1
|
Rathore P, Montz B, Hung SH, Pandey PK, Perry SL, Emrick T, Schiffman JD. Electrospinning of Self-Assembling Oligopeptides into Nanofiber Mats: The Impact of Peptide Composition and End Groups. Biomacromolecules 2025; 26:1604-1613. [PMID: 39907636 DOI: 10.1021/acs.biomac.4c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Low-molecular-weight oligopeptides can be electrospun into nanofiber mats. However, the mechanism underlying their electrospinnability is not well-understood. In this study, we used solid-phase peptide synthesis to produce the oligopeptide FFKK, to which the aromatic end-capping groups naphthalene, pyrene, and tetraphenylporphyrin were attached. Nuclear magnetic resonance, circular dichroism, and electrospray ionization mass spectrometry were used to characterize the oligopeptide structures. We investigated the effect of end-caps and oligopeptide concentration on their self-assembly as well as on their electrospinnability in fluorinated solvents. All oligopeptides with aromatic end-caps were amenable to electrospinning. Attenuated total reflectance Fourier transform infrared spectroscopy and microrheology results support the hypothesis that at sufficiently high concentrations, the self-assembled structures interact strongly, which facilitates electrospinning. Moreover, the results from this fundamental study can be extended to nonpeptidic small molecules possessing strong intermolecular interactions.
Collapse
Affiliation(s)
- Prerana Rathore
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Brian Montz
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Shao-Hsiang Hung
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Pankaj Kumar Pandey
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Todd Emrick
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
2
|
Alizadeh S, Majidi J, Jahani M, Esmaeili Z, Nokhbedehghan Z, Aliakbar Ahovan Z, Nasiri H, Mellati A, Hashemi A, Chauhan NPS, Gholipourmalekabadi M. Engineering of a decellularized bovine skin coated with antibiotics-loaded electrospun fibers with synergistic antibacterial activity for the treatment of infectious wounds. Biotechnol Bioeng 2024; 121:1453-1464. [PMID: 38234099 DOI: 10.1002/bit.28659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
An ideal antibacterial wound dressing with strong antibacterial behavior versus highly drug-resistant bacteria and great wound-healing capacity is still being developed. There is a clinical requirement to progress the current clinical cares that fail to fully restore the skin structure due to post-wound infections. Here, we aim to introduce a novel two-layer wound dressing using decellularized bovine skin (DBS) tissue and antibacterial nanofibers to design a bioactive scaffold with bio-mimicking the native extracellular matrix of both dermis and epidermis. For this purpose, polyvinyl alcohol (PVA)/chitosan (CS) solution was loaded with antibiotics (colistin and meropenem) and electrospun on the surface of the DBS scaffold to fabricate a two-layer antibacterial wound dressing (DBS-PVA/CS/Abs). In detail, the characterization of the fabricated scaffold was conducted using biomechanical, biological, and antibacterial assays. Based on the results, the fabricated scaffold revealed a homogenous three-dimensional microstructure with a connected pore network, a high porosity and swelling ratio, and favorable mechanical properties. In addition, according to the cell culture result, our fabricated two-layer scaffold surface had a good interaction with fibroblast cells and provided an excellent substrate for cell proliferation and attachment. The antibacterial assay revealed a strong antibacterial activity of DBS-PVA/CS/Abs against both standard strain and multidrug-resistant clinical isolates of Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli. Our bilayer antibacterial wound dressing is strongly suggested as an admirable wound dressing for the management of infectious skin injuries and now promises to advance with preclinical and clinical research.
Collapse
Affiliation(s)
- Sanaz Alizadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jila Majidi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mozhgan Jahani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Esmaeili
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Nokhbedehghan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Aliakbar Ahovan
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hajar Nasiri
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Mellati
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- NanoBiotechnology & Regenerative Medicine Innovation Group, Noavarn Salamat ZHINO (PHC), Tehran, Iran
| |
Collapse
|
3
|
Flinčec Grgac S, Biruš TD, Tarbuk A, Dekanić T, Palčić A. The Durable Chitosan Functionalization of Cellulosic Fabrics. Polymers (Basel) 2023; 15:3829. [PMID: 37765683 PMCID: PMC10537615 DOI: 10.3390/polym15183829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
In this work, the durability of chitosan functionalization of cellulosic textile substrates, cotton and cotton/polyester blended fabrics, was studied. Chitosan is a naturally occurring biopolymer that can be produced inexpensively. It should be dissolved in an acidic solution to activate its antimicrobial and other properties, i.e., good biocompatibility, bioabsorbability, wound healing, hemostatic, anti-infective, antibacterial, non-toxic, and adsorptive properties. The application of chitosan to textile products has been researched to achieve antimicrobial properties, but the durability, after several maintenance cycles, has not. Chitosan functionalization was carried out using maleic acid (MA) and 1,2,3,4-butanetetracarboxylic acid (BTCA) as crosslinking and chitosan-activating agents and sodium hypophosphite monohydrate as a catalyst. To determine durability, the fabrics were subjected to 10 maintenance cycles according to ISO 6330:2012 using Reference detergent 3 and drying according to Procedure F. The properties were monitored after the 3rd and 10th cycles. The crosslinking ability of chitosan with cellulosic fabrics was monitored by Fourier infrared spectrometry using the ATR technique (FTIR-ATR). Changes in mechanical properties, whiteness and yellowing, and antimicrobial properties were determined using standard methods. Compared to maleic acid, BTCA proved to be a better crosslinking agent for chitosan.
Collapse
Affiliation(s)
- Sandra Flinčec Grgac
- Department of Textile Chemistry and Ecology, University of Zagreb Faculty of Textile Technology, Prilaz baruna Filipovića 28a, HR-10000 Zagreb, Croatia
| | - Tea-Dora Biruš
- Department of Textile Chemistry and Ecology, University of Zagreb Faculty of Textile Technology, Prilaz baruna Filipovića 28a, HR-10000 Zagreb, Croatia
| | - Anita Tarbuk
- Department of Textile Chemistry and Ecology, University of Zagreb Faculty of Textile Technology, Prilaz baruna Filipovića 28a, HR-10000 Zagreb, Croatia
| | - Tihana Dekanić
- Department of Textile Chemistry and Ecology, University of Zagreb Faculty of Textile Technology, Prilaz baruna Filipovića 28a, HR-10000 Zagreb, Croatia
| | - Ana Palčić
- Department of Textile Chemistry and Ecology, University of Zagreb Faculty of Textile Technology, Prilaz baruna Filipovića 28a, HR-10000 Zagreb, Croatia
| |
Collapse
|
4
|
Alizadeh K, Dezvare Y, Kamyab S, Amirian J, Brangule A, Bandere D. Development of Composite Sponge Scaffolds Based on Carrageenan (CRG) and Cerium Oxide Nanoparticles (CeO 2 NPs) for Hemostatic Applications. Biomimetics (Basel) 2023; 8:409. [PMID: 37754160 PMCID: PMC10527261 DOI: 10.3390/biomimetics8050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
In this study, a novel absorbable hemostatic agent was developed using carrageenan (CRG) as a natural polymer and cerium oxide nanoparticles (CeO2 NPs). CRG-CeO2-0.5 and CRG-CeO2-1 composites were prepared by compositing CeO2 to CRG + CeO2 at a weight ratio of 0.5:100 and 1:100, respectively. The physicochemical and structural properties of these compounds were studied and compared with pristine CRG. Upon incorporation of CeO2 nanoparticles into the CRG matrix, significant reductions in hydrogel degradation were observed. In addition, it was noted that CRG-CeO2 exhibited better antibacterial and hemostatic properties than CRG hydrogel without CeO2 NPs. The biocompatibility of the materials was tested using the NIH 3T3 cell line, and all samples were found to be nontoxic. Particularly, CRG-CeO2-1 demonstrated superior hemostatic effects, biocompatibility, and a lower degradation rate since more CeO2 NPs were present in the CRG matrix. Therefore, CRG-CeO2-1 has the potential to be used as a hemostatic agent and wound dressing.
Collapse
Affiliation(s)
- Kimia Alizadeh
- Department of Life Science, Faculty of New Sciences and Technologies, University of Tehran, North Kargar Street, Tehran 1439957131, Iran; (K.A.); (Y.D.); (S.K.)
| | - Yasaman Dezvare
- Department of Life Science, Faculty of New Sciences and Technologies, University of Tehran, North Kargar Street, Tehran 1439957131, Iran; (K.A.); (Y.D.); (S.K.)
| | - Shirin Kamyab
- Department of Life Science, Faculty of New Sciences and Technologies, University of Tehran, North Kargar Street, Tehran 1439957131, Iran; (K.A.); (Y.D.); (S.K.)
| | - Jhaleh Amirian
- Department of Pharmaceutical Chemistry, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia; (A.B.); (D.B.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| | - Agnese Brangule
- Department of Pharmaceutical Chemistry, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia; (A.B.); (D.B.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| | - Dace Bandere
- Department of Pharmaceutical Chemistry, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia; (A.B.); (D.B.)
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| |
Collapse
|
5
|
Kolasa M, Czerczak K, Fraczyk J, Szymanski L, Lewicki S, Bednarowicz A, Tarzynska N, Sikorski D, Szparaga G, Draczynski Z, Cierniak S, Brzoskowska U, Galita G, Majsterek I, Bociaga D, Krol P, Kolesinska B. Evaluation of Polysaccharide-Peptide Conjugates Containing the RGD Motif for Potential Use in Muscle Tissue Regeneration. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6432. [PMID: 36143745 PMCID: PMC9503514 DOI: 10.3390/ma15186432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
New scaffold materials composed of biodegradable components are of great interest in regenerative medicine. These materials should be: stable, nontoxic, and biodegrade slowly and steadily, allowing the stable release of biodegradable and biologically active substances. We analyzed peptide-polysaccharide conjugates derived from peptides containing RGD motif (H-RGDS-OH (1), H-GRGDS-NH2 (2), and cyclo(RGDfC) (3)) and polysaccharides as scaffolds to select the most appropriate biomaterials for application in regenerative medicine. Based on the results of MTT and Ki-67 assays, we can state that the conjugates containing calcium alginate and the ternary nonwoven material were the most supportive of muscle tissue regeneration. Scanning electron microscopy imaging and light microscopy studies with hematoxylin-eosin staining showed that C2C12 cells were able to interact with the tested peptide-polysaccharide conjugates. The release factor (Q) varied depending on both the peptide and the structure of the polysaccharide matrix. LDH, Alamarblue®, Ki-67, and cell cycle assays indicated that peptides 1 and 2 were characterized by the best biological properties. Conjugates containing chitosan and the ternary polysaccharide nonwoven with peptide 1 exhibited very high antibacterial activity against Staphylococcus aureus and Klebsiella pneumoniae. Overall, the results of the study suggested that polysaccharide conjugates with peptides 1 and 2 can be potentially used in regenerative medicine.
Collapse
Affiliation(s)
- Marcin Kolasa
- Military Institute of Hygiene and Epidemiology, Department of Pharmacology and Toxicology, Kozielska 4, 01-163 Warsaw, Poland
| | - Katarzyna Czerczak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Justyna Fraczyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Lukasz Szymanski
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Postępu 36A, 05-552 Magdalenka, Poland
| | - Slawomir Lewicki
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Postępu 36A, 05-552 Magdalenka, Poland
| | - Anna Bednarowicz
- Institute of Material Sciences of Textiles and Polymer Composites, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Nina Tarzynska
- Institute of Material Sciences of Textiles and Polymer Composites, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Dominik Sikorski
- Institute of Material Sciences of Textiles and Polymer Composites, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Grzegorz Szparaga
- Institute of Material Sciences of Textiles and Polymer Composites, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Zbigniew Draczynski
- Institute of Material Sciences of Textiles and Polymer Composites, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | | | | | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Dorota Bociaga
- Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland
| | - Paulina Krol
- Lukasiewicz Research Network-Textile Research Institute, Brzezinska 5/15, 92-103 Lodz, Poland
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
6
|
Prema D, Balashanmugam P, Kumar J, Venkatasubbu GD. Fabrication of GO/ZnO nanocomposite incorporated patch for enhanced wound healing in streptozotocin (STZ) induced diabetic rats. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Coppola S, Avagliano C, Sacchi A, Laneri S, Calignano A, Voto L, Luzzetti A, Berni Canani R. Potential Clinical Applications of the Postbiotic Butyrate in Human Skin Diseases. Molecules 2022; 27:1849. [PMID: 35335213 PMCID: PMC8949901 DOI: 10.3390/molecules27061849] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Human skin is the largest organ and the most external interface between the environment and the body. Vast communities of viruses, bacteria, archaea, fungi, and mites, collectively named the skin microbiome (SM), cover the skin surface and connected structures. Skin-resident microorganisms contribute to the establishment of cutaneous homeostasis and can modulate host inflammatory responses. Imbalances in the SM structure and function (dysbiosis) are associated with several skin conditions. Therefore, novel target for the skincare field could be represented by strategies, which restore or preserve the SM natural/individual balance. Several of the beneficial effects exerted by the SM are aroused by the microbial metabolite butyrate. Since butyrate exerts a pivotal role in preserving skin health, it could be used as a postbiotic strategy for preventing or treating skin diseases. Herein, we describe and share perspectives of the potential clinical applications of therapeutic strategies using the postbiotic butyrate against human skin diseases.
Collapse
Affiliation(s)
- Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (S.C.); (L.V.); (A.L.)
- ImmunoNutritionLab at the CEINGE-Biotecnologie Avanzate s.c.ar.l Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Carmen Avagliano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (C.A.); (A.S.); (S.L.); (A.C.)
| | - Antonia Sacchi
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (C.A.); (A.S.); (S.L.); (A.C.)
| | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (C.A.); (A.S.); (S.L.); (A.C.)
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (C.A.); (A.S.); (S.L.); (A.C.)
| | - Luana Voto
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (S.C.); (L.V.); (A.L.)
- ImmunoNutritionLab at the CEINGE-Biotecnologie Avanzate s.c.ar.l Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Luzzetti
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (S.C.); (L.V.); (A.L.)
- ImmunoNutritionLab at the CEINGE-Biotecnologie Avanzate s.c.ar.l Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (S.C.); (L.V.); (A.L.)
- ImmunoNutritionLab at the CEINGE-Biotecnologie Avanzate s.c.ar.l Research Center, University of Naples Federico II, 80131 Naples, Italy
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, 80131 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
8
|
di Lorenzo R, Bernardi A, Grumetto L, Sacchi A, Avagliano C, Coppola S, de Giovanni di Santa Severina AF, Bruno C, Paparo L, Laneri S, Dini I. Phenylalanine Butyramide Is a New Cosmetic Ingredient with Soothing and Anti-Reddening Potential. Molecules 2021; 26:6611. [PMID: 34771020 PMCID: PMC8586959 DOI: 10.3390/molecules26216611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 01/11/2023] Open
Abstract
Human skin is colonized by diverse commensal microbes, making up the skin microbiota (SM), contributing to skin integrity and homeostasis. Many of the beneficial effects aroused by the SM are exerted by microbial metabolites such as short-chain fatty acids (SCFAs), including butyric acid. The SCFAs can be used in cosmetic formulations against skin diseases to protect SM by preserving and/or restoring their natural balance. Unpleasant sensorial properties and unfavorable physico-chemical properties of butyrate strongly limit its cosmetic use. In contrast, some butyrate derivatives, including phenylalanine butyramide (C13H18N2O2, FBA), a solid form of butyric acid, are odorless while retaining the pharmacokinetic properties and safety profile of butyric acid. This study assessed the FBA's permeation across the skin and its soothing and anti-reddening potential to estimate its cosmetic application. The dosage method used to estimate FBA's levels was validated to be sure of analytical results. The FBA diffusion tests were estimated in vitro using a Franz-type vertical diffusion cell. The soothing action was evaluated in vivo by Colorimeter CL400, measuring the erythema index. The results suggest that the FBA represents an innovative way to exploit the benefits of butyric acid in the cosmetic fields since it cannot reach the bloodstream, is odorless, and has a significative soothing action (decrease the erythema index -15.7% after 30', and -17.8% after 60').
Collapse
Affiliation(s)
- Ritamaria di Lorenzo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.d.L.); (A.B.); (L.G.); (A.S.); (C.A.)
| | - Antonietta Bernardi
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.d.L.); (A.B.); (L.G.); (A.S.); (C.A.)
| | - Lucia Grumetto
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.d.L.); (A.B.); (L.G.); (A.S.); (C.A.)
| | - Antonia Sacchi
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.d.L.); (A.B.); (L.G.); (A.S.); (C.A.)
| | - Carmen Avagliano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.d.L.); (A.B.); (L.G.); (A.S.); (C.A.)
| | - Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (S.C.); (A.F.d.G.d.S.S.); (C.B.); (L.P.)
- ImmunoNutritionLab at the CEINGE-Biotecnologie Avanzate s.c.ar.l Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Fiorenza de Giovanni di Santa Severina
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (S.C.); (A.F.d.G.d.S.S.); (C.B.); (L.P.)
- ImmunoNutritionLab at the CEINGE-Biotecnologie Avanzate s.c.ar.l Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Cristina Bruno
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (S.C.); (A.F.d.G.d.S.S.); (C.B.); (L.P.)
- ImmunoNutritionLab at the CEINGE-Biotecnologie Avanzate s.c.ar.l Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Lorella Paparo
- Department of Translational Medical Science, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy; (S.C.); (A.F.d.G.d.S.S.); (C.B.); (L.P.)
- ImmunoNutritionLab at the CEINGE-Biotecnologie Avanzate s.c.ar.l Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.d.L.); (A.B.); (L.G.); (A.S.); (C.A.)
| | - Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.d.L.); (A.B.); (L.G.); (A.S.); (C.A.)
| |
Collapse
|
9
|
Murugesan S, Scheibel T. Chitosan‐based
nanocomposites for medical applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210251] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Selvakumar Murugesan
- Lehrstuhl Biomaterialien Universität Bayreuth Bayreuth Germany
- Department of Metallurgical and Materials Engineering National Institute of Technology Karnataka Mangalore India
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien Universität Bayreuth Bayreuth Germany
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Bayerisches Polymerinstitut (BPI) University Bayreuth Bayreuth Germany
| |
Collapse
|
10
|
Nurzynska A, Klimek K, Palka K, Szajnecki Ł, Ginalska G. Curdlan-Based Hydrogels for Potential Application as Dressings for Promotion of Skin Wound Healing-Preliminary In Vitro Studies. MATERIALS 2021; 14:ma14092344. [PMID: 33946409 PMCID: PMC8125403 DOI: 10.3390/ma14092344] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 02/03/2023]
Abstract
The aim of this work was to establish whether novel curdlan-based hydrogels enriched with Ca2+ ions may be considered as potential candidates for dressings, for the acceleration of skin wound healing. Firstly, biomaterials were allocated for evaluation of structural and mechanical properties. Subsequently, the ability of hydrogels to absorb simulated wound fluid and water vapor permeability, as well their capacity to release calcium ions, was evaluated. The biocompatibility of biomaterials was assessed using normal human skin fibroblasts. Importantly, the main features of the obtained curdlan-based hydrogels were compared with those of KALTOSTAT® (a commercial calcium sodium alginate wound dressing). The obtained results showed that curdlan-based biomaterials possessed a mesoporous structure (pore diameter ranged from 14–48 nm) and exhibited a good ability to absorb simulated wound fluid (swelling ratio close to 974–1229%). Moreover, in a wet state, they enabled proper water vapor transmission rate (>2000 g/m2/day), thanks to their hydrogel structure. Finally, it was found that biomaterial composed of 11 wt.% of curdlan (Cur_11%) possessed the most desirable biological properties in vitro. It released a beneficial amount of calcium ions to the aqueous environment (approximately 6.12 mM), which significantly enhanced fibroblast viability and proliferation. Taking into account the beneficial properties of Cur_11% biomaterial, it seems justified to subject it to more advanced cell culture experiments in vitro and to in vivo studies in order to determine its precise influence on skin wound healing.
Collapse
Affiliation(s)
- Aleksandra Nurzynska
- Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (A.N.); (G.G.)
| | - Katarzyna Klimek
- Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (A.N.); (G.G.)
- Correspondence: ; Tel.: +48-81-448-7028 or +48-81-448-7020
| | - Krzysztof Palka
- Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 26 Street, 20-618 Lublin, Poland;
| | - Łukasz Szajnecki
- Department of Polymer Chemistry, Maria Curie-Skłodowska University in Lublin, M. Curie-Skłodowska Sq. 2, 20-031 Lublin, Poland;
| | - Grazyna Ginalska
- Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (A.N.); (G.G.)
| |
Collapse
|
11
|
Amini Moghaddam M, Di Martino A, Šopík T, Fei H, Císař J, Pummerová M, Sedlařík V. Polylactide/Polyvinylalcohol-Based Porous Bioscaffold Loaded with Gentamicin for Wound Dressing Applications. Polymers (Basel) 2021; 13:921. [PMID: 33802770 PMCID: PMC8002437 DOI: 10.3390/polym13060921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
This study explores the feasibility of modifying the surface liquid spraying method to prepare porous bioscaffolds intended for wound dressing applications. For this purpose, gentamicin sulfate was loaded into polylactide-polyvinyl alcohol bioscaffolds as a highly soluble (hygroscopic) model drug for in vitro release study. Moreover, the influence of inorganic salts including NaCl (10 g/L) and KMnO4 (0.4 mg/L), and post-thermal treatment (T) (80 °C for 2 min) on the properties of the bioscaffolds were studied. The bioscaffolds were characterized by scanning electron microscopy, Fourier Transform infrared spectroscopy, and differential scanning calorimetry. In addition, other properties including porosity, swelling degree, water vapor transmission rate, entrapment efficiency, and the release of gentamicin sulfate were investigated. Results showed that high concentrations of NaCl (10 g/L) in the aqueous phase led to an increase of around 68% in the initial burst release due to the increase in porosity. In fact, porosity increased from 68.1 ± 1.2 to 94.1 ± 1.5. Moreover, the thermal treatment of the Polylactide-polyvinyl alcohol/NaCl (PLA-PVA/NaCl) bioscaffolds above glass transition temperature (Tg) reduced the initial burst release by approximately 11% and prolonged the release of the drug. These results suggest that thermal treatment of polymer above Tg can be an efficient approach for a sustained release.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vladimír Sedlařík
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, tr. Tomase Bati 5678, 760 01 Zlin, Czech Republic; (M.A.M.); (A.D.M.); (T.Š.); (H.F.); (J.C.); (M.P.)
| |
Collapse
|
12
|
Lan X, Zhou T, Dong Y, Li Y, Liu X, Qiang W, Liu Y, Guo Y, Noman M, Li J, Du L, Li X, Yang J. Dermal toxicity, dermal irritation, and delayed contact sensitization evaluation of oil body linked oleosin-hEGF microgel emulsion via transdermal drug delivery for wound healing. Cutan Ocul Toxicol 2021; 40:45-53. [PMID: 33438439 DOI: 10.1080/15569527.2021.1874008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objective: The expression of therapeutic proteins in plant oil body bioreactors has attracted much attention. But its safety is not yet clear. This article determines the risk of safety after using the drug. Methods: The oil body-linked oleosin-hEGF microgel emulsion (OBEME) was prepared by mixing the xanthan gum with suitable concentrations in an appropriate proportion. Skin irritation and sensitization reaction were investigated in rats and guinea pigs using OBEME as test article.Results: The OBEME did not produce dermal erythema/eschar or oedema responses. The dermal subacute and subchronic toxicity of OBEME were evaluated in accordance with OECD guidelines. Compared with the control group, the basic physical signs, such as weight, feed, drinking, excretion, and behaviour of experimental animals, were not abnormal. In addition, no abnormality was found in haematological parameters, biochemical indexes, relative organ weight, and histopathological observation of organs, and there was no significant difference compared with normal saline treatment group. Therefore, we conclude that OBEME has no toxic effects and is safe and reliable to be used for topical application.
Collapse
Affiliation(s)
- Xinxin Lan
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, PR China
| | - Tingting Zhou
- Jilin Kingmed for Clinical Laboratory Co., Ltd, Changchun, PR China
| | - Yue Dong
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, PR China
| | - Yuyan Li
- Jilin Kingmed for Clinical Laboratory Co., Ltd, Changchun, PR China
| | - Xinyu Liu
- Jilin Kingmed for Clinical Laboratory Co., Ltd, Changchun, PR China
| | - Weidong Qiang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, PR China
| | - Yan Liu
- Jilin Kingmed for Clinical Laboratory Co., Ltd, Changchun, PR China
| | - Yongxin Guo
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, PR China
| | - Muhammad Noman
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, PR China
| | - Jing Li
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, PR China
| | - Linna Du
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, PR China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, PR China
| | - Jing Yang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
13
|
The Chitosan Implementation into Cotton and Polyester/Cotton Blend Fabrics. MATERIALS 2020; 13:ma13071616. [PMID: 32244687 PMCID: PMC7178377 DOI: 10.3390/ma13071616] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/14/2020] [Accepted: 03/26/2020] [Indexed: 11/17/2022]
Abstract
Chitosan is an environmentally friendly agent that is used to achieve the antimicrobial properties of textiles. Nowadays, the binding of chitosan to the textiles has been thoroughly researched due to the increasing demands on the stability of achieved properties during the textile care processes. Most crosslinking agents for chitosan are not safe for humans or environment, such as glutaric aldehyde (GA) and formaldehyde derivatives. Eco-friendly polycarboxyilic acids (PCAs) are usually used in after-treatment. In this work, chitosan powder was dissolved in citric acid with sodium hydrophosphite (SHP) as a catalyst. Standard cotton (CO) and polyester/cotton (PES/CO) fabrics were pretreated in 20% NaOH, similar to mercerization, in order to open the structure of the cotton fibers and hydrolyze polyester fibers, continued by finishing in the gelatin chitosan bath. Afterwards, the hot rinsing process, followed by drying and curing, closed the achieved structure. The main objective was to achieve durable antimicrobial properties to multiple maintenance cycles CO and PES/CO fabric in order to apply it in a hospital environment. The characterization of fabrics was performed after treatment, first and fifth washing cycles according ISO 6330:2012 by field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR-ATR), electrokinetic analysis (EKA), by the determination of tensile properties and mechanical damage (wear), and the antimicrobial activity. The application of 20% NaOH led to the swelling and mercerization of cotton cellulose, and hydrolysis of polyester, resulting in better mechanical properties. It has been confirmed that the chitosan particles were well implemented into the cotton fiber and onto to the polyester component of PES/CO blend. The presence of chitosan was confirmed after five washing cycles, but in lower quantity. However, achieved antimicrobial activity is persistent.
Collapse
|
14
|
Latańska I, Kozera-Żywczyk A, Paluchowska EB, Owczarek W, Kaszuba A, Noweta M, Tazbir J, Kolesińska B, Draczyński Z, Sujka W. Characteristic Features of Wound Dressings Based on Butyric-Acetic Chitin Copolyesters-Results of Clinical Trials. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E4170. [PMID: 31842270 PMCID: PMC6947344 DOI: 10.3390/ma12244170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 01/22/2023]
Abstract
The article presents the results of clinical trials of wound dressings whose main ingredient is butyric-acetic chitin copolyester (BAC 90:10). It is a chitin derivative soluble in typical organic solvents. During the trial, the dressings were used on wounds resulting from venous insufficiency or diabetes. The trial evaluated the safety of use and efficacy of three forms of the dressing including porous membrane (Medisorb R Membrane), porous membrane with silver (Medisorb R Ag), and powder (Medisorb R Powder). The clinical trial had a multi-centre character. Three medical units were engaged in the study. The trial included 36 patients (12 men and 24 women). The mean age of the participants was 65 years of age (age range: 26-96). The choice of dressings was made on the basis of preliminary evaluation of the wound, clinical signs of infection, or risk of infection. Medisorb R Membrane dressing was used in 23 patients, Medisorb R Ag dressing was used in 15 patients, and Medisorb R powder was used in two patients. During the course of the trial, there were 10 control visits planned. The obtained results prove the safety and efficacy of dressings in question. The efficacy of treatment was evaluated as good. In the majority of patients, the ulceration was decreased both on the surface and in depth. The success of the treatment relied not only on the applied dressing, but also the stage of the basic disease, the accompanying diseases, and the age of the patient.
Collapse
Affiliation(s)
- Ilona Latańska
- Tricomed SA, Świętojańska Street 5/9, 93-493 Lodz, Poland;
| | - Anna Kozera-Żywczyk
- Military Institute of Medicine, Ministry of National Defense Central Clinical Hospital, Dermatology Clinic, Szaserów Street 128, 04-141 Warsaw, Poland; (A.K.-Ż.); (E.B.P.); (W.O.)
| | - Elwira Beata Paluchowska
- Military Institute of Medicine, Ministry of National Defense Central Clinical Hospital, Dermatology Clinic, Szaserów Street 128, 04-141 Warsaw, Poland; (A.K.-Ż.); (E.B.P.); (W.O.)
| | - Witold Owczarek
- Military Institute of Medicine, Ministry of National Defense Central Clinical Hospital, Dermatology Clinic, Szaserów Street 128, 04-141 Warsaw, Poland; (A.K.-Ż.); (E.B.P.); (W.O.)
| | - Andrzej Kaszuba
- Wł. Biegański Provincial Specialised Hospital, Dermatology, Paediatric Dermatology and Oncologic Dermatology Ward, Dermatology, UM Paediatric Dermatology and Oncologic Dermatology Clinic, Kniaziewicza Street 1/5, 91-347 Lodz, Poland; (A.K.); (M.N.)
| | - Marcin Noweta
- Wł. Biegański Provincial Specialised Hospital, Dermatology, Paediatric Dermatology and Oncologic Dermatology Ward, Dermatology, UM Paediatric Dermatology and Oncologic Dermatology Clinic, Kniaziewicza Street 1/5, 91-347 Lodz, Poland; (A.K.); (M.N.)
| | - Józef Tazbir
- Citonet Lodz Limited Company, Wound Treatment Clinic., Świętojańska Street 5/9, 93-493 Lodz, Poland;
| | - Beata Kolesińska
- Organic Chemistry Unit, Lodz University of Technology, Żeromskiego Street 116, 90-924 Lodz, Poland;
| | - Zbigniew Draczyński
- Institute of Material Science of Textiles and Polymer Composites, Lodz University of Technology, Żeromskiego Street 116, 90-924 Lodz, Poland;
| | - Witold Sujka
- Tricomed SA, Świętojańska Street 5/9, 93-493 Lodz, Poland;
| |
Collapse
|