2 Films on the Structure and Corrosion Behavior of Mg-based Alloys. MATERIALS 2020; 13:ma13051065. [PMID: 32121052 PMCID: PMC7084950 DOI: 10.3390/ma13051065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 01/30/2023]
Abstract
This article discusses the influence of the thickness of TiO2 films deposited onto MgCa2Zn1 and MgCa2Zn1Gd3 alloys on their structure, corrosion behavior, and cytotoxicity. TiO2 layers (about 200 and 400 nm thick) were applied using magnetron sputtering, which provides strong substrate adhesion. Such titanium dioxide films have many attractive properties, such as high corrosion resistance and biocompatibility. These oxide coatings stimulate osteoblast adhesion and proliferation compared to alloys without the protective films. Microscopic observations show that the TiO2 surface morphology is homogeneous, the grains have a spherical shape (with dimensions from 18 to 160 nm). Based on XRD analysis, it can be stated that all the studied TiO2 layers have an anatase structure. The results of electrochemical and immersion studies, performed in Ringer’s solution at 37 °C, show that the corrosion resistance of the studied TiO2 does not always increase proportionally with the thickness of the films. This is a result of grain refinement and differences in the density of the titanium dioxide films applied using the physical vapor deposition (PVD) technique. The results of 24 h immersion tests indicate that the lowest volume of evolved H2 (5.92 mL/cm2) was with the 400 nm thick film deposited onto the MgCa2Zn1Gd3 alloy. This result is in agreement with the good biocompatibility of this TiO2 film, confirmed by cytotoxicity tests.
Collapse
Affiliation(s)
- Aneta Kania
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, Poland;
- Correspondence: ; Tel.: +48-32-237-1936
| | | | - Adrian Radoń
- Łukasiewicz Research Network, Institute of Non-Ferrous Metals, Sowinskiego 5, 44-100 Gliwice, Poland;
| | - Aleksandra Niemiec-Cyganek
- Professor Zbigniew Religa Foundation of Cardiac Surgery Development, Bioengineering Laboratory, Wolności 345a, 41-800 Zabrze, Poland;
| | - Rafał Babilas
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, Poland;
| |
Collapse
|
19
|
Li W, Liu X, Zheng Y, Wang W, Qiao W, Yeung KWK, Cheung KMC, Guan S, Kulyasova OB, Valiev RZ. In vitro and in vivo studies on ultrafine-grained biodegradable pure Mg, Mg–Ca alloy and Mg–Sr alloy processed by high-pressure torsion. Biomater Sci 2020; 8:5071-5087. [DOI: 10.1039/d0bm00805b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
High-pressure torsion processing is an effective way to significantly refine the microstructure and consequently modify the mechanical properties, biodegradable behaviors and biocompatibility of pure Mg, Mg–1Ca and Mg–2Sr alloys.
Collapse
Affiliation(s)
- Wenting Li
- Department of Materials Science and Engineering
- College of Engineering
- Peking University
- Beijing 100871
- China
| | - Xiao Liu
- Department of Materials Science and Engineering
- College of Engineering
- Peking University
- Beijing 100871
- China
| | - Yufeng Zheng
- Department of Materials Science and Engineering
- College of Engineering
- Peking University
- Beijing 100871
- China
| | - Wenhao Wang
- Department of Orthopedics and Traumatology
- The University of Hong Kong
- Pokfulam
- China
| | - Wei Qiao
- Department of Orthopedics and Traumatology
- The University of Hong Kong
- Pokfulam
- China
| | - Kelvin W. K. Yeung
- Department of Orthopedics and Traumatology
- The University of Hong Kong
- Pokfulam
- China
| | - Kenneth M. C. Cheung
- Department of Orthopedics and Traumatology
- The University of Hong Kong
- Pokfulam
- China
| | - Shaokang Guan
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | | | - R. Z. Valiev
- Ufa State Aviation Technical University
- Ufa 450008
- Russia
| |
Collapse
|
20
|
Scarcello E, Lison D. Are Fe-Based Stenting Materials Biocompatible? A Critical Review of In Vitro and In Vivo Studies. J Funct Biomater 2019; 11:jfb11010002. [PMID: 31877701 PMCID: PMC7151573 DOI: 10.3390/jfb11010002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Fe-based materials have increasingly been considered for the development of biodegradable cardiovascular stents. A wide range of in vitro and in vivo studies should be done to fully evaluate their biocompatibility. In this review, we summarized and analyzed the findings and the methodologies used to assess the biocompatibility of Fe materials. The majority of investigators drew conclusions about in vitro Fe toxicity based on indirect contact results. The setup applied in these tests seems to overlook the possible effects of Fe corrosion and does not allow for understanding of the complexity of released chemical forms and their possible impact on tissue. It is in particular important to ensure that test setups or interpretations of in vitro results do not hide some important mechanisms, leading to inappropriate subsequent in vivo experiments. On the other hand, the sample size of existing in vivo implantations is often limited, and effects such as local toxicity or endothelial function are not deeply scrutinized. The main advantages and limitations of in vitro design strategies applied in the development of Fe-based alloys and the correlation with in vivo studies are discussed. It is evident from this literature review that we are not yet ready to define an Fe-based material as safe or biocompatible.
Collapse
|
21
|
Abstract
Mg-xGd alloys show potential to be used for degradable implants. As rare earth containing alloys, they are also of special interest for wrought products. All applications from medical to engineering uses require a low and controlled degradation or corrosion rate without pitting. Impurities from fabrication or machining, like Fe inclusions, encourage pitting, which inhibits uniform material degradation. This work investigates a suitable etching method to remove surface contamination and to understand the influence of etching on surface morphology. Acetic acid (HAc) etching as chemical surface treatment has been used to remove contamination from the surface. Extruded Mg-xGd (x = 2, 5 and 10) discs were etched with 250 g/L HAc solution in a volume of 5 mL or 10 mL for different times. The microstructure in the near surface region was characterized. Surface characterization was done by SEM, EDS, interferometry, and ToF-SIMS (time-of-flight secondary ion mass spectrometry) analysis. Different etching kinetics were observed due to microstructure and the volume of etching solution. Gd rich particles and higher etching temperatures due to smaller etchant volumes promote the formation of pits. Removal of 2–9 µm of material from the surface was sufficient to remove surface Fe contamination and to result in a plain surface morphology.
Collapse
|