1
|
Hashem MH, Hammoud M, Ahmad MN, Hmadeh M. Electrospun Polyvinyl Chloride/UiO-66(COOH) 2 Nanocomposite Membranes for Efficient and Rapid Heavy Metal Removal. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16275-16286. [PMID: 40014804 DOI: 10.1021/acsami.4c22963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
This study explores the effectiveness of a new composite membrane fabricated from poly(vinyl chloride) (PVC) and the UiO-66(COOH)2 metal-organic framework (MOF) for the removal of heavy metals from water. The electrospinning technique was successfully employed to homogeneously incorporate UiO-66(COOH)2 nanocrystals into PVC, producing fibrous composite membranes. The membranes were fully characterized using several techniques such as scanning electron microscopy (SEM), capillary flow porometry, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), and tensile strength analysis. The metal removal performance of the membranes was evaluated against lead, cadmium, and mercury in both single and mixed metal solutions at different concentrations. Results indicated a high removal efficiency (>90%) and selectivity for lead in both single and mixed solutions, especially at concentrations less than 50 ppm, along with a high adsorption capacity (Qmax = 203 mg/g). While cadmium demonstrated a lower % removal efficiency of 40% in mixed solutions compared to 80% in single solutions, it exhibited the highest adsorption capacity (Qmax = 1312 mg/g) among the three metals. For mercury, however, the decrease in removal efficiency was more pronounced, with only 10% removal in mixed systems and the lowest adsorption capacity (Qmax = 40.5 mg/g). Further experiments showed that the presence of salts, such as chlorides, nitrates, and sulfates, did not significantly affect lead and cadmium removal. Conversely, mercury removal was consistently low, regardless of these conditions. Additionally, temperature-dependent studies revealed that increasing temperature enhanced both removal efficiency and adsorption capacity, confirming that the process was spontaneous and endothermic. Interestingly, the reusability of the membranes showed a consistent removal efficiency of over 90% for lead after four cycles of use, particularly at 15 ppm, although the other metals exhibited a decrease in efficiency. Almost all pollutants showed a better fit for Langmuir and second-order kinetic models, suggesting that adsorption is a single-layered chemical adsorption process. Furthermore, a membrane holder design was fabricated using three-dimensional (3D) printing and tested to underscore the potential of PVC/MOFs composite membranes as effective materials for efficient and rapid heavy metal remediation (5 mins) in contaminated water sources. The holder significantly improved lead removal efficiency while maintaining mechanical stability, addressing the issue of handling MOFs powder alone by providing a robust matrix and support for both the MOFs and the membrane. This approach facilitates easier handling while maintaining a high efficiency, paving the way for potential industrial applications.
Collapse
Affiliation(s)
- Mohammad H Hashem
- Department of Mechanical Engineering, American University of Beirut, Beirut 1107 2020, Lebanon
- Bahaa and Walid Bassatne Department of Chemical Engineering and Advanced Energy, Faculty of Engineering and Architecture, American University of Beirut, P.O. Box 11-0236, Beirut 1107 2020, Lebanon
| | - Mohammad Hammoud
- Bahaa and Walid Bassatne Department of Chemical Engineering and Advanced Energy, Faculty of Engineering and Architecture, American University of Beirut, P.O. Box 11-0236, Beirut 1107 2020, Lebanon
| | - Mohammad N Ahmad
- Bahaa and Walid Bassatne Department of Chemical Engineering and Advanced Energy, Faculty of Engineering and Architecture, American University of Beirut, P.O. Box 11-0236, Beirut 1107 2020, Lebanon
| | - Mohamad Hmadeh
- Chemistry Department, American University of Beirut, P.O.Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon
| |
Collapse
|
2
|
Al-Sadeq N, Perez-Puyana VM, Hashem MH, Harb MS, Romero A. Evaluation of biobased materials in the development of polymeric membranes for water capture and purification. Int J Biol Macromol 2025; 297:139791. [PMID: 39818383 DOI: 10.1016/j.ijbiomac.2025.139791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
The current study addresses the pressing issue of unsustainable water management, particularly in regions experiencing high water stress. It focuses on examining the viability of polymeric membranes composed of biobased materials, mainly chitosan, for various sustainable water management solutions. The membranes evaluated in the study were blends of PVC with either chitosan-silica or charcoal-silica, designed to enhance their functionality and performance. Scanning Electron Microscopy was used to analyze the fiber morphologies of the different membrane compositions. All tested membranes demonstrated robust mechanical properties. Notably, the PVC-Chitosan-Silica (8:2:4) membrane also showed good mechanical properties, combined with superior thermal stability. It excelled in functional tests, achieving water capture efficiencies up to 1.2 ml/g and lead removal rates as high as 92 %. Furthermore, this membrane displayed a lower mass loss at elevated temperatures, suggesting enhanced durability under thermal stress. These results underline the effective combination of chitosan and silica in improving the mechanical strength and thermal stability of polymeric membranes, making the PVC-Chitosan-Silica (8:2:4) particularly effective for advanced water management applications. The study illustrates the unique capabilities of chitosan and silica, advocating for their further exploration and optimization in future sustainable water treatment technologies, which could potentially lead to groundbreaking advancements in the field.
Collapse
Affiliation(s)
- Noor Al-Sadeq
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain; Department of Chemical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon.
| | - Víctor M Perez-Puyana
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Mohammad H Hashem
- Department of Chemical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Mohammad S Harb
- Department of Chemical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Alberto Romero
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
3
|
Motawea EA, El-Sabban HA, Kang JH, Ko YG. Efficient multifunctional PPy-NTs/PEI@alginate@NiFe 2O 4 magnetic beads for heavy metals removal: Experimental design and optimization interpretations. Int J Biol Macromol 2024:137437. [PMID: 39522899 DOI: 10.1016/j.ijbiomac.2024.137437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/21/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
A highly effective magnetic nanocomposite alginate beads (PPy-NTs/PEI@Alg@NiFe2O4) were synthesized using alginate as the encapsulation reagent and polypyrrole/polyethylene imine with nano NiFe2O4 as a functional filler to remove toxic Zn2+ and Pb2+ from polluted water. A response surface methodology (RSM) was used to statistically assess the influences of pH and the adsorbent dose on the adsorption performance. PPy-NTs/PEI@Alg@NiFe2O4 magnetic microbeads exhibited the optimal adsorption capacity qe (18.6 mg/g) at pH 6 and a 2 mg/L dose for Zn2+ removal. In comparison, the optimal qe (32.6 mg/g) was reached at pH 4.5 with a 1.5 mg/L dose for Pb2+ remediation. From batch experiments, maximal absorption capacities of 53.3 mg/g and 22 mg/g were achieved for Pb2+ and Zn2+, respectively, at 313 K. The pseudo-second-order kinetic model fitted the results well, suggesting that the chemisorption process regulates adsorption. Isotherm models indicate the presence of homogeneous adsorption sites from the well-fitting to Langmuir isotherm. An investigation of the effects of temperature and thermodynamic considerations revealed the endothermic nature of Zn2+ and Pb2+ absorption. The Fourier transform infrared spectra showed that -NH, -NH2, and -COO- are the main groups in PPy-NTs/PEI@Alg@NiFe2O4 composite beads that were responsible for Zn2+ and Pb2+ removal from polluted water.
Collapse
Affiliation(s)
- Eman A Motawea
- Analysis and Evaluation Department, Egyptian Petroleum Research Institute (EPRI), 1 Ahmed El Zomor St., Nasr City, Cairo 11727, Egypt; Central Analytical Laboratories, Egyptian Petroleum Research Institute (EPRI), 1 Ahmed El Zomor St., Nasr City, Cairo 11727, Egypt.
| | - Heba A El-Sabban
- Analysis and Evaluation Department, Egyptian Petroleum Research Institute (EPRI), 1 Ahmed El Zomor St., Nasr City, Cairo 11727, Egypt; Central Analytical Laboratories, Egyptian Petroleum Research Institute (EPRI), 1 Ahmed El Zomor St., Nasr City, Cairo 11727, Egypt; Integrated Materials Chemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Jee-Hyun Kang
- Institute of Materials Technology, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Y G Ko
- Integrated Materials Chemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
4
|
Madkhali MMM, Ghubayra R, Alaghaz ANMA, Hassan AF, Braish AG. Fabrication of thiosemicarbazide-modified biochar/carrageenan composite beads based on Eichhornia crassipes for effective removal of Pb (II) from aqueous medium. Int J Biol Macromol 2024; 281:136451. [PMID: 39396593 DOI: 10.1016/j.ijbiomac.2024.136451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Several biomasses have been applied as environmentally friendly substitutes to produce biochar, which can be utilized to remediate effluents that contain inorganic chemicals. This study applied water hyacinth (Eichhornia crassipes) as a foundation source for the assembly of thiosemicarbazide-modified biochar (BC), which then was modified with potassium carrageenan (KC). Thiosemicarbazide-modified biochar (BC), potassium carrageenan (KC), and thiosemicarbazide-modified biochar/carrageenan composite beads (BKC) were described by several physicochemical methods. The adsorption of Pb (II) onto the three solid adsorbents was investigated under various experimental conditions. The BKC composite beads revealed a surface area of 687.43 m2/g and a mesoporous structure. The best adsorption conditions were found to be 25 min as an equilibrium time, 1.2 g/L of adsorbent dose, and a solution pH of 5 at a temperature of 15 °C. The pseudo-second-order, Elovich kinetic models, Langmuir, and Temkin isotherms were well familiar to the experimental data, inferring that the progression was physical monolayer adsorption onto the homogenous surface. The highest capacity of Pb (II) adsorption onto BKC was 460.45 mg/g at 15 °C. Thermodynamic measurements proved that adsorption was a spontaneous process and endothermic in the case of BC and BKC while exothermic for KC. Furthermore, BKC showed high reusability conditions.
Collapse
Affiliation(s)
- Marwah M M Madkhali
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Reem Ghubayra
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Abdel-Nasser M A Alaghaz
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia.
| | - Asaad F Hassan
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour, Egypt.
| | - Amany G Braish
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
5
|
Kazemi A, Ebrahimpour E, Esmaeilbeigi M, Gheitasi F, Einollahipeer F, Mohammadrezai M. Optimizing oxytetracycline removal from aqueous solutions using activated carbon from barley lignocellulosic wastes with isotherms and thermodynamic studies. Sci Rep 2024; 14:23281. [PMID: 39375380 PMCID: PMC11458894 DOI: 10.1038/s41598-024-73142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/13/2024] [Indexed: 10/09/2024] Open
Abstract
The excessive presence of antibiotics such as Oxytetracycline (OTC) in the wastewater has increased health problems due to their toxic impact on the aquatic ecosystem. Therefore, their removal has become an important topic. This study aims to produce high surface area-activated carbon derived from low-cost and environmentally friendly barley lignocellulosic wastes to remove OTC from aqueous solutions. The synthesized barley wastes-activated carbon (BW-AC) was characterized using Fourier-Transform Infrared spectroscopy, Thermal Gravimetric Analysis, X-ray diffraction analysis, N2 adsorption/desorption isotherms, and Scanning Electron Microscopy. A Central Composite Design under the Response Surface Methodology (CCD-RSM) was applied to optimize the operational parameters (adsorbent dosage, pH, OTC initial concentration, and contact time) affecting the adsorption capacity as the response factor. The optimum condition of OTC adsorption by BW-AC was the adsorbent dosage of 16.25 mg, pH of 8.25, initial concentration of 62.50 mg/L, and contact time of 23.46 min. An analysis of variance (ANOVA) was performed to investigate the significance of the designed quadratic model and evaluate the parameters interactions. The linear regression coefficient (R2) of 0.975 shows a good correlation between predicted and actual results. The adsorption isotherms were used to determine the contaminant distribution over the adsorbent surface, and the equilibrium data was best described by the Freundlich isotherm due to the R2 value of 0.99 compared to other isotherms and β parameter of 0.23 in Redlich-Peterson equation. Moreover, the n value of 1.25 in Freundlich equation and E value of 0.31 in Dubinin-Radushkevich equation indicates a physical nature of adsorption process. According to the equations results, the maximum adsorption capacity of BW-AC for OTC removal was 500 mg/g, based on the Langmuir isotherm equation. In addition, the thermodynamic studies indicated an endothermic process based on the 0.31 value of ΔH° and spontaneous nature due to the negative amount of ΔG° within the temperature range of 288-318 K. Consequently, the prepared BW-AC can be deemed as a highly effective adsorbent with a large surface area, resulting in significant capacity for removing OTC. This synthesized BW-AC can serve as an environmentally friendly adsorbent for affordable wastewater treatment and is poised to make valuable contributions to future research in this field.
Collapse
Affiliation(s)
- Ali Kazemi
- Department of Environmental Science and Engineering, Arak University, Arak, Iran.
| | - Elaheh Ebrahimpour
- Research and Development Department of Arvin Zist Pooya Lab, Tehran, 1563794747, Iran
| | - Milad Esmaeilbeigi
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Farideh Gheitasi
- Department of Sustainable Development, Environmental Science and Engineering (SEED), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Fatemeh Einollahipeer
- Department of Environment, Faculty of Natural Resources, University of Zabol, Zabol, Sistan and Baluchestan, Iran
| | - Mansure Mohammadrezai
- Department of Civil and Environmental Engineering, Payame Noor University, Tehran, Iran
| |
Collapse
|
6
|
Revathi S, Amanullah M, Al-Samghan AS, Joseph JJ, Pazhanisamy P, Addich M, Gomathi T. Sustainable heavy metal (Cr(VI) ion) remediation: Ternary blend approach with chitosan, carboxymethyl cellulose, and bioactive glass. Int J Biol Macromol 2024; 278:134769. [PMID: 39151866 DOI: 10.1016/j.ijbiomac.2024.134769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Heavy metal pollution poses a significant environmental challenge to worldwide, especially in developing countries. This study focuses on eliminating the heavy metal chromium (VI) ion from wastewater, employing an eco-friendly and economical ternary blend composed of Chitosan (CS), Carboxymethyl cellulose (CMC), and bioactive glass (BAG). The innovative bioactive glass is crafted from biosilica extracted from biowaste of cow dung ash, calcium oxide from eggshell ash, and phosphorus pentoxide. The CS/CMC/BAG blend is prepared via sol-gel method and characterized using XRD, FT-IR, TGA, BET, TEM and SEM revealing a porous structural morphology during blending. Batch adsorption studies explore various parameters such as pH, adsorbent dose, contact time and initial metal ion concentrations. The results are then evaluated through adsorption kinetics and adsorption isotherms (Langmuir, Freundlich, D-R, and Temkin isotherm modeling). The investigation concludes that the optimal conditions for Cr (VI) removal are pH 3, contact time of 300 min, adsorbent dosage of 0.5 g, and an initial metal ion concentration of 50 ppm. The adsorption isotherm model indicates an excellent fit with the Freundlich isotherm (R2 = 0.9576) and pseudo-second-order kinetics (R2 = 0.981). In summary, the CS/CMC/BAG ternary blend exhibits a remarkable ability to effectively remove heavy metal Cr(VI) ions from industrial wastewater.
Collapse
Affiliation(s)
- S Revathi
- PG and Research Department of Chemistry, D.K.M. College for Women (Autonomous), Affiliated to Thiruvalluvar University, Vellore, Tamil Nadu, India
| | - Mohammed Amanullah
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Awad Saeed Al-Samghan
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | | | - P Pazhanisamy
- Department of Chemistry, Sir Theagaraya College, Affiliated to University of Madras, Chennai 600021, India
| | - Mourad Addich
- Laboratory of Analysis, Modeling, Engineering, Natural Substances and Environment, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Taroudant, Morocco
| | - Thandapani Gomathi
- PG and Research Department of Chemistry, D.K.M. College for Women (Autonomous), Affiliated to Thiruvalluvar University, Vellore, Tamil Nadu, India.
| |
Collapse
|
7
|
Kgabi DP, Ambushe AA. Removal of Pb(II) ions from aqueous solutions using natural and HDTMA-modified bentonite and kaolin clays. Heliyon 2024; 10:e38136. [PMID: 39381225 PMCID: PMC11459056 DOI: 10.1016/j.heliyon.2024.e38136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/23/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
This work focused on the removal of Pb(II) from aqueous solution using kaolin and bentonite clays modified with hexadecyl trimethyl ammonium bromide (HDTMA). The clays were characterized using a zetasizer, scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), Brunauer-Emmet-Teller (BET), Fourier-transform infrared (FTIR) spectroscopy and thermal gravimetric analysis (TGA). Factors that influence the adsorption of Pb(II) from aqueous solution, namely pH, contact time, adsorbent mass, ionic strength, temperature and initial Pb(II) concentration were investigated. The results show that HDTMA was successfully incorporated into the kaolin and bentonite clay structures. The most favorable parameters for the adsorption of Pb(II) ions onto all adsorbents was pH of 6.0, temperature of 25 °C and adsorbent mass of 200 mg. Adsorption isotherms and kinetic studies showed that the adsorption of Pb(II) onto kaolin, bentonite and organobentonite clays followed the Langmuir isotherm and pseudo-first order kinetic model, while the adsorption onto organobentonite was better explained by the Freundlich isotherm and pseudo-second order kinetic model. Maximum monolayer adsorption capacity of organobentonite, calculated from the Langmuir model was 18.75 mg/g, which is higher than that obtained for the unmodified bentonite (14.71 mg/g); while for organokaolin it was 2.26 mg/g, which is less than that of the unmodified kaolin (4.19 mg/g). Thermodynamic studies showed that the reactions were exothermic and unfavoured at high temperatures. The adsorbents also showed good removal efficiency for up to four regeneration cycles.
Collapse
Affiliation(s)
- Dipuo Precious Kgabi
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, South Africa
| | - Abayneh Ataro Ambushe
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, South Africa
| |
Collapse
|
8
|
Wołowicz A, Hubicki Z. Evaluation of Adsorption Ability of Lewatit ® VP OC 1065 and Diaion™ CR20 Ion Exchangers for Heavy Metals with Particular Consideration of Palladium(II) and Copper(II). Molecules 2024; 29:4386. [PMID: 39339381 PMCID: PMC11434107 DOI: 10.3390/molecules29184386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The adsorption capacities of ion exchangers with the primary amine (Lewatit® VP OC 1065) and polyamine (Diaion™ CR20) functional groups relative to Pd(II) and Cu(II) ions were tested in a batch system, taking into account the influence of the acid concentration (HCl: 0.1-6 mol/L; HCl-HNO3: 0.9-0.1 mol/L HCl-0.1-0.9 mol/L HNO3), phase contact time (1-240 min), initial concentration (10-1000 mg/L), agitation speed (120-180 rpm), bead size (0.385-1.2 mm), and temperature (293-333 K), as well as in a column system where the variable operating parameters were HCl and HNO3 concentrations. There were used the pseudo-first order, pseudo-second order, and intraparticle diffusion models to describe the kinetic studies and the Langmuir and Freundlich isotherm models to describe the equilibrium data to obtain better knowledge about the adsorption mechanism. The physicochemical properties of the ion exchangers were characterized by the nitrogen adsorption/desorption analyses, CHNS analysis, Fourier transform infrared spectroscopy, the sieve analysis, and points of zero charge measurements. As it was found, Lewatit® VP OC 1065 exhibited a better ability to remove Pd(II) than Diaion™ CR20, and the adsorption ability series for heavy metals was as follows: Pd(II) >> Zn(II) ≈ Ni(II) >> Cu(II). The optimal experimental conditions for Pd(II) sorption were 0.1 mol/L HCl, agitation speed 180 rpm, temperature 293 K, and bead size fraction 0.43 mm ≤ f3 < 0.6 mm for Diaion™ CR20 and 0.315-1.25 mm for Lewatit® VP OC 1065. The maximum adsorption capacities were 289.68 mg/g for Lewatit® VP OC 1065 and 208.20 mg/g for Diaion™ CR20. The greatest adsorption ability of Lewatit® VP OC 1065 for Pd(II) was also demonstrated in the column studies. The working ion exchange in the 0.1 mol/L HCl system was 0.1050 g/mL, much higher compared to Diaion™ CR20 (0.0545 g/mL). The best desorption yields of %D1 = 23.77% for Diaion™ CR20 and 33.57% for Lewatit® VP OC 1065 were obtained using the 2 mol/L NH3·H2O solution.
Collapse
Affiliation(s)
- Anna Wołowicz
- Department of Inorganic Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie Sklodowska University, Maria Curie-Sklodowska Square 2, 20-031 Lublin, Poland
| | - Zbigniew Hubicki
- Department of Inorganic Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie Sklodowska University, Maria Curie-Sklodowska Square 2, 20-031 Lublin, Poland
| |
Collapse
|
9
|
Lach J, Okoniewska E. Equilibrium, Kinetic, and Diffusion Mechanism of lead(II) and cadmium(II) Adsorption onto Commercial Activated Carbons. Molecules 2024; 29:2418. [PMID: 38893296 PMCID: PMC11174129 DOI: 10.3390/molecules29112418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The adsorption of Pb(II) and Cd(II) on three commercial microporous activated carbons was analysed. Adsorption kinetics and statistics were investigated, and the results were described with different models. The highest values of the correlation coefficient R2 were obtained for the pseudo-second-order kinetics model for all ions tested and all sorbents used. The adsorption process was found to be determined by both diffusion in the liquid layer and intraparticle diffusion. The adsorption equilibrium is very well described by Langmuir, Temkin, Thoth or Jovanovic isotherm models. Based on the values of n from the Freundlich isotherm and KL from the Langmuir isotherm, the adsorption of cadmium and lead ions was found to be favourable. The highest monolayer capacities were obtained during the adsorption of lead ions (162.19 mg/g) and for cadmium (126.34 mg/g) for activated carbon WG-12. This carbon is characterised by the highest amount of acid functional groups and the largest specific surface area. The adsorption efficiency of the tested ions from natural water is lower than that from a model solution made from deionised water. The lowest efficiencies are obtained when the process occurs from highly mineralised water.
Collapse
Affiliation(s)
- Joanna Lach
- Faculty of Infrastructure and Environment, Czestochowa University of Technology, Brzeznicka 60a, 42-200 Czestochowa, Poland;
| | | |
Collapse
|
10
|
Lawaniya SD, Kumar S, Yu Y, Awasthi K. Nitrogen-doped carbon nano-onions/polypyrrole nanocomposite based low-cost flexible sensor for room temperature ammonia detection. Sci Rep 2024; 14:7904. [PMID: 38570517 PMCID: PMC10991286 DOI: 10.1038/s41598-024-57153-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
One of the frontier research areas in the field of gas sensing is high-performance room temperature-based novel sensing materials, and new family of low-cost and eco-friendly carbon nanomaterials with a unique structure has attracted significant attention. In this work, we propose a novel low-cost flexible room temperature ammonia gas sensor based on nitrogen-doped carbon nano-onions/polypyrrole (NCNO-PPy) composite material mounted low-cost membrane substrate was synthesized by combining hydrothermal and in-situ chemical polymerization methods. The proposed flexible sensor revealed high sensing performance when employed as the sensing material for ammonia detection at room temperature. The NCNO-PPy ammonia sensor exhibited 17.32% response for 100 ppm ammonia concentration with a low response time of 26 s. The NCNO-PPy based flexible sensor displays high selectivity, good repeatability, and long-term durability with 1 ppm as the lower detection limit. The proposed flexible sensor also demonstrated remarkable mechanical robustness under extreme bending conditions, i.e., up to 90° bending angle and 500 bending cycles. This enhanced sensing performance can be related to the potential bonding and synergistic interaction between nitrogen-doped CNOs and PPy, the formation of defects from nitrogen doping, and the presence of high reactive sites on the surface of NCNO-PPy composites. Additionally, the computational study was performed on optimized NCNO-PPy nanocomposite for both with and without NH3 interaction. A deeper understanding of the sensing phenomena was proposed by the computation of several electronic characteristics, such as band gap, electron affinity, and ionization potential, for the optimized composite.
Collapse
Affiliation(s)
- Shiv Dutta Lawaniya
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India
| | - Sanjay Kumar
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India
| | - Yeontae Yu
- Division of Advanced Materials Engineering, Jeonbuk National University, 567, Baekje-Daero, Deokjin-Gu, Jeonju, 54896, South Korea
| | - Kamlendra Awasthi
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India.
| |
Collapse
|
11
|
Prato JG, Millán F, Rangel M, Márquez A, González LC, Ríos I, García C, Rondón C, Wang E. Adsorption of Pb (II) ions on variable charge oxidic calcined substrates with chemically modified surface. F1000Res 2024; 12:747. [PMID: 38571570 PMCID: PMC10989241 DOI: 10.12688/f1000research.132880.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Background The paper describes lead ion adsorption on variable charge oxidic calcined substrates with chemically modified surfaces. Amphoteric oxides of iron, aluminum, titanium, and manganese, change their surface electric charge after acid or alkaline treatment, letting cationic or anionic adsorption reactions from aqueous solutions. This property allows using them as adsorbing substrate for heavy metals retention in water treatment systems. Methods Substrate was prepared by extruding cylindrical strips from a saturate paste of the oxidic lithological material-OLM; dries it up and thermally treated by calcination. The study was performed by triplicated trial, on batch mode, using 2 grams samples of treated with NaOH 0.1N and non-treated substrate. Lead analysis was performed by AAS-GF. Freundlich and Langmuir models were used to fit results. Comparing differential behavior between treated and non-treated substrates showed the variable charge nature of the OLM. Results Results show L-type isotherms for the adsorption of Pb(II) ions on the activated substrate, suggesting good affinity between Pb(II) ions and OLM's surface. Average value of adsorption capacity ( K) for activated substrate (1791.73±13.06), is around four times greater than the non-activated substrate (491.54±31.97), during the adsorption reaction, 0.35 and 0.26 mmolH + of proton are produced on the activated and non-activated substrate respectively using a 1 mM Pb(II) solution and 72.2 and 15.6 mmolH + using a 10 mM Pb(II) solution. This acidification agrees with the theoretic model of transitional metals chemisorption on amphoteric oxides, present in lithological material used for the preparation of adsorbent substrates, confirming the information given by the L-type isotherms. Conclusions Results suggest that these variable charge oxidic adsorbent substrate show great potential as an alternative technique for water treatment at small and medium scale using granular filtration system. The easiness and low price make them suitable to apply in rural media where no treating water systems is available.
Collapse
Affiliation(s)
- José G. Prato
- Escuela de Ingeniería Química, Facultad de Ingeniería, Universidad de Los Andes, Mérida, 5101, Venezuela
- Grupo de Investigación Estudios Interdisciplinarios, Ingeniería Ambiental, Facultad de Ingeniería, Universidad Nacional de Chimborazo, Riobamba, Chimborazo Province, 060103, Ecuador
| | - Fernando Millán
- Chemical Engineering School, Polytechnical Institute Santiago Mariño, IUPSM-Mérida, Mérida, 5101, Venezuela
| | - Marialy Rangel
- Chemical Engineering School, Polytechnical Institute Santiago Mariño, IUPSM-Mérida, Mérida, 5101, Venezuela
| | - Andrés Márquez
- Chemical Engineering School, Polytechnical Institute Santiago Mariño, IUPSM-Mérida, Mérida, 5101, Venezuela
- Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Luisa Carolina González
- Grupo de Investigación “Análisis de Muestras Biológicas y Forenses”, Laboratorio Clínico, Facultad de Ciencias de la Salud, Universidad Nacional de Chimborazo, Riobamba, Chimborazo Province, 060103, Ecuador
| | - Iván Ríos
- Grupo de Investigación Estudios Interdisciplinarios, Ingeniería Ambiental, Facultad de Ingeniería, Universidad Nacional de Chimborazo, Riobamba, Chimborazo Province, 060103, Ecuador
| | - César García
- Arquitectura, Facultad de Ingeniería, Universidad Nacional de Chimborazo, Riobamba, Chimborazo Province, 060103, Ecuador
| | - Carlos Rondón
- Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Enju Wang
- Department of Chemistry, Saint John´s University, Jamaica, NY, 11439, USA
| |
Collapse
|
12
|
Parasnis M, Deng E, Yuan M, Lin H, Kordas K, Paltseva A, Frimpong Boamah E, Judelsohn A, Nalam PC. Heavy Metal Remediation by Dry Mycelium Membranes: Approaches to Sustainable Lead Remediation in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6317-6329. [PMID: 38483835 PMCID: PMC10977094 DOI: 10.1021/acs.langmuir.3c03811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/27/2024]
Abstract
Lead contamination poses significant and lasting health risks, particularly in children. This study explores the efficacy of dried mycelium membranes, distinct from live fungal biomass, for the remediation of lead (Pb(II)) in water. Dried mycelium offers unique advantages, including environmental resilience, ease of handling, biodegradability, and mechanical reliability. The study explores Pb(II) removal mechanisms through sorption and mineralization by dried mycelium hyphae in aqueous solutions. The sorption isotherm studies reveal a high Pb(II) removal efficiency, exceeding 95% for concentrations below 1000 ppm and ∼63% above 1500 ppm, primarily driven by electrostatic interactions. The measured infrared peak shifts and the pseudo-second-order kinetics for sorption suggests a correlation between sorption capacity and the density of interacting functional groups. The study also explores novel surface functionalization of the mycelium network with phosphate to enhance Pb(II) removal, which enables remediation efficiencies >95% for concentrations above 1500 ppm. Scanning electron microscopy images show a pH-dependent formation of Pb-based crystals uniformly deposited throughout the entire mycelium network. Continuous cross-flow filtration tests employing a dried mycelium membrane demonstrate its efficacy as a microporous membrane for Pb(II) removal, reaching remediation efficiency of 85-90% at the highest Pb(II) concentrations. These findings suggest that dried mycelium membranes can be a viable alternative to synthetic membranes in heavy metal remediation, with potential environmental and water treatment applications.
Collapse
Affiliation(s)
- Mruganka
Sandip Parasnis
- Department
of Materials Design and Innovation, University
at Buffalo, Buffalo, New York 14203, United States
| | - Erda Deng
- Department
of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14203, United States
| | - Mengqi Yuan
- Department
of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14203, United States
| | - Haiqing Lin
- Department
of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14203, United States
| | - Katarzyna Kordas
- Department
of Epidemiology and Environmental Health, University at Buffalo, Buffalo, New York 14214, United States
| | - Anna Paltseva
- School
of Geosciences, University of Louisiana,104 East University Avenue, Lafayette, Louisiana 70504, United States
| | - Emmanuel Frimpong Boamah
- Department
of Urban and Regional Planning, University
at Buffalo, Buffalo, New York 14214, United States
| | - Alexandra Judelsohn
- Department
of Urban and Regional Planning, University
at Buffalo, Buffalo, New York 14214, United States
| | - Prathima C. Nalam
- Department
of Materials Design and Innovation, University
at Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
13
|
Wang L, Wen H, Guo L, Liang A, Liu T, Zhao D, Dong L. The Effect of Nitrogen Functional Groups on Pb 0, PbO, and PbCl 2 Adsorption over a Carbonaceous Surface. Molecules 2024; 29:511. [PMID: 38276589 PMCID: PMC10820923 DOI: 10.3390/molecules29020511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Lead (Pb) pollution, especially from the incineration of municipal solid waste (MSW), poses a significant threat to the environment. Among all the effective methods, activated carbon (AC) injection serves as an effective approach for lead removal from flue gas, while the modification of ACs emerges as a crucial pathway for enhancing Pb adsorption capacities. Density functional theory (DFT) is employed in this study to investigate the mechanisms underlying the enhanced adsorption of Pb species (Pb0, PbO, and PbCl2) on nitrogen-functionalized carbonaceous surfaces. The results show that nitrogen-containing groups substantially enhance lead adsorption capacity, with adsorption energies ranging from -526.18 to -288.31 kJ/mol on nitrogen-decorated carbonaceous surfaces, much higher than those on unmodified surfaces (-310.35 to -260.96 kJ/mol). Additionally, electrostatic potential and density-of-states analyses evidence that pyridinic nitrogen atoms remarkably expand charge distribution and strengthen orbital hybridization, thereby augmenting lead capture. This research elucidates the role of nitrogen-containing functional groups in lead adsorption, offering valuable insights for the development of highly efficient biomass-derived activated carbon sorbents for lead removal.
Collapse
Affiliation(s)
- Liang Wang
- China Power Hua Chuang (Suzhou) Electricity Technology Research Company Co., Ltd., Suzhou 215125, China; (L.W.); (L.G.); (T.L.)
| | - Huaizhou Wen
- Xi’an Thermal Power Research Institute Co., Ltd., Xi’an 740032, China;
| | - Lei Guo
- China Power Hua Chuang (Suzhou) Electricity Technology Research Company Co., Ltd., Suzhou 215125, China; (L.W.); (L.G.); (T.L.)
| | - Ancheng Liang
- Haikou China Power Environmental Protection Power Generation Co., Ltd., Haikou 570106, China; (A.L.); (D.Z.)
| | - Tingan Liu
- China Power Hua Chuang (Suzhou) Electricity Technology Research Company Co., Ltd., Suzhou 215125, China; (L.W.); (L.G.); (T.L.)
| | - Dongxu Zhao
- Haikou China Power Environmental Protection Power Generation Co., Ltd., Haikou 570106, China; (A.L.); (D.Z.)
| | - Lu Dong
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
14
|
Adeoye JB, Balogun DO, Etemire OJ, Ezeh PN, Tan YH, Mubarak NM. Rapid adsorptive removal of eosin yellow and methyl orange using zeolite Y. Sci Rep 2023; 13:21373. [PMID: 38049520 PMCID: PMC10695964 DOI: 10.1038/s41598-023-48675-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023] Open
Abstract
In this study, zeolite Y was synthesised using a novel method. The heat generated from the reaction of H2SO4 with metakaolin was used as a heat source instead of applying external heat for the dealuminated process. The synthesised zeolite Y produced was analysed by scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier-infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDS) and Brunauer-Emmett-Teller (BET). Zeolite Y synthesis was mesoporous because of its pore diameter (30.53 nm), as shown in the BET results. Surface area and pore size decrease after adsorption due to dye deposition on the adsorbent's surface. FTIR has bonds like O-H, C-H, -CH3, and -COOH responsible for adsorption. The maximum adsorption capacity of eosin yellow (EY) and methyl orange (MO) on to zeolite Y by the Langmuir isotherm was 52.91 mg/g and 20.62 mg/g respectively, at pH 2.5 and 8 for EY and MO dye. The batch adsorption studies were conducted, and the influence of different parameters (i.e., adsorbent dose, adsorption time, initial dye concentration, pH and temperature) was investigated. Experimental data were analysed by two linear model equations (Langmuir and Freundlich isotherms), and it was found that the Langmuir isotherm model best describes the adsorption data for methyl orange and Freundlich isotherm for eosin yellow, respectively. Adsorption rate constants were determined using linear pseudo-first-order and pseudo-second-order. The results showed that MO and EY dye adsorption onto zeolite Y followed a pseudo-second-order kinetic model. Thermodynamic studies show that adsorption was an exothermic reaction (enthalpy < 0) and feasible ([Formula: see text]) at various temperatures under investigation.
Collapse
Affiliation(s)
- John Busayo Adeoye
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia.
| | - David Ololade Balogun
- Chemical Engineering Department, Faculty of Engineering, Landmark University, P.M.B 1001, Omu-Aran, Kwara, Nigeria
| | | | - Princewill Nnaneme Ezeh
- Chemical Engineering Department, Faculty of Engineering, Landmark University, P.M.B 1001, Omu-Aran, Kwara, Nigeria
| | - Yie Hua Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia.
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| |
Collapse
|
15
|
Murtaza B, Ali A, Imran M, Al-Kahtani AA, ALOthman ZA, Natasha N, Shahid M, Shah NS, Naeem MA, Ahmad S, Murtaza G. Comparison of As removal efficiency and health risks from aqueous solution using as-synthesized Fe 0 and Cu 0: modelling, kinetics and reusability. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8989-9002. [PMID: 37154973 DOI: 10.1007/s10653-023-01589-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
Batch scale removal of arsenic (As) from aqueous media was explored using nano-zero valent iron (Fe0) and copper (Cu0) particles. The synthesized particles were characterized using a Brunauer-Emmett-Teller (BET) surface area analyzer, a scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR). The BET result showed that the surface area (31.5 m2/g) and pore volume (0.0415 cm3/g) of synthesized Fe0 were higher than the surface area (17.56 m2/g) and pore volume (0.0287 cm3/g) of Cu0. The SEM results showed that the morphology of the Fe0 and Cu0 was flowery microspheres and highly agglomerated with thin flakes. The FTIR spectra for Fe0 showed broad and intense peaks as compared to Cu0. The effects of the adsorbent dose (1-4 g/L), initial concentration of As (2 mg/L to 10 mg/L) and solution pH (2-12) were evaluated on the removal of As. Results revealed that effective removal of As was obtained at pH 4 with Fe0 (94.95%) and Cu0 (74.86%). When the dosage increased from 1 to 4 g L-1, the As removal increased from 70.59 to 93.02% with Fe0 and from 67 to 70.59% with Cu0. However, increasing the initial As concentration decreased the As removal significantly. Health risk indices, including estimated daily intake (EDI), hazard quotient (HQ), and cancer risk (CR) were employed and a significant decline (up to 99%) in risk indices was observed in As-treated water using Fe0/Cu0. Among the adsorption isotherm models, the values of R2 showed that isothermal As adsorption by Fe0 and Cu0 was well explained by the Freundlich adsorption isotherm model (R2 > 0.98) while the kinetic experimental data was well-fitted with the Pseudo second order model. The Fe0 showed excellent stability and reusability over five sorption cycles, and it was concluded that, compared to the Cu0, the Fe0 could be a promising technology for remediating As-contaminated groundwater.
Collapse
Affiliation(s)
- Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Asad Ali
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Abdullah A Al-Kahtani
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Natasha Natasha
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan.
| | - Noor S Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Sajjad Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Ghulam Murtaza
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| |
Collapse
|
16
|
Ugwu KE, Ani JU, Ofomatah AC. Biosorption of potassium ion using bean seeds and its energy saving application. Heliyon 2023; 9:e16266. [PMID: 37251883 PMCID: PMC10213190 DOI: 10.1016/j.heliyon.2023.e16266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/16/2023] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
Ca and Mg have been implicated in causing hardness in beans resulting in relatively long cooking time. This study used potassium to replace the cations and determined the adsorption of potassium solution to bean seeds. Then, plantain peel, a natural source of potassium, was used to cook beans and its impact on the cooking time of beans was investigated. The adsorption experiments were performed using batch technique, while metal compositions of the bean seeds and plantain peel were determined by spectroscopy. Optimum removal conditions of potassium ion biosorption using bean seeds were observed at pH 10.2, 2 g bean seed dosage, 180 min agitation time, with 75 ppm as initial metal concentration. The kinetic model correlate with pseudo-second order reaction and the Langmuir adsorption model best fitted the adsorption. After cooking the beans with plantain peel, the concentration of Mg reduced in the bean seeds by about 48%, while the concentration of Ca reduced by about 22%, but the concentration of K increased by over 200% in the cooked bean seeds. Beans treated with plantain peel cooked earlier than the control experiment. This may be affected by pH, adsorbent dosage, metal concentration and contact time.
Collapse
Affiliation(s)
- Kenechukwu E. Ugwu
- National Centre for Energy Research and Development, University of Nigeria, Nsukka, Nigeria
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Julius U. Ani
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Anthony C. Ofomatah
- National Centre for Energy Research and Development, University of Nigeria, Nsukka, Nigeria
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
17
|
Al-Odayni AB, Alsubaie FS, Abdu NAY, Al-Kahtani HM, Saeed WS. Adsorption Kinetics of Methyl Orange from Model Polluted Water onto N-Doped Activated Carbons Prepared from N-Containing Polymers. Polymers (Basel) 2023; 15:polym15091983. [PMID: 37177131 PMCID: PMC10180562 DOI: 10.3390/polym15091983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
This study aimed to assess the role of polymeric sources (polypyrrole, polyaniline, and their copolymer) of nitrogen (N)-doped activated carbons (indexed as PAnAC, PPyAC, and PnyAC, respectively) on their adsorption efficiency to remove methyl orange (MO) as a model cationic dye. The adsorbents were characterized using FTIR, SEM, TGA, elemental analysis, and surface area. The kinetic experiments were performed in batches at different MO concentrations (C0) and adsorbent dosages. The adsorption kinetic profiles of pseudo-first-order, pseudo-second-order (PSO), Elovich, intraparticle diffusion, and liquid film diffusion models were compared. The results showed a better fit to the PSO model, suggesting a chemisorption process. The adsorption capacity (qe, mg/g) was found to have increased as MO C0 increased, yet decreased as the adsorbent quantity increased. At the adsorption operating condition, including MO C0 (200 ppm) and adsorbent dose (40 mg), the calculated qe values were in the order of PAnAC (405 mg/g) > PPyAC (204 mg/g) > PnyAC (182 mg/g). This trend proved the carbon precursor's importance in the final properties of the intended carbons; elemental analysis confirmed that the more nitrogen atoms are in the activated carbon, the greater the number of active sites in the adsorbent for accommodating adsorbates. The diffusion mechanism also assumed a rate-limiting step controlled by the film and intraparticle diffusion. Therefore, such an efficient performance may support the target route's usefulness in converting nitrogenous-species waste into valuable materials.
Collapse
Affiliation(s)
- Abdel-Basit Al-Odayni
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Faisal S Alsubaie
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naaser A Y Abdu
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Waseem Sharaf Saeed
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| |
Collapse
|
18
|
Ali AH, Abdo SM, Dakroury GARS. Zirconium preconcentration from zircon raffinate using gamma radiation-induced polymerization of reduced graphene oxide composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58330-58345. [PMID: 36977885 PMCID: PMC10163083 DOI: 10.1007/s11356-023-26485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/13/2023] [Indexed: 05/08/2023]
Abstract
Zirconium is commonly used as a cladding material for nuclear reactors. The purity of the zirconium material seeks to control reactor efficiency. A novel composite of reduced graphene oxide-grafted polyacrylic acid, malic acid, and trioctylamine (rGO-g-PAA-MA/TOA) was prepared using in situ radical polymerization with gamma radiation at a dose of 25 KGy from a 60Co cell to preconcentrate zirconium Zr(IV) from zircon raffinate. Five distinct rGO-g-PAA-MA/TOA composite compositions were created and evaluated. The best composite composition was 62.95% acrylic acid, 15.8% malic acid, and 15.8% trioctylamine. After 60 min, the sorption reaction reached equilibrium at pH 0.35 and 20 °C. The pseudo nth order indicated that the order of the sorption reaction was 1.8476. The Elovich model and Dubinin-Radushkevich model controlled the kinetic mechanism and adsorption isotherm of the sorption reaction, respectively; based on estimated regression plots and quantitatively with three different error functions: coefficient of determination (R2), chi-square statistic (χ2), and corrected Akaike information (AICc). The adsorption capacity of rGO-g-PAA-MA/TOA was 75.06 mg g-1. Exothermic reaction and spontaneous sorption took place. Using 2 M H2SO4, 98% of the zirconium was efficiently desorbed. The separation of contaminated Ti(IV) from desorbed Zr(IV) by raising pH to 2.5 through hydrolysis and ZrO2 formation.
Collapse
Affiliation(s)
- Amr Hamdi Ali
- Nuclear Materials Authority, Maadi, P.O. 530, Cairo, Egypt
| | | | | |
Collapse
|
19
|
Al-Odayni AB, Alsubaie FS, Saeed WS. Nitrogen-Rich Polyaniline-Based Activated Carbon for Water Treatment: Adsorption Kinetics of Anionic Dye Methyl Orange. Polymers (Basel) 2023; 15:polym15040806. [PMID: 36850090 PMCID: PMC9961487 DOI: 10.3390/polym15040806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
In the present work, a nitrogen-rich activated carbon (PAnAC) was prepared using polyaniline (PAn) as a precursor to represent one possible conversion of nitrogen-containing polymeric waste into a valuable adsorbent. PAnAC was fabricated under the chemical activation of KOH and a PAn precursor (in a 4:1 ratio) at 650 °C and was characterized using FTIR, SEM, BET, TGA, and CHN elemental composition. The structural characteristics support its applicability as an adsorbent material. The adsorption performance was assessed in terms of adsorption kinetics for contact time (0-180 min), methyl orange (MO) concentration (C0 = 50, 100, and 200 ppm), and adsorbent dosages (20, 40, and 80 mg per 250 mL batch). The kinetic results revealed a better fit to a pseudo-second-order, specifically nonlinear equation compared to pseudo-first-order and Elovich equations, which suggests multilayer coverage and a chemical sorption process. The adsorption capacity (qe) was optimal (405.6 mg/g) at MO C0 with PAnAC dosages of 200 ppm and 40 mg and increased as MO C0 increased but decreased as the adsorbent dosage increased. The adsorption mechanism assumes that chemisorption and the rate-controlling step are governed by mass transfer and intraparticle diffusion processes.
Collapse
Affiliation(s)
- Abdel-Basit Al-Odayni
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia
- Correspondence:
| | - Faisal S. Alsubaie
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Waseem Sharaf Saeed
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia
| |
Collapse
|
20
|
Savitri S, Reguyal F, Sarmah AK. A feasibility study on production, characterisation and application of empty fruit bunch oil palm biochar for Mn 2+ removal from aqueous solution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120879. [PMID: 36566919 DOI: 10.1016/j.envpol.2022.120879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Empty fruit bunch oil palm (EFBOP) is one of the byproducts after oil palm fruitlet is removed in oil palm processing and is considered as waste. In this study, EFBOP was converted to biochar (BC-EFBOP) at 350-700 °C, with an overarching aim of determining the feasibility of adsorptive removal of manganese (a second dominant element in acid mine drainage) from water. Results showed that with increasing temperature, the BC-EFBOP yield decreased from 44.34% to 26.74%, along with the H/C (0.89%-0.29%) and O/C ratios (0.38%-0.23%), and the carbon content increased (62.7%-73.93%). As evidenced by Fourier Transform InfraRed spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS), abundant oxygen-containing surface functional groups such as hydroxyl (-OH), carboxyl (-COOH), and ether (C-O-C) were retained, and aromatic CC groups were largely generated in the biochar. Pyrolysed biochar at 350 °C (BC350), with the least surface area (0.5 m2 g-1), exhibited the highest Mn2+ adsorption capacity (8.2 mg g-1), whereas for BC700, with the largest surface area (2.19 m2 g-1), had the lowest capacity for Mn2+ (1.2 mg g-1). Regardless of the temperature, solution pH of 5 was found to be optimal for Mn2+ removal from water. The Langmuir isotherm model best described the equilibrium adsorption data with a maximum adsorption capacity of 1.2-8.2 mg g-1 for initial concentrations of 5-250 mg L-1, whereas the adsorption kinetics followed the pseudo-second-order model. There was nearly four-fold increase in Mn2+ ions removal with increased biochar dosage (0.05-0.5 g), at initial Mn2+ concentration of 100 mg L-1. The study showed that a low-cost, environmentally friendly BC-EFBOP with optimal surface chemistry could potentially remediate Mn2+ ions from aqueous media. However, a proper cost-benefit and techno-economic analysis is needed prior to potential pilot scale studies.
Collapse
Affiliation(s)
- Savitri Savitri
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; National Research and Innovation Agency, Research Centre for Chemistry, Puspiptek Area Building 321, South Tangerang, 15314, Indonesia
| | - Febelyn Reguyal
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
21
|
Salem M, Khan AM, Manea YK, Saleh HA, Ahmad M. Carbon Nanotubes Decorated with Coordination Polymers for Fluorescence Detection of Heavy-Metal Ions and Nitroaromatic Chemicals. ACS OMEGA 2023; 8:1220-1231. [PMID: 36643482 PMCID: PMC9835182 DOI: 10.1021/acsomega.2c06209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Herein, [Nd(NO3)3(H2pzdca)] n (MA-1) was synthesized from a reaction of 2,3-pyrazinedicarboxylic acid [H2Pzdca] as an organic linker with salt of Nd(III) under solvothermal conditions. The detailed structural analysis for crystals was performed utilizing single-crystal X-ray diffraction (SCXRD). After that, the neodymium-based coordination polymer (MA-1) crystal was directly generated upon the surface of functionalized carbon nanotubes (F-CNTs) through bonds or affinity between F-CNTs and MA-1 via the solvothermal approach. Meanwhile, the existence of F-CNTs does not affect the production of MA-1 crystals. FT-IR, PXRD, SEM, TEM, and SCXRD studies were used to characterize the crystalline material, MA-1 and MA-1@CNT. To investigate the MA-1@CNT sensing properties, Pb(II), As(III), Cr(VI), and nitrobenzene (NB) were utilized as analytes. It is worth mentioning that MA-1@CNT developed as a susceptible sensor exhibits a fluorescence "turn-on" response for Pb(II) and As(III) ions, while a fluorescence "turn-off" response in the case of Cr(VI) and NB with significantly low limit of detection (LOD) values of 15.9 for Pb(II), 16.0 for As(III), 76.9 for Cr(VI), and 21.1 nM for NB, which are comparable with the lowest LOD available in the literature. Furthermore, MA-1@CNT could be conveniently regenerated and reused for at least three cycles by simply filtering and washing with water several times. The sensing mechanism is ascribed to the inner filter effect owing to the overlap between the emission and/or excitation bands of MA-1@CNT with the absorption bands of Cr(VI) and NB. In contrast, the fluorescence enhancement in the case of Pb(II) and As(III) could be correlated to the chelation-enhanced fluorescence phenomenon. These results indicate that MA-1@CNT is an ideal sensor for Pb(II), As(III), Cr(VI), and NB recognition.
Collapse
Affiliation(s)
- Mansour
A.S. Salem
- Department
of Chemistry, Aligarh Muslim University, Aligarh 202002, India
- Department
of Chemistry, University of Aden, Aden 6312, Yemen
| | - Amjad Mumtaz Khan
- Department
of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | | | - Hatem A.M. Saleh
- Department
of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Musheer Ahmad
- Department
of Applied Chemistry (ZHCET), Aligarh Muslim
University, Aligarh 202002, India
| |
Collapse
|
22
|
Singh S, U B, Kumar Naik TSS, Behera SK, Khan NA, Singh J, Singh L, Ramamurthy PC. Graphene oxide-based novel MOF nanohybrid for synergic removal of Pb (II) ions from aqueous solutions: Simulation and adsorption studies. ENVIRONMENTAL RESEARCH 2023; 216:114750. [PMID: 36370821 DOI: 10.1016/j.envres.2022.114750] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Heavy metals represent a considerable threat, and the current study deals with synthesizing a novel MOF nanocomposite by intercalating graphene oxide (GO) and linker UiO-66-NDC. It was shown that UiO-66-NDC/GO had enhanced the removal efficiency of Pb (II) ions at pH 6. The adsorption kinetics data followed the PSO (Type 2) representing chemisorption. Adsorption data were also fitted with three different isotherms, namely Temkin, Freundlich, & Langmuir, and the Temkin model exhibited the best correlation (R2 0.99), representing the chemisorption nature of the adsorption process. The maximum adsorption capacity (qmax) of Pb (II) ions using Langmuir was found to be 254.45 mg/g (298 K). The Pb (II) adsorption process was confirmed to be exothermic and spontaneous as the thermodynamic parameters H° and G° were determined to have negative values. MOF nanocomposite also represents significant reusability for up to four regeneration cycles using 0.01 M HCl; for the next four, it works quite efficiently after regeneration. Meanwhile, the simulation findings confirm the superior dynamic stability (∼08 times) of the MOF nanocomposite as compared to the GO system. The removal of Pb (II) from simulated wastewater samples using a super nano-adsorbent using a MOF nanocomposite is described here for the first time.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, India
| | - Basavaraju U
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India
| | - T S Sunil Kumar Naik
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India
| | - Sushant Kumar Behera
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India
| | - Nadeem A Khan
- Department of Civil Engineering, Mewat Engineering College Nuh, Haryana, 122107, India
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, India
| | - Lakhveer Singh
- Department of Chemistry, Sardar Patel University, Mandi, Himachal Pradesh, India
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, India.
| |
Collapse
|
23
|
Alardhi SM, Fiyadh SS, Salman AD, Adelikhah M. Prediction of methyl orange dye (MO) adsorption using activated carbon with an artificial neural network optimization modeling. Heliyon 2023; 9:e12888. [PMID: 36699265 PMCID: PMC9868482 DOI: 10.1016/j.heliyon.2023.e12888] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/03/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
In this study, methyl orange (MO) dye removal by adsorption utilizing activated carbon made from date seeds (DPAC) was modeled using an artificial neural network (ANN) technique. Instrumental investigations such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) analysis were used to assess the physicochemical parameters of adsorbent. By changing operational parameters including adsorbent dosage (0.01-0.03 g), solution pH 3-8, initial dye concentration (5-20 mg/L), and contact time (2-60 min), the viability of date seeds for the adsorptive removal of methyl orange dye from aqueous solution was assessed in a batch procedure. The system followed the pseudo 2nd order kinetic model for DPAC adsorbent, according to the kinetic study (R2 = 0.9973). The mean square error (MSE), relative root mean square error (RRMSE), root mean square error (RMSE), mean absolute percentage error (MAPE), relative error (RE), and correlation coefficient (R2) were used to measure the ANN model performance. The maximum RE was 8.24% for the ANN model. Two isotherm models, Langmuir and Freundlich, were studied to fit the equilibrium data. Compared with the Freundlich isotherm model (R2 = 0.72), the Langmuir model functioned better as an adsorption isotherm with R2 of 0.9902. Thus, this study demonstrates that the dye removal process can be predicted using an ANN technique, and it also suggests that adsorption onto DPAC may be employed as a main treatment for dye removal from wastewater.
Collapse
Affiliation(s)
- Saja Mohsen Alardhi
- Nanotechnology and Advanced Materials Research Center, University of Technology, Baghdad, Iraq
| | - Seef Saadi Fiyadh
- Nanotechnology & Catalysis Research Centre (NANOCAT), IPS Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ali Dawood Salman
- Sustainability Solutions Research Lab, University of Pannonia, Egyetem str. 10, H-8200 Veszprem, Hungary
- Department of Chemical and Petroleum Refining Engineering, College of Oil and Gas Engineering Basra University, Iraq
| | - Mohammademad Adelikhah
- Institute of Radiochemistry and Radioecology, Research Centre for Biochemical, Environmental and Chemical Engineering, University of Pannonia, 8200 Veszprem, Hungary
| |
Collapse
|
24
|
Neskoromnaya EA, Khamizov RK, Melezhyk AV, Memetova AE, Mkrtchan ES, Babkin AV. Adsorption of lead ions (Pb2+) from wastewater using effective nanocomposite GO/CMC/FeNPs: Kinetic, isotherm, and desorption studies. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Synthesis, characterization of functionalized grafted cellulose and its environmental application in uptake of copper (II), manganese (II) and iron (III) ions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Fabrication of Polystyrene/AlOOH Hybrid Material for Pb(II) Decontamination from Wastewater: Isotherm, Kinetic, and Thermodynamic Studies. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The nanomaterials’ toxicity to aquatic life is a big issue due to improper handling or incomplete separation after use. The immobilization of the nanomaterials in the polymeric matrix could be a practical approach to developing an efficient hybrid composite for wastewater purification. In this study, AlOOH nanoparticles were immobilized in the polystyrene polymeric matrix to prepare an effective adsorbent to scavenge the Pb(II) from the aqueous solution. The synthesized polystyrene/AlOOH (PS/AlOOH) hybrid was characterized using microscopic techniques coupled with elemental mapping and EDX, X-ray diffraction, and a furrier-transformed infrared spectrometer. The results revealed that the Pb(II) adsorption onto the polystyrene/AlOOH composite depends on the solution pH, the Pb(II) concentrations in the solution, the adsorption time, and the solute temperature. The maximum scavenging of Pb(II) occurs at pH 6 in 90 min. The adsorption of Pb(II) onto PS/AlOOH decreases from 97.7% to 58.5% with the increase in the Pb(II) concentration from 20 mg g−1 to 100 mg g−1. The kinetics and isotherm modeling demonstrated that Pb(II) adsorption is well suited for the pseudo-second-order kinetics and Toth isotherm models, suggesting that the chemisorption occurs at the heterogeneous surface of PS/AlOOH. The PS/AlOOH composite could be used multiple times without a significant loss in the adsorption efficiency. These results demonstrated that the polystyrene/AlOOH composite is an effective material for the purification of wastewater and can be used on a large scale.
Collapse
|
27
|
Synthesis of zeolitic imidazolate framework-8 (ZIF-8) using different solvents for lead and cadmium adsorption. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02680-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Farag AA, Gafar Afif A, Salih SA, Altalhi AA, Mohamed EA, Mohamed GG. Highly Efficient Elimination of Pb +2 and Al +3 Metal Ions from Wastewater Using Graphene Oxide/3,5-Diaminobenzoic Acid Composites: Selective Removal of Pb 2+ from Real Industrial Wastewater. ACS OMEGA 2022; 7:38347-38360. [PMID: 36340163 PMCID: PMC9631901 DOI: 10.1021/acsomega.2c03150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/11/2022] [Indexed: 06/01/2023]
Abstract
In this study, graphene oxide (GO) was functionalized with 3,5-diaminobenzoic acid (DABA) by a one-step method to produce functionalized graphene oxide (FGO). FGO is a new type of absorbent crystalline substance that has a high surface area and a large porosity site as well as a large number of dentate functional groups which lead to enhanced adsorption performance for heavy metal ions. The adsorption efficiency of FGO for Pb+2 and Al+3 metal ions was extra satisfactory when compared with GO due to the ease of design and the homogeneous structure of FGO. The structure of synthesized GO and FGO was confirmed by different techniques such as FTIR, XRD, TGA, BET nitrogen adsorption-desorption methods, and TEM analyses. The mass of utilized adsorbents, the pH of the medium, the concentration of ionic species in the medium, temperature, and process time were all investigated as variables in the adsorbent procedure. The experimental data recorded that the maximum adsorption efficiency of the 0.5 g/L FGO composite was 99.7 and 99.8% for Pb+2 and Al+3 metal ions, respectively, while in the case of using GO, the maximum adsorption efficiency was 92.6 and 91.9% at ambient temperature in a semineutral medium at pH 6 after 4 h. The adsorption results were in good conformity with the Freundlich model and pseudo-second-order kinetics for Pb+2 and Al+3 metal ions. Also, the reusability study indicates that FGO can be used repeatedly at least for five cycles with a slight significant loss in its efficiency.
Collapse
Affiliation(s)
- Ahmed A. Farag
- Egyptian
Petroleum Research Institute (EPRI), 11727Cairo, Egypt
| | - Aboubakr Gafar Afif
- Chemistry
Department, Faculty of Science, Cairo University, 12613Giza, Egypt
| | - Said A. Salih
- Chemistry
Department, Faculty of Science, Cairo University, 12613Giza, Egypt
| | - Amal A. Altalhi
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | | | - Gehad G. Mohamed
- Chemistry
Department, Faculty of Science, Cairo University, 12613Giza, Egypt
- Nanoscience
Department, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, New Borg El Arab, Alexandria21934, Egypt
| |
Collapse
|
29
|
Synthesis of Oil Palm Fronds Charcoal as Adsorbent to Reduce Levels of Fe (III) in Peat Water. JURNAL KIMIA SAINS DAN APLIKASI 2022. [DOI: 10.14710/jksa.25.8.300-306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The high content of carbon compounds in palm fronds (OPF) makes them potentially useful as an adsorbent. The carbonization method was used for the adsorbent synthesis process. This process began with collecting palm frond waste and then drying and sifting the adsorbent particle. This process resulted in the escape particles with a size of 80 mesh and suspended particles with 120 mesh. Then this process continued by carbonizing the palm fronds with temperature variations starting from (400, 500, and 600°C) for 60 minutes to obtain Charcoal Oil Palm Fronts (COPF). The obtained COPF was determined for moisture and ash content and characterized using FTIR, XRD, and SEM to determine the surface, functional groups, degree of amorphism, crystallinity, and surface morphology. The adsorption efficiency of COPF was applied to the adsorption of Fe (III) in peat water under varying contact time, adsorbent mass, and peat water volume conditions. The water and ash content of COPF qualify the technical quality requirements for activated charcoal according to SNI 06-3730-1995. FTIR analysis detected the presence of vibrations of the C-O, O-H, C=O, C-C, and C-H functional groups on the COPF surface. The XRD pattern showed the existence of a semi-crystalline (002) and (100) plane structure, which is shown at scattering angles of 2θ = 22o and 42o. The surface morphology of COPF showed that as the carbonization temperature increased, the number of pores formed increased, and the pore size decreased. The best adsorption test results were obtained with a contact time of 30 minutes, an adsorbent mass of 1.00 g, and a peat water volume of 100 mL. The highest Fe adsorption efficiency was achieved by COPF 500, where the adsorbed mass was 0.054 mg. Increasing the carbonization temperature causes the water content to decrease and the ash content to increase. High water content and ash content cause a decrease in adsorption efficiency because they can cover the pores of the adsorbent.
Collapse
|
30
|
Mzinyane NN. Adsorption of heavy metals from acid mine drainage using poly (hydroxamic acid) ligand. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
31
|
Recent Literature Review of Significance of Polypyrrole and Its Biocomposites in Adsorption of Dyes from Aqueous Solution. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/7047832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
The usage of dyes has been tremendously augmented due to industrialization and human’s intrinsic fascination with colors. Owing to their excessive usage in industries like textiles, food, cosmetics, paints, printing etc., it is indisputably a contributing factor in aquatic pollution. Dyes effluents have emerged as a burgeoning challenge. Owing to issues such as toxicity, mutagenicity, and disturbed photosynthesis associated with dye contamination, it is crucial to look for an explication to deal with this challenge. Polypyrrole-based biocomposites have been reported as good adsorbents for textile wastewater treatment. In the last decade, numerous studies have stated the effective removal of dyes via Polypyrrole-based biocomposites. This review concentrates on the implication of different Polypyrrole-based biocomposites for decontamination of dyes and synthesis methods, characteristics, and mechanism of dyes degradation by these biocomposites from wastewater.
Collapse
|
32
|
Algarni TS, Al-Mohaimeed AM, Al-Odayni AB, Abduh NAY. Activated Carbon/ZnFe 2O 4 Nanocomposite Adsorbent for Efficient Removal of Crystal Violet Cationic Dye from Aqueous Solutions. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3224. [PMID: 36145011 PMCID: PMC9502794 DOI: 10.3390/nano12183224] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to investigate the potential advantage of ZnFe2O4-incorporated activated carbon (ZFAC), fabricated via a simple wet homogenization, on the removal of cationic dye crystal violet (CV) from its aqueous solutions. The as-prepared ZFAC nanocomposite was characterized using Fourier transform infrared (FTIR), X-ray diffraction (XRD), nitrogen adsorption, scanning electron microscope (SEM), thermogravimetric analysis (TGA), and ultraviolet-visible (UV-Vis). Batch adsorption operating conditions such as the pH (3-11), CV concentration (25-200 ppm), ZFAC dose (10-50 mg), temperature (23-45 °C), and contact time were evaluated. The results indicate pH-dependent uptake (optimum at pH 7.2) increased with temperature and CV concentration increase and decreased as adsorbent dose increased. Modeling of experimental data revealed better fit to the Langmuir than Freundlich and Temkin isotherms, with maximum monolayer capacities (Qm) of 208.29, 234.03, and 246.19 mg/g at 23, 35, and 45 °C, respectively. Kinetic studies suggest pseudo-second order; however, the intra-particle diffusion model indicates a rate-limiting step controlled by film diffusion mechanism. Based on the thermodynamic parameters, the sorption is spontaneous (-ΔG°), endothermic (+ΔH°), and random process (+ΔS°), and their values support the physical adsorption mechanism. In addition to the ease of preparation, the results confirm the potential of ZFAC as a purifier for dye removal from polluted water.
Collapse
Affiliation(s)
- Tahani Saad Algarni
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amal M. Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdel-Basit Al-Odayni
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Naaser A. Y. Abduh
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
33
|
Praneeth S, Zameer A, Zhang N, Dubey BK, Sarmah AK. Biochar admixture cement mortar fines for adsorptive removal of heavy metals in single and multimetal solution: Insights into the sorption mechanisms and environmental significance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:155992. [PMID: 35623514 DOI: 10.1016/j.scitotenv.2022.155992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The combined action of biochar and C-S-H (calcium-silicate-hydrate) in the cement mortars as adsorbents was explored for treating heavy metals from water. The biochar admixture cement mortars were ground to fines for use as adsorbents with the rationale that combined action of Ca, Si, Al etc. based industrial waste with conventional adsorbent biochar could enhance the removal efficiency of contaminants and therefore the overarching aim was to study the removal capacity for three selected heavy metals (Pb2+, Cu2+ and Zn2+) commonly found in the aqueous waste stream. Batch adsorption was carried out on single and multi-metal systems to determine the removal efficiency under varied conditions such as pH, dosage of adsorbent, the effect of contact time and the initial concentration of the adsorbate. For Pb(II), Cu (II) and Zn(II), pH 5 was optimized for single and multi-metal batch sorption studies. A dosage of 20 mg for single metal and 70 mg for multi-metal of an adsorbent dose was found to be sufficient to remove about 70-90% of the three heavy metals in 25 mL solution. Langmuir model best described the isotherm data with maximum adsorption capacities of 476, 81, 123 mg/g for Pb2+, Cu2+ and Zn2+ for BC-40 during single metal adsorption, which were quite comparable to other C-S-H and cement-based adsorbents. The metal hydroxides precipitation, the ion exchange between the Ca2+ and metal ions and metal complexation were explained as plausible mechanisms for the heavy metal removal.
Collapse
Affiliation(s)
- Sai Praneeth
- Department of Civil & Environmental Engineering, the Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Adnan Zameer
- Department of Civil & Environmental Engineering, the Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Na Zhang
- Department of Civil & Environmental Engineering, the Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Brajesh K Dubey
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, India
| | - Ajit K Sarmah
- Department of Civil & Environmental Engineering, the Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
34
|
The Preparation of Eco-Friendly Magnetic Adsorbent from Wild Water Hyacinth (Eichhornia crassipes): The Application for Removing Lead Ions from Industrial Wastewater. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/5427851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Water hyacinth (Eichhornia crassipes) is a wild floating plant that can be found widely in pond or river areas. The plant grows fiercely and causes many harmful issues to the ecosystem around its covered area. This work provides a utilization method that converts wild water hyacinth to reliable magnetic biochar which can be used as a very effective adsorbent for the removal of lead ion Pb(II) in industrial wastewater. The mentioned magnetic biochar can be prepared via a modified pyrolysis process at 550°C with the support of cobalt sulfates as magnetite precursors and limited oxygen from the sweeping gas (the gas mixture ratio is 4 : 1 nitrogen/oxygen). The produced samples were hydrophobic biochar with high oxygen-containing functional groups that are suitable for the removal of inorganic contaminants. The impregnation of cobalt (II, III) oxides provided high magnetic separation performance and additional adsorption sites on the produced magnetic biochar. As indicated by the obtained result, the WHB-Co2M sample possesses a highly porous structure (0.126 cc/g), higher thermal stability (thermal durability reaches 900°C), relatively stable magnetic properties (14.74 emu/g), and a larger surface area (192 m2/g). These beneficial properties led to its suitability to serve as an adsorbent in removing lead ions in the contaminated effluent, recording 95% of removal efficiency and adsorption capacity of 67.815 mg/g. As indicated in the result, all prepared magnetic biochar samples were fitted to two-parameter (Langmuir models) and three-parameter (Sips model) isotherm models. Therefore, the adsorption process in this work could be carried out on both homogeneous and heterogeneous adsorbent surfaces. The adsorption kinetics of the removal process also was described by the pseudo-first-order, pseudo-second-order, and Elovich models to reveal the adsorption and desorption rate of the as-prepared magnetic biochar. This work indicates a successful waste refinery route of converting lignocellulosic biomass such as water hyacinth into value-added material for use as promising heavy metal adsorbents.
Collapse
|
35
|
Equilibrium Isotherms and Kinetic Effects during the Adsorption of Pb(II) on Titanosilicates Compared with Natural Zeolite Clinoptilolite. WATER 2022. [DOI: 10.3390/w14142152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study focuses on the adsorption of Pb(II) by the H-form of titanosilicates (ETS-4, GTS-1) and clinoptilolite. The H-forms were prepared by first exchanging the extra-framework cations—Na+, K+, Ca2+, etc.—with NH4+, and by subsequent thermal treatment for obtaining H-forms. The purity and thermal behaviour of the initial, NH4+, and H-forms of ETS-4, GTS-1, and clinoptilolite were analysed by powder XRD, while the morphology and size of the particles were determined by SEM. The chemical composition of the solids and the solutions was obtained by WDXRF and ICP-OES, respectively. The kinetics research of the Pb(II) adsorption processes was based on WDXRF and ICP-OES. The H-forms of the materials displayed favourable properties for the adsorption of Pb(II). The best behaviour in this respect was demonstrated by GTS-1 when compared to ETS-4 and clinoptilolite.
Collapse
|
36
|
Bayuo J, Rwiza M, Abukari MA, Pelig-Ba KB, Mtei K. Modeling and optimization of independent factors influencing lead(II) biosorption from aqueous systems: A statistical approach. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
37
|
Kalantar Z, Ghanavati Nasab S. Modeling and optimizing Cd(II) ions adsorption onto Corn Silk/Zeolite-Y composite from industrial effluents applying response surface methodology: isotherm, kinetic, and reusability studies. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02594-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Graphene Oxide/Polyvinyl Alcohol–Formaldehyde Composite Loaded by Pb Ions: Structure and Electrochemical Performance. Polymers (Basel) 2022; 14:polym14112303. [PMID: 35683975 PMCID: PMC9183114 DOI: 10.3390/polym14112303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 01/27/2023] Open
Abstract
An immobilization of graphene oxide (GO) into a matrix of polyvinyl formaldehyde (PVF) foam as an eco-friendly, low cost, superior, and easily recovered sorbent of Pb ions from an aqueous solution is described. The relationships between the structure and electrochemical properties of PVF/GO composite with implanted Pb ions are discussed for the first time. The number of alcohol groups decreased by 41% and 63% for PVF/GO and the PVF/GO/Pb composite, respectively, compared to pure PVF. This means that chemical bonds are formed between the Pb ions and the PVF/GO composite based on the OH groups. This bond formation causes an increase in the Tg values attributed to the formation of a strong surface complexation between adjacent layers of PVF/GO composite. The conductivity increases by about 2.8 orders of magnitude compared to the values of the PVF/GO/Pb composite compared to the PVF. This means the presence of Pb ions is the main factor for enhancing the conductivity where the conduction mechanism is changed from ionic for PVF to electronic conduction for PVF/GO and PVF/GO/Pb.
Collapse
|
39
|
Ulfa M, Masykur A, Nofitasari AF, Sholeha NA, Suprapto S, Bahruji H, Prasetyoko D. Controlling the Size and Porosity of Sodalite Nanoparticles from Indonesian Kaolin for Pb2+ Removal. MATERIALS 2022; 15:ma15082745. [PMID: 35454437 PMCID: PMC9024775 DOI: 10.3390/ma15082745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 01/16/2023]
Abstract
Mesoporous sodalite nanoparticles were directly synthesized from Indonesian kaolin with the addition of CTABr as a mesopore template. The studies highlighted the importance of aging time (3–12 h) and temperature (50–80 °C) on increasing surface area and mesoporosity of sodalite. Indonesian kaolin was used without pre-treatment and transformed to sodalite following the initial molar composition of 10 Na2O: 2 SiO2: Al2O3: 128 H2O. Characterization data revealed the formation of high surface area sodalite with mesoporosity at increasing aging temperatures and times. The presence of CTABr as templates produced sodalites nanoparticles with smaller aggregates than the non-template sodalite. The sodalite sample obtained at 80 °C of crystallization temperature for 9 h (S80H9) displayed the highest mesopore volume (0.07612 cm3/g) and the highest adsorption capacity of Pb2+ (212.24 mg/g). Pb2+ was suggested to adsorb via ion exchange with the Na+ counter cation and physical adsorption.
Collapse
Affiliation(s)
- Maria Ulfa
- Chemistry Education Study Program, Faculty of Teacher Training and Education, Sebelas Maret University, Surakarta 57126, Indonesia
- Correspondence: (M.U.); or (D.P.)
| | - Abu Masykur
- Chemistry Education Study Program, Faculty of Teacher Training and Education, Sebelas Maret University, Surakarta 57126, Indonesia
| | - Amanah Firdausa Nofitasari
- Department of Chemistry, Science Faculty, Sebelas Maret University, Jl Ir Sutami 36A, Surakarta 57126, Indonesia;
| | - Novia Amalia Sholeha
- Department of Chemistry, Science Faculty, Sebelas Maret University, Jl Ir Sutami 36A, Surakarta 57126, Indonesia;
| | - Suprapto Suprapto
- Department of Chemistry, Science Faculty, Sebelas Maret University, Jl Ir Sutami 36A, Surakarta 57126, Indonesia;
| | - Hasliza Bahruji
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Keputih, Sukolilo, Surabaya 60111, Indonesia; (A.F.N.); (N.A.S.); (S.S.)
| | - Didik Prasetyoko
- Department of Chemistry, Science Faculty, Sebelas Maret University, Jl Ir Sutami 36A, Surakarta 57126, Indonesia;
- Correspondence: (M.U.); or (D.P.)
| |
Collapse
|
40
|
Bayuo J, Rwiza M, Mtei K. A comprehensive review on the decontamination of lead(ii) from water and wastewater by low-cost biosorbents. RSC Adv 2022; 12:11233-11254. [PMID: 35425067 PMCID: PMC9003363 DOI: 10.1039/d2ra00796g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/22/2022] [Indexed: 12/20/2022] Open
Abstract
The disadvantages of conventional methods in water and wastewater management including the demand for high energy consumption, the creation of secondary toxic sludge, and operation cost are much too high for developing countries. However, adsorption using low-cost biosorbents is the most efficient non-conventional technique for heavy metals removal. The high adsorption capacities, cost-effectiveness, and the abundance of agricultural waste materials in nature are the important parameters that explain why these biosorbents are economical for heavy metals removal. The present investigation sought to review the biosorption of lead [Pb(ii)] onto low-cost biosorbents to understand their adsorption mechanism. The review shows that biosorption using low-cost biosorbents is eco-friendly, cost-effective, and is a simple technique for water and wastewater treatment containing lead(ii) ions. The batch biosorption tests carried out in most studies show that Pb(ii) biosorption by the low-cost biosorbents is dependent on biosorption variables such as pH of the aqueous solution, contact time, biosorbent dose, Pb(ii) initial concentration, and temperature. Furthermore, batch equilibrium data have been explored in many studies by evaluating the kinetics, isothermal and thermodynamic variables. Most of the studies on the adsorptive removal of Pb(ii) were found to follow the pseudo-second kinetic and Langmuir isotherm models with the thermodynamics variables suggesting the feasibility and spontaneous nature of Pb(ii) sequestration. However, gaps exist to increase biosorption ability, economic feasibility, optimization of the biosorption system, and desorption and regeneration of the used agricultural biosorbents.
Collapse
Affiliation(s)
- Jonas Bayuo
- Department of Materials Science and Engineering, The Nelson Mandela Institution of Science and Technology Postal Box 447 Arusha Tanzania
- Department of Science Education, C. K. Tedam University of Technology and Applied Sciences Postal Box 24, Navrongo, Upper East Region Ghana
| | - Mwemezi Rwiza
- Department of Materials Science and Engineering, The Nelson Mandela Institution of Science and Technology Postal Box 447 Arusha Tanzania
| | - Kelvin Mtei
- Department of Materials Science and Engineering, The Nelson Mandela Institution of Science and Technology Postal Box 447 Arusha Tanzania
| |
Collapse
|
41
|
Pachaiappan R, Cornejo-Ponce L, Rajendran R, Manavalan K, Femilaa Rajan V, Awad F. A review on biofiltration techniques: Recent advancements in the removal of volatile organic compounds and heavy metals in the treatment of polluted water. Bioengineered 2022; 13:8432-8477. [PMID: 35260028 PMCID: PMC9161908 DOI: 10.1080/21655979.2022.2050538] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Good quality of water determines the healthy life of living beings on this earth. The cleanliness of water was interrupted by the pollutants emerging out of several human activities. Industrialization, urbanization, heavy population, and improper disposal of wastes are found to be the major reasons for the contamination of water. Globally, the inclusion of volatile organic compounds (VOCs) and heavy metals released by manufacturing industries, pharmaceuticals, and petrochemical processes have created environmental issues. The toxic nature of these pollutants has led researchers, scientists, and industries to exhibit concern towards the complete eradication of them. In this scenario, the development of wastewater treatment methodologies at low cost and in an eco-friendly way had gained importance at the international level. Recently, bio-based technologies were considered for environmental remedies. Biofiltration based works have shown a significant result for the removal of volatile organic compounds and heavy metals in the treatment of wastewater. This was done with several biological sources such as bacteria, fungi, algae, plants, yeasts, etc. The biofiltration technique is cost-effective, simple, biocompatible, sustainable, and eco-friendly compared to conventional techniques. This review article provides deep insight into biofiltration technologies engaged in the removal of volatile organic compounds and heavy metals in the wastewater treatment process.
Collapse
Affiliation(s)
- Rekha Pachaiappan
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda.General Velasquez, 1775, Arica, Chile
| | - Lorena Cornejo-Ponce
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda.General Velasquez, 1775, Arica, Chile
| | - Rathika Rajendran
- Department of Physics, A.D.M. College for Women (Autonomous), Nagapattinam, Tamil Nadu - 611001, India
| | - Kovendhan Manavalan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu - 603203, India
| | - Vincent Femilaa Rajan
- Department of Sustainable Energy Management, Stella Maris College (Autonomous), Chennai - 600086, Tamil Nadu, India
| | - Fathi Awad
- Department of Allied Health Professionals, Faculty of Medical and Health Sciences, Liwa College of Technology, Abu Dhabi, UAE
| |
Collapse
|
42
|
Simultaneous adsorption of cobalt ions, azo dye, and imidacloprid pesticide on the magnetic chitosan/activated carbon@UiO-66 bio-nanocomposite: Optimization, mechanisms, regeneration, and application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120258] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Ultrasound-assisted adsorption of Pb ions by carbonized/activated date stones from singles/mixed aqueous solutions. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
44
|
Application of Ion Exchangers with the N-Methyl-D-Glucamine Groups in the V(V) Ions Adsorption Process. MATERIALS 2022; 15:ma15031026. [PMID: 35160975 PMCID: PMC8839684 DOI: 10.3390/ma15031026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/11/2022]
Abstract
The adsorption capacities of ion exchangers with N-methyl-D-glucamine (NMDG) groups (Amberlite IRA 743, Lewatit MK 51, Purolite S110 and Purolite S108) relative to V(V) ions were tested in a batch system, taking into account the influence of various parameters, such as the adsorbent mass (0.05-0.20 g), phase contact time (1-240 min), initial concentration (10-150 mg/L), and temperature (293-333 K), as well as in a column system where the variable operating parameters were initial concentration (50, 100 mg/L), bed volume (10, 100 mL) and flow rate (0.6, 6 mL/min). Pseudo-first order, pseudo-second order, intraparticle diffusion and Boyd models were used to describe the kinetic studies. The best fit was obtained for the pseudo-second order model. The Langmuir, Freundlich and Temkin adsorption models were used to describe the equilibrium data to acquire better knowledge about the adsorption mechanism. The thermodynamic parameters were also calculated, which showed that the studied processes are endothermic, spontaneous and thermodynamically favorable. The physicochemical properties of the ion exchangers were characterized by nitrogen adsorption/desorption analyses, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photo electron spectroscopy (XPS). The point of zero charge (pHPZC) was also determined.
Collapse
|
45
|
Novel Application of Tagua Shell (Phytelephas aequatorialis) as Adsorbent Material for the Removal of Pb(II) Ions: Kinetics, Equilibrium, and Thermodynamics of the Process. SUSTAINABILITY 2022. [DOI: 10.3390/su14031309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tagua shell is a material generated in the handcrafted jewelry industry, which is discarded since it does not have a specific use. The present study evaluates this material as an adsorbent for the removal of lead (II) in aqueous media. The adsorbent was characterized through the point of zero charge technique, X-ray microanalysis, scanning electron microscopy, and Fourier-transform infrared spectroscopy. Tests were carried out in a static system using a lead (II) solution of 100 mg·L−1 to establish the process conditions, setting a pH of 5, an adsorbent dose of 1.8 g/100 mL, and a contact time of 60 min. The kinetic study performed showed that the experimental data had a better fit with the pseudo-second order model. The experimental equilibrium data were correlated using the Langmuir, Freundlich, Toth, Redlich–Peterson, and Sips models, of which the Langmuir and Sips models proved to be the best to represent the adsorption process due to the high coefficient of determination they presented at the different temperatures, being between 0.9629–0.9899 and 0.9819–0.9900, respectively. The maximum amount of lead adsorbed was 22.0348 mg·g−1 at a temperature of 298 K. Finally, the thermodynamics study indicated that the process is endothermic, spontaneous, and thermodynamically stable.
Collapse
|
46
|
Application of Activated Carbon Banana Peel Coated with Al 2O 3-Chitosan for the Adsorptive Removal of Lead and Cadmium from Wastewater. MATERIALS 2022; 15:ma15030860. [PMID: 35160814 PMCID: PMC8836859 DOI: 10.3390/ma15030860] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022]
Abstract
This study was aimed at evaluating the adsorption capacity of novel banana peel activated carbon (BPAC) modified with Al3O2@chitosan for the removal of cadmium (Cd2+) and lead (Pb2+) from wastewater. Characterization techniques such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transformed infrared (FTIR) spectroscopy, and Brunauer-Emmett-Teller analysis confirmed the synthesized BPAC@Al3O2@chitosan composite material. The univariate approach was used to study the influence of different experimental parameters (such as adsorbent mass, sample pH, and contact time) that affects simultaneous removal of Cd2+ and Pb2+ ions. Kinetic results showed that adsorption favored the pseudo-second-order kinetic model, whereas the adsorption of Cd2+ and Pb2+ was best described by the Langmuir model and the adsorption capacity for Cd2+ and Pb2+ was 46.9 mg g-1 and 57.1 mg g-1, respectively, for monolayer adsorption. It was shown the BPAC composite can be re-used until the third cycle of adsorption-desorption (% Re > 80). Based on the obtained results, it can be concluded that the prepared BPAC@Al3O2@chitosan composite material is cost effective, as it is generated from waste banana peels and can be re-used. In addition, the prepared material was able to remove Cd2+ and Pb2+ up to 99.9%.
Collapse
|
47
|
Nitrate removal from contaminated waters using modified rice husk ash by Hexadecyltrimethylammonium bromide surfactant. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-021-02149-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
48
|
Priya AK, Yogeshwaran V, Rajendran S, Hoang TKA, Soto-Moscoso M, Ghfar AA, Bathula C. Investigation of mechanism of heavy metals (Cr 6+, Pb 2+& Zn 2+) adsorption from aqueous medium using rice husk ash: Kinetic and thermodynamic approach. CHEMOSPHERE 2022; 286:131796. [PMID: 34391117 DOI: 10.1016/j.chemosphere.2021.131796] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 05/26/2023]
Abstract
In this work, we examined the possibility on the application of rice husk as biosorbent for the elimination of heavy metal ions (chromium, lead, and zinc) existing in the aqueous solutions. The biosorbent was prepared from rice husk powder and modified with 0.1 N of HCl for creating the functional groups and increase specific surface area. The FT-IR spectra, SEM& EDX studies of rice hulls powder were examined for the pristine adsorbent and after the adsorption of heavy metal ions. The batch adsorption technique was adopted for this work and adsorption parameters were optimized. The maximum efficiency of adsorption is obtained at 6.0 pH, 1 h of contact duration, the rice husk dosage is 2.5 g/L, and temperature of 30°C for 25 mg/L of Cr, Pb & Zn metal ion solutions. The Cr, Pb & Zn metal ions are removed up to 87.12 %, 88.63 % & 99.28 %, respectively, using the rice husk powder. The adsorption process follows the Temkin & D-R isotherm model. Elovich model was fitted against the kinetic data of metal ion adsorption. Based on the experimental observations, the rice husk powder can be considered as a low cost adsorbent for heavy metal ion removal from the industrial effluent.
Collapse
Affiliation(s)
- A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, India
| | - V Yogeshwaran
- Department of Civil Engineering, Sri Krishna College of Engineering and Technology, Coimbatore, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Tuan K A Hoang
- Institut de Recherched'Hydro-Québec 1806, boul. Lionel-Boulet, Varennes, J3X 1S1, Quebec, Canada
| | - Matias Soto-Moscoso
- Departamento de Física, Facultad de Ciencias, Universidad DelBío-bío, Avenida Collao, 1202, Casilla 15-C, Concepción, Chile
| | - Ayman A Ghfar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh-11451, Saudi Arabia
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| |
Collapse
|
49
|
Yen PL, Hsu CH, Huang ML, Liao VHC. Removal of nano-sized polystyrene plastic from aqueous solutions using untreated coffee grounds. CHEMOSPHERE 2022; 286:131863. [PMID: 34411928 DOI: 10.1016/j.chemosphere.2021.131863] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Accepted: 08/09/2021] [Indexed: 05/26/2023]
Abstract
Nanoplastic (NP) pollution is an emerging global concern due to its adverse impact on aquatic ecosystems. Nevertheless, the removal of aqueous NPs from aquatic environments remains a significant challenge. This study aims to investigate whether polystyrene NP in aqueous solutions can be removed using coffee grounds. Due to the difficulty associated with directly measuring NP levels and monitoring the biosorption process, we used fluorescent-orange amine-modified polystyrene beads (fluo-NP, 100 nm) to evaluate the efficacy of the biosorption process. The factors including pH, coffee grounds concentration, initial fluo-NP concentration, and contact time were optimized on batch experiments. In addition, the isotherm and kinetic models were employed to clarify the adsorption behaviors and mechanisms. It was found that aqueous fluo-NP particles were effectively adsorbed onto the coffee grounds over a wide pH range (pH 2-12), with a coffee ground concentration of 25 g/L leading to the maximum adsorption efficiency (74%). The equilibrium adsorption capacity of the coffee grounds was 4 mg/g for a reaction time of 40 min. Coffee grounds demonstrated the highest removal efficiency when the initial fluo-NP concentration was 100-125 mg/L. The Dubinin-Radushkevich model and pseudo-second-order model described the adsorption isotherm and kinetics well, respectively, and the adsorption at high fluo-NP concentration range was favorable. Moreover, the results suggest that the mechanism lies in the electrostatic interactions and hydrogen bonding between surface functional groups of the coffee grounds and the fluo-NP particles. Given that there is an urgent need to remove NPs from aqueous systems, this study illustrates that it is possible to use coffee ground biowaste for this purpose.
Collapse
Affiliation(s)
- Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Ching-Hsuan Hsu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Mei-Lun Huang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
50
|
Singh Yadav B, Dasgupta S. Effect of Time, pH, and Temperature on Kinetics for Adsorption of methyl orange Dye into the Modified Nitrate Intercalated MgAl LDH Adsorbent. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|