1
|
Liu Q, Qin W, Hu G, Qin Y, Chen B, Huang J, Xing Z, Xu Q. A cyanobiphenol-based fluorescent probe for simultaneous recognition of Al 3+ and Zn 2+ and its application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125538. [PMID: 39637567 DOI: 10.1016/j.saa.2024.125538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/15/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
A facile cyanobiphenol based probe MHB was synthesized and determined by FT-IR, 1H NMR, 13C NMR, HRMS and X-ray Crystallography. The probe MHB exhibited fluorescence turn-on phenomenon accompany with obvious color change from dark bule to azure and blue-green upon the addition of Al3+ and Zn2+, respectively. The binding ratios between probe MHB and Al3+/Zn2+ was 1:1 determined by Job's plot, which was deeply investigated by FT-IR spectrum, 1HNMR titration and HRMS analysis. The detection limits of MHB to Al3+ and Zn2+ were 2.52 × 10-7 M and 1.74 × 10-7 M for Zn2+, respectively. The application experiments referring to real water samples, test paper and cell image showed that MHB was capable of qualitative and quantitative sensing Al3+/Zn2+ in environmental and biological system.
Collapse
Affiliation(s)
- Qi Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Wen Qin
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Guiying Hu
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Yanfei Qin
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Bolin Chen
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Jiawen Huang
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Zhiyong Xing
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| | - Qijiang Xu
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| |
Collapse
|
2
|
Sperdouli I, Giannousi K, Moustaka J, Antonoglou O, Dendrinou-Samara C, Moustakas M. Responses of Tomato Photosystem II Photochemistry to Pegylated Zinc-Doped Ferrite Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:288. [PMID: 39997850 PMCID: PMC11858530 DOI: 10.3390/nano15040288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
Various metal-based nanomaterials have been the focus of research regarding their use in controlling pests and diseases and in improving crop yield and quality. In this study, we synthesized via a solvothermal procedure pegylated zinc-doped ferrite (ZnFer) NPs and characterized their physicochemical properties by X-ray diffraction (XRD), vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), FT-IR and UV-Vis spectroscopies, as well as transmission electron microscopy (TEM). Subsequently, their impact on tomato photosynthetic efficiency was evaluated by using chlorophyll a fluorescence imaging analysis to estimate the light energy use efficiency of photosystem II (PSII), 30, 60, and 180 min after foliar spray of tomato plants with distilled water (control plants) or 15 mg L-1 and 30 mg L-1 ZnFer NPs. The PSII responses of tomato leaves to foliar spray with ZnFer NPs showed time- and dose-dependent biphasic hormetic responses, characterized by a short-time inhibitory effect by the low dose and stimulatory effect by the high dose, while at a longer exposure period, the reverse phenomenon was recorded by the low and high doses. An inhibitory effect on PSII function was observed after more than ~120 min exposure to both ZnFer NPs concentrations, implying a negative effect on PSII photochemistry. We may conclude that the synthesized ZnFer NPs, despite their ability to induce hormesis of PSII photochemistry, have a negative impact on photosynthetic function.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, 57001 Thessaloniki, Greece
| | - Kleoniki Giannousi
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.G.); (O.A.); (C.D.-S.)
| | - Julietta Moustaka
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Orestis Antonoglou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.G.); (O.A.); (C.D.-S.)
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.G.); (O.A.); (C.D.-S.)
| | - Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
3
|
Alpatova VM, Nguyen MT, Rys EG, Liklikadze GK, Kononova EG, Smol'yakov AF, Borisov YA, Egorov AE, Kostyukov AA, Shibaeva AV, Burtsev ID, Peregudov AS, Kuzmin VA, Shtil AA, Markova AA, Ol'shevskaya VA. Metal (M = Cr, Mo, W, Re) carbonyl complexes with porphyrin and carborane isocyanide ligands: light-induced oxidation and carbon oxide release for antitumor efficacy. Biomater Sci 2025; 13:711-730. [PMID: 39704220 DOI: 10.1039/d4bm01293c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The tetrapyrrolic macrocycle as a scaffold for various chemical modifications provides broad opportunities for the preparation of complex multifunctional conjugates suitable for binary antitumor therapies. Typically, illumination with monochromatic light triggers the photochemical generation of reactive oxygen species (ROS) (photodynamic effect). However, more therapeutically valuable effects can be achieved upon photoactivation of tetrapyrrole derivatives. Herein we report the novel porphyrin-based complexes of transition metals with isocyanide and carbonyl ligands. Synthesis of complexes presumed the use of 5-(p-isocyanophenyl)-10,15,20-triphenylporphyrin as a ligand in reactions with metal carbonyl complexes, M(CO)6 (M = Cr, Mo, W), Re2(CO)10 and Re(CO)5Cl. Based on these complexes and isocyanocarborane, the heteroleptic carbonyl complexes with porphyrin and carborane isocyanide ligands were prepared. In cell-free systems, the new compounds retained photochemical characteristics of the parental porphyrin derivative, such as triplet state formation and ROS generation, upon light-induced activation. In the cell culture, the carborane-containing derivatives demonstrated a more pronounced intracellular accumulation than their nonboronated counterparts. As expected, illumination at the Soret band (405 nm) of cells loaded with the new complexes caused photodynamic cell damage. In contrast, illumination at 530 nm instead initiated the release of carbon oxide (CO) followed by cell death independently of the photodynamic effect. Light-induced CO release was analyzed using second derivatives of UV-Vis spectra and our originally developed Spectrophotometric elimiNAtion of Photoinduced Side reactions (SNAPS) method. The yield of CO release decreased in the raw depending on metals in the carbonyl moiety: Mo ≥ Cr > W > Re ≥ Re2. Overall, our novel metal carbonyl complexes with porphyrin and carborane isocyanide ligands emerge as potent bi-functional conjugates for combined photodynamic and photoinducible CO-releasing antitumor agents.
Collapse
Affiliation(s)
- Victoria M Alpatova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Bld. 1 Vavilov Street, 119334 Moscow, Russian Federation.
| | - Minh Tuan Nguyen
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russian Federation
| | - Evgeny G Rys
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Bld. 1 Vavilov Street, 119334 Moscow, Russian Federation.
| | - Georgy K Liklikadze
- Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev Russian University of Chemical Technology, 9 Miusskaya Square, 125047 Moscow, Russian Federation
| | - Elena G Kononova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Bld. 1 Vavilov Street, 119334 Moscow, Russian Federation.
| | - Alexander F Smol'yakov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Bld. 1 Vavilov Street, 119334 Moscow, Russian Federation.
- Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russian Federation
| | - Yuri A Borisov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Bld. 1 Vavilov Street, 119334 Moscow, Russian Federation.
| | - Anton E Egorov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russian Federation
| | - Alexey A Kostyukov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russian Federation
| | - Anna V Shibaeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russian Federation
| | - Ivan D Burtsev
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russian Federation
| | - Alexander S Peregudov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Bld. 1 Vavilov Street, 119334 Moscow, Russian Federation.
| | - Vladimir A Kuzmin
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russian Federation
| | - Alexander A Shtil
- Institute of Cyber Intelligence Systems, National Research Nuclear University MEPhI, 115409 Moscow, Russian Federation
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoye shosse, Moscow 115522, Russian Federation
| | - Alina A Markova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russian Federation
- Institute of Cyber Intelligence Systems, National Research Nuclear University MEPhI, 115409 Moscow, Russian Federation
| | - Valentina A Ol'shevskaya
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Bld. 1 Vavilov Street, 119334 Moscow, Russian Federation.
| |
Collapse
|
4
|
Zhi W, Li Y, Wang L, Hu X. Advancing Neuroscience and Therapy: Insights into Genetic and Non-Genetic Neuromodulation Approaches. Cells 2025; 14:122. [PMID: 39851550 PMCID: PMC11763439 DOI: 10.3390/cells14020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Neuromodulation stands as a cutting-edge approach in the fields of neuroscience and therapeutic intervention typically involving the regulation of neural activity through physical and chemical stimuli. The purpose of this review is to provide an overview and evaluation of different neuromodulation techniques, anticipating a clearer understanding of the future developmental trajectories and the challenges faced within the domain of neuromodulation that can be achieved. This review categorizes neuromodulation techniques into genetic neuromodulation methods (including optogenetics, chemogenetics, sonogenetics, and magnetogenetics) and non-genetic neuromodulation methods (including deep brain stimulation, transcranial magnetic stimulation, transcranial direct current stimulation, transcranial ultrasound stimulation, photobiomodulation therapy, infrared neuromodulation, electromagnetic stimulation, sensory stimulation therapy, and multi-physical-factor stimulation techniques). By systematically evaluating the principles, mechanisms, advantages, limitations, and efficacy in modulating neuronal activity and the potential applications in interventions of neurological disorders of these neuromodulation techniques, a comprehensive picture is gradually emerging regarding the advantages and challenges of neuromodulation techniques, their developmental trajectory, and their potential clinical applications. This review highlights significant advancements in applying these techniques to treat neurological and psychiatric disorders. Genetic methods, such as sonogenetics and magnetogenetics, have demonstrated high specificity and temporal precision in targeting neuronal populations, while non-genetic methods, such as transcranial magnetic stimulation and photobiomodulation therapy, offer noninvasive and versatile clinical intervention options. The transformative potential of these neuromodulation techniques in neuroscience research and clinical practice is underscored, emphasizing the need for integration and innovation in technologies, the optimization of delivery methods, the improvement of mediums, and the evaluation of toxicity to fully harness their therapeutic potential.
Collapse
Affiliation(s)
- Weijia Zhi
- Beijing Institute of Radiation Medicine, Beijing 100850, China;
| | - Ying Li
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Lifeng Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China;
| | - Xiangjun Hu
- Beijing Institute of Radiation Medicine, Beijing 100850, China;
| |
Collapse
|
5
|
Predarska I, Kaluđerović GN, Hey-Hawkins E. Nanostructured mesoporous silica carriers for platinum-based conjugates with anti-inflammatory agents. BIOMATERIALS ADVANCES 2024; 165:213998. [PMID: 39236581 DOI: 10.1016/j.bioadv.2024.213998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/09/2024] [Accepted: 08/17/2024] [Indexed: 09/07/2024]
Abstract
This review discusses the relationship between inflammation and cancer initiation and progression, which has prompted research into anti-inflammatory approaches for cancer prevention and treatment. Specifically, it focuses on the use of inflammation-reducing agents to enhance the effectiveness of tumor treatment methods. These agents are combined with platinum(II)-based antitumor drugs to create multifunctional platinum(IV) prodrugs, allowing for simultaneous delivery to tumor cells in a specific ratio. Once inside the cells and subjected to intracellular reduction, both components can act in parallel through distinct pathways. Motivated by the objective of reducing the systemic toxicity associated with contemporary chemotherapy, and with the aim of leveraging the passive enhanced permeability and retention effect exhibited by nanostructured materials to improve their accumulation within tumor tissues, the platinum(IV) complexes have been efficiently loaded into mesoporous silica SBA-15 material. The resulting nanostructured materials are capable of providing controlled release of the conjugates when subjected to simulated plasma conditions. This feature suggests the potential for extended circulation within the body in vivo, with minimal premature release of the drug before reaching the intended target site. The primary emphasis of this review is on research that integrates these two approaches to develop chemotherapeutic treatments that are both more efficient and less harmful.
Collapse
Affiliation(s)
- Ivana Predarska
- Leipzig University, Faculty of Chemistry and Mineralogy, Centre for Biotechnology and Biomedicine (BBZ), Institute of Bioanalytical Chemistry, Deutscher Platz 5, 04103 Leipzig, Germany; Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Str. 2, 06217 Merseburg, Germany
| | - Goran N Kaluđerović
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Str. 2, 06217 Merseburg, Germany.
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Centre for Biotechnology and Biomedicine (BBZ), Institute of Bioanalytical Chemistry, Deutscher Platz 5, 04103 Leipzig, Germany.
| |
Collapse
|
6
|
Negi M, Amulya E, Phatale V, Abraham N, Hedaoo A, Srinivasarao DA, Srivastava S. Surface engineered nano architectonics: An evolving paradigm for tackling Alzheimer's disease. Life Sci 2024; 358:123155. [PMID: 39433085 DOI: 10.1016/j.lfs.2024.123155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/21/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
As per the World Health Organization (WHO) estimation, Alzheimer's disease (AD) will affect 100 million population across the globe by 2050. AD is an incurable neurodegenerative disease that remains a mystery for neurologists owing to its complex pathophysiology. Currently, available therapeutic regimens will only cause symptomatic relief by improving the cognitive and behavioral functions of AD. However, the major pitfalls in managing AD include tight junctions in the endothelial cells of the blood-brain barrier (BBB), diminished neuronal bioavailability, enzymatic degradation and reduced stability of the therapeutic moiety. In an effort to surmount the drawbacks mentioned above, researchers shifted their focus toward nanocarriers (NCs). Nevertheless, non-specific targeting of NCs imparts toxicity to the peripheral organs, thereby reducing the bioavailability of therapeutic moiety at the target site. To unravel this unmet clinical need, scientists came up with the idea of a novel intriguing strategy of surface engineering by targeting ligands. Surface-decorated NCs provide targeted drug delivery, controlled drug release, enhanced penetration and bioavailability. In this state-of-the-art review, we have highlighted in detail various molecular signalling pathways involved in AD pathogenesis. The significance of surface functionalization and its application in AD management have been deliberated. We have elaborated on the regulatory bottlenecks and clinical hurdles faced during lab-to-industrial scale translation along with possible solutions.
Collapse
Affiliation(s)
- Mansi Negi
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Etikala Amulya
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Noella Abraham
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Aachal Hedaoo
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
7
|
Cui Y, Du X, Li Y, Wang D, Lv Z, Yuan H, Chen Y, Liu J, Sun Y, Wang W. Imbalanced and Unchecked: The Role of Metal Dyshomeostasis in Driving COPD Progression. COPD 2024; 21:2322605. [PMID: 38591165 DOI: 10.1080/15412555.2024.2322605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/19/2024] [Indexed: 04/10/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory condition characterized by persistent inflammation and oxidative stress, which ultimately leads to progressive restriction of airflow. Extensive research findings have cogently suggested that the dysregulation of essential transition metal ions, notably iron, copper, and zinc, stands as a critical nexus in the perpetuation of inflammatory processes and oxidative damage within the lungs of COPD patients. Unraveling the intricate interplay between metal homeostasis, oxidative stress, and inflammatory signaling is of paramount importance in unraveling the intricacies of COPD pathogenesis. This comprehensive review aims to examine the current literature on the sources, regulation, and mechanisms by which metal dyshomeostasis contributes to COPD progression. We specifically focus on iron, copper, and zinc, given their well-characterized roles in orchestrating cytokine production, immune cell function, antioxidant depletion, and matrix remodeling. Despite the limited number of clinical trials investigating metal modulation in COPD, the advent of emerging methodologies tailored to monitor metal fluxes and gauge responses to chelation and supplementation hold great promise in unlocking the potential of metal-based interventions. We conclude that targeted restoration of metal homeostasis represents a promising frontier for ameliorating pathological processes driving COPD progression.
Collapse
Affiliation(s)
- Ye Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Xinqian Du
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yunqi Li
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Dan Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Huihui Yuan
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yan Chen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Jie Liu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Ying Sun
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
8
|
Mohammed SEM, Nowikovsky K. The mysteries of LETM1 pleiotropy. Pharmacol Res 2024; 210:107485. [PMID: 39481506 DOI: 10.1016/j.phrs.2024.107485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
LETM1 is a nuclear-encoded protein located in the inner mitochondrial membrane, playing a critical role in regulating mitochondrial cation and volume homeostasis. However, numerous studies on functional features, molecular interactions, and disease-associated effects of LETM1 revealed that LETM1 is also involved in other metabolic functions including glucose utilization, mitochondrial DNA and ribosome organization, cristae architecture and respiratory complex stability. Undisputedly, osmoregulatory processes are essential for mitochondrial functionality, but the pleiotropic aspects of LETM1 challenges us to understand the core function of LETM1, which still remains elusive. In this review, we provide an overview of the current knowledge and latest developments regarding the activities involving LETM1. We highlight various findings that offer different functional perspectives and ideas on the core function of LETM1. Specifically, we emphasize data supporting LETM1's role as a mitochondrial translational factor, K+/H+ exchanger, or Ca2+/H+ exchanger, along with recent findings on its interaction with ATAD3A and TMBIM5. We also present the severe clinical implications of LETM1 deficiency. Finally, we discuss emerging questions raised by the different views on LETM1, which need to be addressed to guide future research directions and ultimately resolve the function of this essential protein and develop targeted therapeutic strategies.
Collapse
Affiliation(s)
- Sami E M Mohammed
- Department of Biomedical Sciences and Pathobiology, Centre of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, Vetmeduni, Vienna, Austria
| | - Karin Nowikovsky
- Department of Biomedical Sciences and Pathobiology, Centre of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, Vetmeduni, Vienna, Austria.
| |
Collapse
|
9
|
Fekete M, Lehoczki A, Csípő T, Fazekas-Pongor V, Szappanos Á, Major D, Mózes N, Dósa N, Varga JT. The Role of Trace Elements in COPD: Pathogenetic Mechanisms and Therapeutic Potential of Zinc, Iron, Magnesium, Selenium, Manganese, Copper, and Calcium. Nutrients 2024; 16:4118. [PMID: 39683514 DOI: 10.3390/nu16234118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a progressive, inflammatory airway disorder characterized by a gradual decline in lung function and increased oxidative stress. Both oxidative stress and inflammation are central to its pathophysiology, with trace elements such as zinc, copper, iron, manganese, magnesium, selenium, and calcium playing key roles in various cellular processes. OBJECTIVE This article reviews the role of trace elements in COPD, focusing on their involvement in disease pathogenesis and their therapeutic potential. Specifically, we examine the effects of zinc, copper, iron, magnesium, manganese, selenium, and calcium in COPD. METHODS We performed a comprehensive narrative review of the literature across databases including PubMed, Web of Science, Cochrane Library, and Google Scholar, identifying studies that explore the therapeutic effects of trace elements in COPD. The studies included in the review consisted of cohort analyses, randomized controlled trials, and clinical investigations. RESULTS Zinc, copper, iron, magnesium, manganese, selenium, and calcium are critical to both the pathophysiology and management of COPD. These trace elements contribute to the regulation of inflammation, the modulation of oxidative stress, and the maintenance of lung function. Zinc and copper, for instance, reduce oxidative stress and modulate immune responses, while iron is essential for oxygen transport. Magnesium, manganese, selenium, and calcium are vital for muscle function, respiratory performance, reducing inflammation, and improving pulmonary function. CONCLUSIONS The minerals zinc, copper, iron, magnesium, manganese, selenium, and calcium may contribute to beneficial effects as part of the standard therapeutic management of COPD. Maintaining optimal levels of these trace elements may support the regulation of inflammatory processes, a reduction in oxidative stress, and an improvement in the pulmonary function. However, further clinical research is necessary to confirm their efficacy and establish safe dosage recommendations in COPD treatment.
Collapse
Affiliation(s)
- Mónika Fekete
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
- Health Sciences Program, Doctoral College, Semmelweis University, 1085 Budapest, Hungary
| | - Andrea Lehoczki
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
- Health Sciences Program, Doctoral College, Semmelweis University, 1085 Budapest, Hungary
| | - Tamás Csípő
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
- Health Sciences Program, Doctoral College, Semmelweis University, 1085 Budapest, Hungary
| | - Vince Fazekas-Pongor
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
- Health Sciences Program, Doctoral College, Semmelweis University, 1085 Budapest, Hungary
| | - Ágnes Szappanos
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
- Department of Rheumatology and Clinical Immunology, Semmelweis University, 1088 Budapest, Hungary
| | - Dávid Major
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Noémi Mózes
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Norbert Dósa
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - János Tamás Varga
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
10
|
Huang J, Tong H, Gao B, Wu Y, Li W, Xiao P. Long-term exposure to dimefluthrin inhibits the growth of Acrossocheilus fasciatus. ENVIRONMENTAL RESEARCH 2024; 260:119617. [PMID: 39004392 DOI: 10.1016/j.envres.2024.119617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/03/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
Dimefluthrin (DIM) is a synthetic pyrethroid insecticide commonly used for the control of pests, particularly for mosquitoes and other flying insects. However, the effects of DIM on non-target aquatic organisms are not known. In this study, we evaluated the long-term effects of DIM on juvenile Acrossocheilus fasciatus (a species of teleost fish) by exposing them to two different concentrations (0.8 μg/L and 4 μg/L) for 60 days. After 60 d of exposure, DIM induced a significant decrease in body weight and irregular, diffused villi in the intestines of A. fasciatus, accompanied by alterations in the expression of immune-related genes. Furthermore, Gene Ontology (GO) enrichment analysis revealed that among the differentially expressed genes (DEGs), all downregulated genes were enriched in processes such as small molecule/cellular amino acid metabolism, generation of precursor metabolites and energy, and phosphatase activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the downregulated genes were associated with processes such as cytokine-cytokine receptor interaction, chemokine signaling pathway, JAK-STAT signaling pathway, intestinal immune network for IgA production, natural killer cell-mediated cytotoxicity, and antigen processing and presentation. In contrast, upregulated DEGs were linked to processes such as necroptosis, phototransduction, and Hippo signaling pathway. These results demonstrate the potential toxicity of DIM to non-target aquatic organisms, indicating the broader ecological implications of its use.
Collapse
Affiliation(s)
- Jinghong Huang
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Medicine, Huaqiao University, Xiamen, 361021, PR China
| | - Hao Tong
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou, 325035, PR China
| | - Bo Gao
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Medicine, Huaqiao University, Xiamen, 361021, PR China
| | - Yaqing Wu
- Instrumental Analysis Center of Huaqiao University, Xiamen, 361021, PR China
| | - Wenhua Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Medicine, Huaqiao University, Xiamen, 361021, PR China.
| | - Peng Xiao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou, 325035, PR China.
| |
Collapse
|
11
|
de Almeida Santos G, Englund ANB, Dalleywater EL, Røhr ÅK. Characterization of two bacterial tyrosinases from the halophilic bacterium Hahella sp. CCB MM4 relevant for phenolic compounds oxidation in wetlands. FEBS Open Bio 2024. [PMID: 39382070 DOI: 10.1002/2211-5463.13906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
Tyrosinases (TYRs) are type-3 copper proteins that are widely distributed in nature. They can hydroxylate and oxidize phenolic molecules and are mostly known for producing melanins that confer protection against photo induced damage. TYRs are also thought to play an important role in the 'latch mechanism', where high concentrations of phenolic compounds inhibit oxidative decomposition of organic biomass and subsequent CO2 release, especially relevant in wetland environments. In the present study, we describe two TYRs, HcTyr1 and HcTyr2, from halophilic bacterium Hahella sp. CCB MM4 previously isolated at Matang mangrove forest in Perak, Malaysia. The structure of HcTyr1 was determined by X-ray crystallography at a resolution of 1.9 Å and represents an uncharacterized group of prokaryotic TYRs as demonstrated by a sequence similarity network analysis. The genes encoding the enzymes were cloned, expressed, purified and thoroughly characterized by biochemical methods. HcTyr1 was able to self-cleave its lid-domain (LID) in a protease independent manner, whereas the LID of HcTyr2 was essential for activity and stability. Both enzymes showed variable activity in the presence of different metals, surfactants and NaCl, and were able to oxidize lignin constituents. The high salinity tolerance of HcTyr1 indicates that the enzyme can be an efficient catalyst in the habitat of the host.
Collapse
Affiliation(s)
- Gustavo de Almeida Santos
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Andrea N B Englund
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Eirin L Dalleywater
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Åsmund Kjendseth Røhr
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
12
|
Wibowo A, Jahir Khan M, Sansanaphongpricha K, Khemthong P, Laosiripojana N, Yu YS, Wu KCW, Sakdaronnarong C. Carbon Dots in Photodynamic Therapy: The Role of Dopant and Solvent on Optical and Photo-Responsive Properties. Chemistry 2024; 30:e202400885. [PMID: 39032088 DOI: 10.1002/chem.202400885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
Carbon dots (CDs) are novel carbon-based luminescent materials with wide-ranging applications in biosensing, bioimaging, drug transportation, optical devices, and beyond. Their advantageous attributes, including biocompatibility, biodegradability, antioxidant activity, photostability, small particle size (<10 nm), and strong light absorption and excitation across a broad range of wavelengths, making them promising candidates in the field of photodynamic therapy (PDT) as photosensitizers (PSs). Further enhancements in functionality are imperative to enhance the effectiveness of CDs in PDT applications, notwithstanding their inherent benefits. Recently, doping agents and solvents have been demonstrated to improve CDs' optical properties, solubility, cytotoxicity, and organelle targeting efficiency. These improvements result from modifications to the CDs' carbon skeleton matrices, functional groups on the surface state, and chemical structures. This review discusses the modification of CDs with heteroatom dopants, dye dopants, and solvents to improve their physicochemical and optical properties for PDT applications. The correlations between the surface chemistry, functional groups, the structure of the CDs, and their optical characteristics toward quantum yield, redshift feature, and reactive oxygen species (ROS) generation, have also been discussed. Finally, the progressive trends for the use of CDs in PDT applications are also addressed in this review.
Collapse
Affiliation(s)
- Agung Wibowo
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Puttamonthon 4 Road, Nakhon Pathom, 73170, Thailand
| | - Mohd Jahir Khan
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Puttamonthon 4 Road, Nakhon Pathom, 73170, Thailand
| | - Kanokwan Sansanaphongpricha
- National Nanotechnology Center (NANOTEC), National Science and Technology, Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Rd, Klong Nueng, Klong Luang, Pathum Thani, 12120, Thailand
| | - Pongtanawat Khemthong
- National Nanotechnology Center (NANOTEC), National Science and Technology, Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Rd, Klong Nueng, Klong Luang, Pathum Thani, 12120, Thailand
| | - Navadol Laosiripojana
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mot, Thung Khru, Bangkok, 10140, Thailand
| | - Yu-Sheng Yu
- Department of Chemical Engineering, National Taiwan University, No.1, Sec.4 Roosevelt Road, Taipei, 10617, Taiwan
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, No.1, Sec.4 Roosevelt Road, Taipei, 10617, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, 35053, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
| | - Chularat Sakdaronnarong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Puttamonthon 4 Road, Nakhon Pathom, 73170, Thailand
| |
Collapse
|
13
|
Peters K, Staehlke S, Rebl H, Jonitz-Heincke A, Hahn O. Impact of Metal Ions on Cellular Functions: A Focus on Mesenchymal Stem/Stromal Cell Differentiation. Int J Mol Sci 2024; 25:10127. [PMID: 39337612 PMCID: PMC11432215 DOI: 10.3390/ijms251810127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Metals play a crucial role in the human body, especially as ions in metalloproteins. Essential metals, such as calcium, iron, and zinc are crucial for various physiological functions, but their interactions within biological networks are complex and not fully understood. Mesenchymal stem/stromal cells (MSCs) are essential for tissue regeneration due to their ability to differentiate into various cell types. This review article addresses the effects of physiological and unphysiological, but not directly toxic, metal ion concentrations, particularly concerning MSCs. Overloading or unbalancing of metal ion concentrations can significantly impair the function and differentiation capacity of MSCs. In addition, excessive or unbalanced metal ion concentrations can lead to oxidative stress, which can affect viability or inflammation. Data on the effects of metal ions on MSC differentiation are limited and often contradictory. Future research should, therefore, aim to clarify the mechanisms by which metal ions affect MSC differentiation, focusing on aspects such as metal ion interactions, ion concentrations, exposure duration, and other environmental conditions. Understanding these interactions could ultimately improve the design of biomaterials and implants to promote MSC-mediated tissue regeneration. It could also lead to the development of innovative therapeutic strategies in regenerative medicine.
Collapse
Affiliation(s)
- Kirsten Peters
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Susanne Staehlke
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Henrike Rebl
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Anika Jonitz-Heincke
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Strasse 142, 18057 Rostock, Germany;
| | - Olga Hahn
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| |
Collapse
|
14
|
Majorek KA, Gucwa M, Murzyn K, Minor W. Metal ions in biomedically relevant macromolecular structures. Front Chem 2024; 12:1426211. [PMID: 39246722 PMCID: PMC11378719 DOI: 10.3389/fchem.2024.1426211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/28/2024] [Indexed: 09/10/2024] Open
Abstract
Understanding the functions of metal ions in biological systems is crucial for many aspects of research, including deciphering their roles in diseases and potential therapeutic use. Structural information about the molecular or atomic details of these interactions, generated by methods like X-ray crystallography, cryo-electron microscopy, or nucleic magnetic resonance, frequently provides details that no other method can. As with any experimental method, they have inherent limitations that sometimes lead to an erroneous interpretation. This manuscript highlights different aspects of structural data available for metal-protein complexes. We examine the quality of modeling metal ion binding sites across different structure determination methods, where different kinds of errors stem from, and how they can impact correct interpretations and conclusions.
Collapse
Affiliation(s)
- Karolina A Majorek
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
| | - Michal Gucwa
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Krzysztof Murzyn
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Krakow, Poland
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
15
|
Zhang P, Nde J, Eliaz Y, Jennings N, Cieplak P, Cheung MS. Chemistry-informed Machine Learning Explains Calcium-binding Proteins' Fuzzy Shape for Communicating Changes in the Atomic States of Calcium Ions. ARXIV 2024:arXiv:2407.17017v1. [PMID: 39108291 PMCID: PMC11302678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Proteins' fuzziness are features for communicating changes in cell signaling instigated by binding with secondary messengers, such as calcium ions, associated with the coordination of muscle contraction, neurotransmitter release, and gene expression. Binding with the disordered parts of a protein, calcium ions must balance their charge states with the shape of calcium-binding proteins and their versatile pool of partners depending on the circumstances they transmit, but it is unclear whether the limited experimental data available can be used to train models to accurately predict the charges of calcium-binding protein variants. Here, we developed a chemistry-informed, machine-learning algorithm that implements a game theoretic approach to explain the output of a machine-learning model without the prerequisite of an excessively large database for high-performance prediction of atomic charges. We used the ab initio electronic structure data representing calcium ions and the structures of the disordered segments of calcium-binding peptides with surrounding water molecules to train several explainable models. Network theory was used to extract the topological features of atomic interactions in the structurally complex data dictated by the coordination chemistry of a calcium ion, a potent indicator of its charge state in protein. With our designs, we provided a framework of explainable machine learning model to annotate atomic charges of calcium ions in calcium-binding proteins with domain knowledge in response to the chemical changes in an environment based on the limited size of scientific data in a genome space.
Collapse
Affiliation(s)
- Pengzhi Zhang
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, TX, USA
| | - Jules Nde
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Yossi Eliaz
- Department of Physics, University of Houston, Houston, TX, USA
- Computer Science Department, HIT Holon Institute of Technology, Holon, Israel
| | | | - Piotr Cieplak
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Margaret S Cheung
- Department of Physics, University of Washington, Seattle, WA, USA
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
16
|
Carta F. Non-sulfonamide bacterial CA inhibitors. Enzymes 2024; 55:193-212. [PMID: 39222991 DOI: 10.1016/bs.enz.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Non-sulfonamide chemical moieties able to inhibit the bacterial (b) expressed Carbonic Anhydrases (CAs; EC 4.2.1.1) constitute an important alternative to the prototypic modulators discussed in Chapter 6, as give access to large and variegate chemical classes, also of the natural origin. This contribution reports the main classes of compounds profiled in vitro on the bCAs and thus may be worth developing for the validation process of this class of enzymes.
Collapse
Affiliation(s)
- Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
17
|
Milanković V, Tasić T, Leskovac A, Petrović S, Mitić M, Lazarević-Pašti T, Novković M, Potkonjak N. Metals on the Menu-Analyzing the Presence, Importance, and Consequences. Foods 2024; 13:1890. [PMID: 38928831 PMCID: PMC11203375 DOI: 10.3390/foods13121890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Metals are integral components of the natural environment, and their presence in the food supply is inevitable and complex. While essential metals such as sodium, potassium, magnesium, calcium, iron, zinc, and copper are crucial for various physiological functions and must be consumed through the diet, others, like lead, mercury, and cadmium, are toxic even at low concentrations and pose serious health risks. This study comprehensively analyzes the presence, importance, and consequences of metals in the food chain. We explore the pathways through which metals enter the food supply, their distribution across different food types, and the associated health implications. By examining current regulatory standards for maximum allowable levels of various metals, we highlight the importance of ensuring food safety and protecting public health. Furthermore, this research underscores the need for continuous monitoring and management of metal content in food, especially as global agricultural and food production practices evolve. Our findings aim to inform dietary recommendations, food fortification strategies, and regulatory policies, ultimately contributing to safer and more nutritionally balanced diets.
Collapse
Affiliation(s)
- Vedran Milanković
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Tamara Tasić
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Andreja Leskovac
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Sandra Petrović
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Miloš Mitić
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Tamara Lazarević-Pašti
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Mirjana Novković
- Group for Muscle Cellular and Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia;
| | - Nebojša Potkonjak
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| |
Collapse
|
18
|
Padhye-Pendse A, Umrani R, Paknikar K, Jadhav S, Rajwade J. Zinc oxide nanoparticles prevent the onset of diabetic nephropathy by inhibiting multiple pathways associated with oxidative stress. Life Sci 2024; 347:122667. [PMID: 38670449 DOI: 10.1016/j.lfs.2024.122667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Zinc deficiency is strongly correlated with prolonged diabetes mellitus and diabetic nephropathy (DN). Previously, glucose-lowering, insulinomimetic, and β-cell proliferative activities of zinc oxide nanoparticles (ZON) have been reported. Considering these pleiotropic effects, we hypothesized that ZON modulates multiple cellular pathways associated with necroptosis, inflammation, and renal fibrosis, which are involved in progressive loss of renal function. AIM This study evaluated the effect of ZON on renal function, leading to the alleviation of DN in streptozotocin (STZ)-induced type 1 diabetic Wistar rats and proposed a probable mechanism for its activity. METHODS Wistar rats (n = 6/group) were used as healthy controls, diabetic controls, diabetic rats treated with ZON (1, 3, and 10 mg/kg), and insulin controls. Urine and serum biochemical parameters, glomerular filtration rate (GFR), and renal histology were also evaluated. Cultured E11 podocytes were evaluated in vitro for markers of oxidative stress, proteins associated with the loss of renal function, and genes associated with renal damage. KEY FINDINGS STZ-treated rats receiving oral doses of ZON showed enhanced renal function, with no histological alterations in the kidney tissue. ZON inhibited the TGF-β/Samd3 pathway in renal fibrosis; blocked Ripk1/Ripk3/Mlkl mediated necroptosis and protected against hyperglycemia-induced pyroptosis. In E11 podocytes, ZON reduced oxidative stress under high glucose conditions and retained podocyte-specific proteins. SIGNIFICANCE A probable mechanism by which ZON prevents DN has been proposed, suggesting its use as a complementary therapeutic agent for the treatment of diabetic complications. To the best of our knowledge, this is the first study to demonstrate the in vitro effects of ZON in cultured podocytes.
Collapse
Affiliation(s)
- Aishwarya Padhye-Pendse
- Agharkar Research Institute, Pune, Maharashtra, India; Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Rinku Umrani
- L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | | | - Sachin Jadhav
- Agharkar Research Institute, Pune, Maharashtra, India
| | - Jyutika Rajwade
- Agharkar Research Institute, Pune, Maharashtra, India; Savitribai Phule Pune University, Pune, Maharashtra, India.
| |
Collapse
|
19
|
Selvaraj C, Vijayalakshmi P, Alex AM, Alothaim AS, Vijayakumar R, Umapathy VR. Metalloproteins structural and functional insights into immunological patterns. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:67-86. [PMID: 38960487 DOI: 10.1016/bs.apcsb.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Metalloproteins play a crucial role in regulating different aspects of the immune system in humans. They have various functions in immunity, including recognizing and presenting antigens, aiding in the movement and effectiveness of immune cells, and facilitating interactions between the host and pathogens. Understanding how these proteins work can help us develop new methods to control the immune response in different diseases. Metalloproteins contain metal ions in their structure, which allows them to perform these diverse functions. They encompass a wide range of enzymes, signaling molecules, and structural proteins that utilize metal ions as cofactors for their activities. Examples of metalloproteins include superoxide dismutase, catalase, and metalloproteases, which regulate oxidative stress, inflammation, and tissue remodelling processes associated with immune activation. By studying their functions and the effects of their dysfunction, researchers can develop strategies to improve immune function and combat various diseases. This review explores the diverse functions of metalloproteins in immune processes, highlighting their significance in both health and disease.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- CsrDD Lab, Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| | - Periyasamy Vijayalakshmi
- Department of Biotechnology and Bioinformatics, Holy Cross College, Tiruchirappalli, Tamil Nadu, India
| | - Asha Monica Alex
- Department of Biotechnology, St. Joseph's College, Tiruchirappalli, Tamil Nadu, India
| | - Abdulaziz S Alothaim
- Department of Biology, College of Science in Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Rajendran Vijayakumar
- Department of Biology, College of Science in Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute, Chennai, Tamil Nadu, India
| |
Collapse
|
20
|
Shearer A, Molinaro M, Montazerian M, Sly JJ, Miola M, Baino F, Mauro JC. The unexplored role of alkali and alkaline earth elements (ALAEs) on the structure, processing, and biological effects of bioactive glasses. Biomater Sci 2024; 12:2521-2560. [PMID: 38530228 DOI: 10.1039/d3bm01338c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Bioactive glass has been employed in several medical applications since its inception in 1969. The compositions of these materials have been investigated extensively with emphasis on glass network formers, therapeutic transition metals, and glass network modifiers. Through these experiments, several commercial and experimental compositions have been developed with varying chemical durability, induced physiological responses, and hydroxyapatite forming abilities. In many of these studies, the concentrations of each alkali and alkaline earth element have been altered to monitor changes in structure and biological response. This review aims to discuss the impact of each alkali and alkaline earth element on the structure, processing, and biological effects of bioactive glass. We explore critical questions regarding these elements from both a glass science and biological perspective. Should elements with little biological impact be included? Are alkali free bioactive glasses more promising for greater biological responses? Does this mixed alkali effect show increased degradation rates and should it be employed for optimized dissolution? Each of these questions along with others are evaluated comprehensively and discussed in the final section where guidance for compositional design is provided.
Collapse
Affiliation(s)
- Adam Shearer
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Matthew Molinaro
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Maziar Montazerian
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Jessica J Sly
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Marta Miola
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Torino, Italy.
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Torino, Italy.
| | - John C Mauro
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
21
|
Zhang Y, Feng L, Hemu X, Tan NH, Wang Z. OSMAC Strategy: A promising way to explore microbial cyclic peptides. Eur J Med Chem 2024; 268:116175. [PMID: 38377824 DOI: 10.1016/j.ejmech.2024.116175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Microbial secondary metabolites are pivotal for the development of novel drugs. However, conventional culture techniques, have left a vast array of unexpressed biosynthetic gene clusters (BGCs) in microorganisms, hindering the discovery of metabolites with distinct structural features and diverse biological functions. To address this limitation, several innovative strategies have been emerged. The "One Strain Many Compounds" (OSMAC) strategy, which involves altering microbial culture conditions, has proven to be particularly effective in mining numerous novel secondary metabolites for the past few years. Among these, microbial cyclic peptides stand out. These peptides often comprise rare amino acids, unique chemical structures, and remarkable biological function. With the advancement of the OSMAC strategy, a plethora of new cyclic peptides have been identified from diverse microbial genera. This work reviews the progress in mining novel compounds using the OSMAC strategy and the applications of this strategy in discovering 284 microbial cyclic peptides from 63 endophytic strains, aiming to offer insights for the further explorations into novel active cyclic peptides.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xinya Hemu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ning-Hua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zhe Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
22
|
Natarajan A, Vadrevu LR, Rangan K. DRGD-linked charged EKKE dimeric dodecapeptide: pH-based amyloid nanostructures and their application in lead and uranium binding. RSC Adv 2024; 14:9200-9217. [PMID: 38505393 PMCID: PMC10949120 DOI: 10.1039/d3ra08261j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
Peptides have been reported to undergo self-assembly into diverse nanostructures, influenced by several parameters, including their amino acid sequence, pH, charge, solvent, and temperature. Inspired by natural systems, researchers have developed biomimetic peptides capable of self-assembling into supramolecular functional structures. The present study explored a newly designed peptide sequence, EKKEDRGDEKKE, where E = glutamic acid, K = lysine, D = aspartic acid, G = glycine, and R = arginine, with a metal binding DRGD sequence incorporated between the exclusively charged EKKE peptide. We investigated the formation and the potential of the EKKEDRGDEKKE peptide in retaining the structure and morphology adopted by the individual EKKE peptide. According to a combination of experimental techniques such as thioflavin T fluorescence, field emission-scanning electron microscopy, atomic force microscopy, and circular dichroism, it was evident that the EKKEDRGDEKKE peptide displayed a pH-dependent propensity to adopt amyloid-like structures. Furthermore, the self-assembled entities formed under acidic, basic, and neutral conditions exhibited morphological variations, which resembled that observed for the exclusively charged EKKE peptide. Furthermore, the incorporation of the functional DRGD motif resulted in promising binding to two toxic metal ions, lead (Pb) and uranium (U), as evidenced by a range of spectroscopic techniques, including UV-visible spectroscopy, atomic absorption spectroscopy, fluorescence spectroscopy, and X-ray photoelectron spectroscopy. The use of the amyloid-forming EKKEDRGDEKKE scaffold can also be extended to potential biomedical applications.
Collapse
Affiliation(s)
- Aishwarya Natarajan
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus Jawahar Nagar Hyderabad 500 078 Telangana India
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus Jawahar Nagar Hyderabad 500 078 Telangana India
| | - Late Ramakrishna Vadrevu
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus Jawahar Nagar Hyderabad 500 078 Telangana India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus Jawahar Nagar Hyderabad 500 078 Telangana India
| |
Collapse
|
23
|
Fırlak Demirkan M, Öztürk D, Çifçibaşı ZS, Ertan F, Hardy JG, Nurşeval Oyunlu A, Darıcı H. Controlled Sr(ii) ion release from in situ crosslinking electroactive hydrogels with potential for the treatment of infections. RSC Adv 2024; 14:4324-4334. [PMID: 38304567 PMCID: PMC10828636 DOI: 10.1039/d3ra07061a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
The development of electrochemical stimuli-responsive drug delivery systems is of both academic and industrial interest due to the ease with which it is possible to trigger payload release, providing drug delivery in a controllable manner. Herein, the preparation of in situ forming hydrogels including electroactive polypyrrole nanoparticles (PPy-NPs) where Sr2+ ions are electrochemically loaded for electrically triggered release of Sr2+ ions is reported. The hydrogels were characterized by a variety of techniques including Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), X-ray diffraction (XRD), cyclic voltammetry (CV), etc. The cytocompatibility towards human mesenchymal stem cells (MSCs) and fibroblasts were also studied. The Sr2+ ion loaded PEC-ALD/CS/PPy-NPs hydrogel showed no significant cytotoxicity towards human mesenchymal stem cells (MSCs) and fibroblasts. Sr2+ ions were electrochemically loaded and released from the electroactive hydrogels, and the application of an electrical stimulus enhanced the release of Sr2+ ions from gels by ca. 2-4 fold relative to the passive release control experiment. The antibacterial activity of Sr2+ ions against E. coli and S. aureus was demonstrated in vitro. Although these prototypical examples of Sr2+ loaded electroactive gels don't release sufficient Sr2+ ions to show antibacterial activity against E. coli and S. aureus, we believe future iterations with optimised physical properties of the gels will be capable of doing so.
Collapse
Affiliation(s)
| | - Dilek Öztürk
- Department of Chemistry, Gebze Technical University Gebze Kocaeli 41400 Turkey
| | | | - Fatma Ertan
- Department of Chemistry, Gebze Technical University Gebze Kocaeli 41400 Turkey
| | | | | | - Hakan Darıcı
- HD Bioink Biotechnology Corp. İstanbul Turkey
- 3D Bioprinting Design & Prototyping R&D Center, Istinye University Istanbul Turkey
- Faculty of Medicine, Dept. of Histology & Embryology, Istinye University Istanbul Turkey
- Stem Cell, and Tissue Engineering R&D Center, Istinye University Istanbul Turkey
| |
Collapse
|
24
|
Luo Y, Živković ML, Wang J, Ryneš J, Foldynová-Trantírková S, Trantírek L, Verga D, Mergny JL. A sodium/potassium switch for G4-prone G/C-rich sequences. Nucleic Acids Res 2024; 52:448-461. [PMID: 37986223 PMCID: PMC10783510 DOI: 10.1093/nar/gkad1073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
Metal ions are essential components for the survival of living organisms. For most species, intracellular and extracellular ionic conditions differ significantly. As G-quadruplexes (G4s) are ion-dependent structures, changes in the [Na+]/[K+] ratio may affect the folding of genomic G4s. More than 11000 putative G4 sequences in the human genome (hg19) contain at least two runs of three continuous cytosines, and these mixed G/C-rich sequences may form a quadruplex or a competing hairpin structure based on G-C base pairing. In this study, we examine how the [Na+]/[K+] ratio influences the structures of G/C-rich sequences. The natural G4 structure with a 9-nt long central loop, CEBwt, was chosen as a model sequence, and the loop bases were gradually replaced by cytosines. The series of CEB mutations revealed that the presence of cytosines in G4 loops does not prevent G4 folding or decrease G4 stability but increases the probability of forming a competing structure, either a hairpin or an intermolecular duplex. Slow conversion to the quadruplex in vitro (in a potassium-rich buffer) and cells was demonstrated by NMR. 'Shape-shifting' sequences may respond to [Na+]/[K+] changes with delayed kinetics.
Collapse
Affiliation(s)
- Yu Luo
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91128 Palaiseau, France
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405 Orsay, France
| | - Martina Lenarčič Živković
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- Slovenian NMR Centre, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia
| | - Jiawei Wang
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Jan Ryneš
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | | | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Daniela Verga
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405 Orsay, France
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405 Orsay, France
| | - Jean-Louis Mergny
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
25
|
Vaidya B, Padhy DS, Joshi HC, Sharma SS, Singh JN. Ion Channels and Metal Ions in Parkinson's Disease: Historical Perspective to the Current Scenario. Methods Mol Biol 2024; 2761:529-557. [PMID: 38427260 DOI: 10.1007/978-1-0716-3662-6_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative condition linked to the deterioration of motor and cognitive performance. It produces degeneration of the dopaminergic neurons along the nigrostriatal pathway in the central nervous system (CNS), which leads to symptoms such as bradykinesias, tremors, rigidity, and postural instability. There are several medications currently approved for the therapy of PD, but a permanent cure for it remains elusive. With the aging population set to increase, a number of PD cases are expected to shoot up in the coming times. Hence, there is a need to look for new molecular targets that could be investigated both preclinically and clinically for PD treatment. Among these, several ion channels and metal ions are being studied for their effects on PD pathology and the functioning of dopaminergic neurons. Ion channels such as N-methyl-D-aspartate (NMDA), γ-aminobutyric acid A (GABAA), voltage-gated calcium channels, potassium channels, HCN channels, Hv1 proton channels, and voltage-gated sodium channels and metal ions such as mercury, zinc, copper, iron, manganese, calcium, and lead showed prominent involvement in PD. Pharmacological agents have been used to target these ion channels and metal ions to prevent or treat PD. Hence, in the present review, we summarize the pathophysiological events linked to PD with an emphasis on the role of ions and ion channels in PD pathology, and pharmacological agents targeting these ion channels have also been listed.
Collapse
Affiliation(s)
- Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Dibya S Padhy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Hem C Joshi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Shyam S Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India.
| | - Jitendra Narain Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Punjab, India.
| |
Collapse
|
26
|
Singh J, Mohan B, Kumar A, Bhardwaj P, Chauhan RK. Naphthaldehyde-Based Schiff Base Chemosensor for the Dual Sensing of Cu 2+ and Ni 2+ Ions. J Fluoresc 2024; 34:149-157. [PMID: 37178421 DOI: 10.1007/s10895-023-03245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023]
Abstract
In this study, a simple Schiff base sensor 1-(((4-nitrophenyl)imino)methyl)naphthalen-2-ol(NNM) has been used for chemosensing of metal ions. The metal sensing properties of sensor NNM have been investigated using UV-visible and fluorescence spectroscopic approaches. The spectral investigations revealed a red shift in absorption spectra and quenching in the emission band of the ligand molecule in the presence of Cu2+ and Ni2+ ions. The binding stoichiometry of sensor NNM for the analyte (Cu2+ and Ni2+ ions) has been investigated by the Job's plot analysis and found to be 1:1 (NNM:Analyte). The data of the Benesi-Hildebrand plot demonstrated that NNM detected Cu2+ and Ni2+ ions in nanomolar quantity. The binding insights among NNM and analytes (Cu2+ and Ni2+ ions) have been confirmed by shifted IR signals. Moreover, the reusabilty of the sensor has been investigated using an EDTA solution. In addition, the sensor NNM also successfully applied to real water samples for the identification and measurement of Cu2+ and Ni2+ ions. Hence, this system could be highly applicable in environmental and biological applications.
Collapse
Affiliation(s)
- Jasbir Singh
- Department of Chemistry, Baba Mastnath University, Rohtak, 124021, India
| | - Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Ashwani Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Pallavi Bhardwaj
- Department of Chemistry, Baba Mastnath University, Rohtak, 124021, India.
| | - Ravish K Chauhan
- Department of Chemistry, Indira Gandhi National College, Kurukshetra, 136132, India.
| |
Collapse
|
27
|
García-Faustino LL, Morris SM, Elston SJ, Montelongo Y. Detection of Biomarkers through Functionalized Polymers. SMALL METHODS 2024; 8:e2301025. [PMID: 37814377 DOI: 10.1002/smtd.202301025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Indexed: 10/11/2023]
Abstract
Over the past decade, there has been a rising interest in utilizing functionalized porous polymers for sensor applications. By incorporating functional groups into nanostructured materials like hydrogels, nanosheets, and nanopores, exciting new opportunities have emerged for biomarker detection. The ability of functionalized polymers to undergo physical changes and deformations makes them perfect for modulating optical signals. This chemical mechanism enables the creation of biocompatible sensors for in situ biomarker measurement. Here a comprehensive overview of the current publication trends is provided in functionalized polymers, encompassing functional groups that can induce measurable physical deformations. It explores various materials categorized based on their detection targets, which include proteins, carbohydrates, ions, and deoxyribonucleic acid. As such, this work serves as a valuable reference for the development of functionalized polymer-based sensors.
Collapse
Affiliation(s)
- Litzy L García-Faustino
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, 64849, Mexico
| | - Stephen M Morris
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Steve J Elston
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Yunuen Montelongo
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| |
Collapse
|
28
|
Pazos-Perez N, Guerrini L. Extending the range of metal ions SERS detection using hybrid plasmonic/ZIF-8 particles. Talanta 2024; 266:124941. [PMID: 37478767 DOI: 10.1016/j.talanta.2023.124941] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Nanosensors based on surface-enhanced Raman spectroscopy (SERS) have emerged as a class of promising optical tools for the ultrasensitive quantification of metal ions of environmental and biological interest. A central bottleneck in this field is the availability of suitable surface receptors able to convert the selective binding with these vibrationless analytes into measurable SERS signals. In this work, we tackle this issue by employing a hybrid substrate comprising a highly SERS-active plasmonic core and a ZIF-8 metal-organic framework (MOF) shell. The ZIF-8 shell firmly captures aromatic receptors close to the plasmonic structure regardless of their intrinsic affinity for the metallic surface and without altering their ability to coordinate metal ions. Furthermore, it imparts molecular sieving abilities enabling the direct use of the SERS sensing platform in complex media such as biological fluids. This was demonstrated by using different classes of chromogenic reagents (bathocuproine, a 2,6':2',2″-terpyridine derivative, and Arsenazo III) which were exploited for the SERS detection of both transition and alkaline earth metal ions (i.e., divalent copper, cobalt and calcium ions). Notably, we successfully applied this approach for the detection of Cu(II) in untreated urine samples for Wilson's disease diagnosis. Overall, we believe this class of multifunctional hybrid substrates will serve as a valuable material for expanding the applicability of SERS spectroscopy in real-life environmental and biomedical metal ions analysis.
Collapse
Affiliation(s)
- Nicolas Pazos-Perez
- Department of Physical and Inorganic Chemistry, Universitat Rovira I Virgili, Carrer de Marcel∙lí Domingo 1, 43007, Tarragona, Spain
| | - Luca Guerrini
- Department of Physical and Inorganic Chemistry, Universitat Rovira I Virgili, Carrer de Marcel∙lí Domingo 1, 43007, Tarragona, Spain.
| |
Collapse
|
29
|
Wang L, Xie Y, Myrzagali S, Pu W, Liu E. Metal ions as effectual tools for cancer with traditional Chinese medicine. ACUPUNCTURE AND HERBAL MEDICINE 2023; 3:296-308. [DOI: 10.1097/hm9.0000000000000083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Malignant tumor has become a major threat affecting human health, and is one of the main causes of human death. Recent studies have shown that many traditional Chinese medicines (TCM) have good anti-tumor activity, which may improve the therapeutic effect of routine treatment and quality of life with lower toxicity. However, the efficacy of TCM alone for the treatment of tumors is limited. Metal ions are essential substances for maintaining normal physiological activities. This article summarized the multiple mechanisms in which metal ions are involved in the prevention and treatment of tumors in TCM.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingqiu Xie
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Sandugash Myrzagali
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Weiling Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Erwei Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
30
|
Vasconcelos Sanches de Araújo A, Borin AC. Water Solvated Zn(II)-Guanine Complex: Structural Aspects and Luminescence Properties. J Phys Chem A 2023; 127:8297-8306. [PMID: 37772405 DOI: 10.1021/acs.jpca.3c04132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Understanding the role of metal ions in living organisms and their interactions with biological compounds is fundamental for our health and for developing technological devices for bioinorganic applications. In this work, structural aspects and photophysical mechanisms involved in the luminescence of the Zn(II)-guanine complex in water were studied by using computational quantum chemical methods, providing molecular-level explanations for reported experimental findings. Structural aspects were investigated with def2-SVP basis sets, Density Functional Theory, Resolution of Identity Algebraic Diagrammatic Construction in Second-Order (RI-ADC(2)), Polarizable Continuum Model (PCM), and Conductor-like Screening Model (COSMO) methods. Spectroscopic properties and photophysical deactivation mechanisms were explored with the atomic natural orbital basis sets including relativistic and semicore correlation (ANO-RCC-VDZP) basis sets, Multistate Complete-Active-Space Second-Order Perturbation Theory (MS-CASPT2), and Polarizable Continuum Model (PCM) methods. Our results indicate that Zn(II) ions bind preferentially to the N7 position, and three water molecules in its coordination sphere are sufficient for describing the photophysical properties. The complexation with Zn(II) ions and solvation effects favor fluorescence because the minimum energy region of the S1 (La) (1ππ*) ((La)min) potential energy hypersurface is stabilized, the (La/GS) crossing region is destabilized, and a high energetic barrier along the pathway from the (La)min and (La/GS) regions hampers fast nonradiative return of the electronic population to the ground state, as observed for isolated 9H-guanine.
Collapse
Affiliation(s)
| | - Antonio Carlos Borin
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
31
|
Mandal A, Kushwaha R, Mandal AA, Bajpai S, Yadav AK, Banerjee S. Transition Metal Complexes as Antimalarial Agents: A Review. ChemMedChem 2023; 18:e202300326. [PMID: 37436090 DOI: 10.1002/cmdc.202300326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
In antimalarial drug development research, overcoming drug resistance has been a major challenge for researchers. Nowadays, several drugs like chloroquine, mefloquine, sulfadoxine, and artemisinin are used to treat malaria. But increment in drug resistance has pushed researchers to find novel drugs to tackle drug resistance problems. The idea of using transition metal complexes with pharmacophores as ligands/ligand pendants to show enhanced antimalarial activity with a novel mechanism of action has gained significant attention recently. The advantages of metal complexes include tunable chemical/physical properties, redox activity, avoiding resistance factors, etc. Several recent reports have successfully demonstrated that the metal complexation of known organic antimalarial drugs can overcome drug resistance by showing enhanced activities than the parent drugs. This review has discussed the fruitful research works done in the past few years falling into this criterion. Based on transition metal series (3d, 4d, or 5d), the antimalarial metal complexes have been divided into three broad categories (3d, 4d, or 5d metal-based), and their activities have been compared with the similar control complexes as well as the parent drugs. Furthermore, we have also commented on the potential issues and their possible solution for translating these metal-based antimalarial complexes into the clinic.
Collapse
Affiliation(s)
- Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Sumit Bajpai
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| |
Collapse
|
32
|
Chen S, Bashir R. Advances in field-effect biosensors towards point-of-use. NANOTECHNOLOGY 2023; 34:492002. [PMID: 37625391 PMCID: PMC10523595 DOI: 10.1088/1361-6528/acf3f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 08/27/2023]
Abstract
The future of medical diagnostics calls for portable biosensors at the point of care, aiming to improve healthcare by reducing costs, improving access, and increasing quality-what is called the 'triple aim'. Developing point-of-care sensors that provide high sensitivity, detect multiple analytes, and provide real time measurements can expand access to medical diagnostics for all. Field-effect transistor (FET)-based biosensors have several advantages, including ultrahigh sensitivity, label-free and amplification-free detection, reduced cost and complexity, portability, and large-scale multiplexing. They can also be integrated into wearable or implantable devices and provide continuous, real-time monitoring of analytesin vivo, enabling early detection of biomarkers for disease diagnosis and management. This review analyzes advances in the sensitivity, parallelization, and reusability of FET biosensors, benchmarks the limit of detection of the state of the art, and discusses the challenges and opportunities of FET biosensors for future healthcare applications.
Collapse
Affiliation(s)
- Sihan Chen
- Holonyak Micro and Nanotechnology Laboratory, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Rashid Bashir
- Holonyak Micro and Nanotechnology Laboratory, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
- Department of Bioengineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| |
Collapse
|
33
|
Wu Y, Lewis W, Wai JL, Xiong M, Zheng J, Yang Z, Gordon C, Lu Y, New SY, Zhang XB, Lu Y. Ratiometric Detection of Zn 2+ Using DNAzyme-Based Bioluminescence Resonance Energy Transfer Sensors. CHEMISTRY (BASEL, SWITZERLAND) 2023; 5:1745-1759. [PMID: 38371491 PMCID: PMC10874629 DOI: 10.3390/chemistry5030119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
While fluorescent sensors have been developed for monitoring metal ions in health and diseases, they are limited by the requirement of an excitation light source that can lead to photobleaching and a high autofluorescence background. To address these issues, bioluminescence resonance energy transfer (BRET)-based protein or small molecule sensors have been developed; however, most of them are not highly selective nor generalizable to different metal ions. Taking advantage of the high selectivity and generalizability of DNAzymes, we report herein DNAzyme-based ratiometric sensors for Zn2+ based on BRET. The 8-17 DNAzyme was labeled with luciferase and Cy3. The proximity between luciferase and Cy3 permiQed BRET when coelenterazine, the substrate for luciferase, was introduced. Adding samples containing Zn2+ resulted in a cleavage of the substrate strand, causing dehybridization of the DNAzyme construct, thus increasing the distance between Cy3 and luciferase and changing the BRET signals. Using these sensors, we detected Zn2+ in serum samples and achieved Zn2+ detection with a smartphone camera. Moreover, since the BRET pair is not the component that determines the selectivity of the sensors, this sensing platform has the potential to be adapted for the detection of other metal ions with other metal-dependent DNAzymes.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Whitney Lewis
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jing Luen Wai
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- School of Pharmacy, Faculty of Science and Engineering, University of No0ingham Malaysia, Semenyih, Selangor 43500, Malaysia
| | - Mengyi Xiong
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jiao Zheng
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Zhenglin Yang
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chloe Gordon
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Ying Lu
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Siu Yee New
- School of Pharmacy, Faculty of Science and Engineering, University of No0ingham Malaysia, Semenyih, Selangor 43500, Malaysia
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
34
|
Pinto SCS, Gonçalves RCR, Costa SPG, Raposo MMM. Colorimetric Chemosensor for Cu 2+ and Fe 3+ Based on a meso-Triphenylamine-BODIPY Derivative. SENSORS (BASEL, SWITZERLAND) 2023; 23:6995. [PMID: 37571777 PMCID: PMC10422517 DOI: 10.3390/s23156995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Optical chemosensors are a practical tool for the detection and quantification of important analytes in biological and environmental fields, such as Cu2+ and Fe3+. To the best of our knowledge, a BODIPY derivative capable of detecting Cu2+ and Fe3+ simultaneously through a colorimetric response has not yet been described in the literature. In this work, a meso-triphenylamine-BODIPY derivative is reported for the highly selective detection of Cu2+ and Fe3+. In the preliminary chemosensing study, this compound showed a significant color change from yellow to blue-green in the presence of Cu2+ and Fe3+. With only one equivalent of cation, a change in the absorption band of the compound and the appearance of a new band around 700 nm were observed. Furthermore, only 10 equivalents of Cu2+/Fe3+ were needed to reach the absorption plateau in the UV-visible titrations. Compound 1 showed excellent sensitivity toward Cu2+ and Fe3+ detection, with LODs of 0.63 µM and 1.06 µM, respectively. The binding constant calculation indicated a strong complexation between compound 1 and Cu2+/Fe3+ ions. The 1H and 19F NMR titrations showed that an increasing concentration of cations induced a broadening and shifting of the aromatic region peaks, as well as the disappearance of the original fluorine peaks of the BODIPY core, which suggests that the ligand-metal (1:2) interaction may occur through the triphenylamino group and the BODIPY core.
Collapse
Affiliation(s)
| | | | | | - M. Manuela M. Raposo
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.C.S.P.); (R.C.R.G.)
| |
Collapse
|
35
|
Kola A, Nencioni F, Valensin D. Bioinorganic Chemistry of Micronutrients Related to Alzheimer's and Parkinson's Diseases. Molecules 2023; 28:5467. [PMID: 37513339 PMCID: PMC10385134 DOI: 10.3390/molecules28145467] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Metal ions are fundamental to guarantee the regular physiological activity of the human organism. Similarly, vitamins play a key role in many biological functions of the metabolism, among which are coenzymes, redox mediators, and antioxidants. Due to their importance in the human organism, both metals and vitamins have been extensively studied for their involvement in neurodegenerative diseases (NDs). However, the full potential of the interaction between vitamins and metal ions has not been fully explored by researchers yet, and further investigation on this topic is needed. The aim of this review is to provide an overview of the scientific literature on the implications of vitamins and selected metal ions in two of the most common neurodegenerative diseases, Alzheimer's and Parkinson's disease. Furthermore, vitamin-metal ion interactions are discussed in detail focusing on their bioinorganic chemistry, with the perspective of arousing more interest in this fascinating bioinorganic field.
Collapse
Affiliation(s)
| | | | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.K.); (F.N.)
| |
Collapse
|
36
|
Sperdouli I, Ouzounidou G, Moustakas M. Hormesis Responses of Photosystem II in Arabidopsis thaliana under Water Deficit Stress. Int J Mol Sci 2023; 24:ijms24119573. [PMID: 37298524 DOI: 10.3390/ijms24119573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Since drought stress is one of the key risks for the future of agriculture, exploring the molecular mechanisms of photosynthetic responses to water deficit stress is, therefore, fundamental. By using chlorophyll fluorescence imaging analysis, we evaluated the responses of photosystem II (PSII) photochemistry in young and mature leaves of Arabidopsis thaliana Col-0 (cv Columbia-0) at the onset of water deficit stress (OnWDS) and under mild water deficit stress (MiWDS) and moderate water deficit stress (MoWDS). Moreover, we tried to illuminate the underlying mechanisms in the differential response of PSII in young and mature leaves to water deficit stress in the model plant A. thaliana. Water deficit stress induced a hormetic dose response of PSII function in both leaf types. A U-shaped biphasic response curve of the effective quantum yield of PSII photochemistry (ΦPSII) in A. thaliana young and mature leaves was observed, with an inhibition at MiWDS that was followed by an increase in ΦPSII at MoWDS. Young leaves exhibited lower oxidative stress, evaluated by malondialdehyde (MDA), and higher levels of anthocyanin content compared to mature leaves under both MiWDS (+16%) and MoWDS (+20%). The higher ΦPSII of young leaves resulted in a decreased quantum yield of non-regulated energy loss in PSII (ΦNO), under both MiWDS (-13%) and MoWDS (-19%), compared to mature leaves. Since ΦNO represents singlet-excited oxygen (1O2) generation, this decrease resulted in lower excess excitation energy at PSII, in young leaves under both MiWDS (-10%) and MoWDS (-23%), compared to mature leaves. The hormetic response of PSII function in both young and mature leaves is suggested to be triggered, under MiWDS, by the intensified reactive oxygen species (ROS) generation, which is considered to be beneficial for activating stress defense responses. This stress defense response that was induced at MiWDS triggered an acclimation response in A. thaliana young leaves and provided tolerance to PSII when water deficit stress became more severe (MoWDS). We concluded that the hormesis responses of PSII in A. thaliana under water deficit stress are regulated by the leaf developmental stage that modulates anthocyanin accumulation in a stress-dependent dose.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, GR-57001 Thessaloniki, Greece
| | - Georgia Ouzounidou
- Institute of Food Technology, Hellenic Agricultural Organization-Dimitra, GR-14123 Lycovrissi, Greece
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
37
|
Moustakas M, Sperdouli I, Adamakis IDS. Editorial: Reactive oxygen species in chloroplasts and chloroplast antioxidants under abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1208247. [PMID: 37304709 PMCID: PMC10254792 DOI: 10.3389/fpls.2023.1208247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023]
Affiliation(s)
- Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation–Demeter (ELGO-Demeter), Thessaloniki, Greece
| | | |
Collapse
|
38
|
Nath P, Mahtaba KR, Ray A. Fluorescence-Based Portable Assays for Detection of Biological and Chemical Analytes. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115053. [PMID: 37299780 DOI: 10.3390/s23115053] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Fluorescence-based detection techniques are part of an ever-expanding field and are widely used in biomedical and environmental research as a biosensing tool. These techniques have high sensitivity, selectivity, and a short response time, making them a valuable tool for developing bio-chemical assays. The endpoint of these assays is defined by changes in fluorescence signal, in terms of its intensity, lifetime, and/or shift in spectrum, which is monitored using readout devices such as microscopes, fluorometers, and cytometers. However, these devices are often bulky, expensive, and require supervision to operate, which makes them inaccessible in resource-limited settings. To address these issues, significant effort has been directed towards integrating fluorescence-based assays into miniature platforms based on papers, hydrogels, and microfluidic devices, and to couple these assays with portable readout devices like smartphones and wearable optical sensors, thereby enabling point-of-care detection of bio-chemical analytes. This review highlights some of the recently developed portable fluorescence-based assays by discussing the design of fluorescent sensor molecules, their sensing strategy, and the fabrication of point-of-care devices.
Collapse
Affiliation(s)
- Peuli Nath
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA
| | - Kazi Ridita Mahtaba
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA
| | - Aniruddha Ray
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
39
|
Bhavya G, De Britto S, Satapute P, Geetha N, Jogaiah S. Biofabricated yeast: super-soldier for detoxification of heavy metals. World J Microbiol Biotechnol 2023; 39:148. [PMID: 37022650 DOI: 10.1007/s11274-023-03596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/27/2023] [Indexed: 04/07/2023]
Abstract
The advances in nanotechnology have shown enormous impacts in environmental technology as a potent weapon for degradation of toxic organic pollutants and detoxification of heavy metals. It is either by in-situ or ex-situ adaptive strategies. Mycoremediation of environmental pollutants has been a success story of the past decade, by employing the wide arsenal of biological capabilities of fungi. Recently, the proficiency and uniqueness of yeast cell surface alterations have encouraged the generation of engineered yeast cells as dye degraders, heavy metal reduction and its recovery, and also as detoxifiers of various hazardous xenobiotic compounds. As a step forward, recent trends in research are towards developing biologically engineered living materials as potent, biocompatible and reusable hybrid nanomaterials. They include chitosan-yeast nanofibers, nanomats, nanopaper, biosilica hybrids, and TiO2-yeast nanocomposites. The nano-hybrid materials contribute significantly as supportive stabilizer, and entrappers, which enhances the biofabricated yeast cells' functionality. This field serves as an eco-friendly cutting-edge cocktail research area. In this review, we highlight recent research on biofabricated yeast cells and yeast-based biofabricated molecules, as potent heavy metals, toxic chemical detoxifiers, and their probable mechanistic properties with future application perspectives.
Collapse
Affiliation(s)
- Gurulingaiah Bhavya
- Nanobiotechnology laboratory, Department of Biotechnology, University of Mysore, Manasagangotri, Mysuru, Karnataka, 570006, India
| | - Savitha De Britto
- Division of Biological Sciences, School of Science and Technology, University of Goroka, 441, Goroka, Papua New Guinea
| | - Praveen Satapute
- Laboratory of Plant Healthcare and Diagnostics, Department of Biotechnology and Microbiology, Karnatak University, Dharwad, PG, Karnataka, 580 003, India
| | - Nagaraja Geetha
- Nanobiotechnology laboratory, Department of Biotechnology, University of Mysore, Manasagangotri, Mysuru, Karnataka, 570006, India
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, Department of Biotechnology and Microbiology, Karnatak University, Dharwad, PG, Karnataka, 580 003, India.
- Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periye (PO), Kasaragod (DT), Periye, Kerala, 671316, India.
| |
Collapse
|
40
|
Zagranyarski Y, Cheshmedzhieva DV, Mutovska M, Ahmedova A, Stoyanov S. Dioxepine-Peri-Annulated PMIs-Synthesis and Spectral and Sensing Properties. SENSORS (BASEL, SWITZERLAND) 2023; 23:2902. [PMID: 36991615 PMCID: PMC10058915 DOI: 10.3390/s23062902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
New perylene monoimide (PMI) derivatives bearing a seven-membered heterocycle and 1,8-diaminosarcophagine (DiAmSar) or N,N-dimethylaminoethyl chelator fragments were synthesized, and their spectroscopic properties in the absence and presence of metal cations were determined to evaluate their potential applications as PET optical sensors for such analytes. DFT and TDDFT calculations were employed to rationalize the observed effects.
Collapse
|
41
|
Salavati R, Sarrafi Y, Tajbakhsh M. A Selective and ''Off-On'' Fluorescent Chemosensor Based on Fluorescein for Al 3+: Synthesis, Characterization, Spectroscopy Analyses, and DFT Calculation. J Fluoresc 2023; 33:639-651. [PMID: 36472774 DOI: 10.1007/s10895-022-03087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
An efficient fluorescent cation chemosensor based on fluorescein L4 was well prepared and identified with spectroscopy analyses. UV-vis and fluorescence measurements examined the analyte complexation of the L4 with various cations, demonstrating a clear tendency to Al3+ ion. In the Job plot study, a stoichiometry ratio of a complex between L4 and Al3+ ion was determined to be 1: 2 (L4: Al3+). A stoichiometry ratio of complex between L4 and Al3+ ion was determined to be 1: 2 (L4: Al3+) using the Job plot. The association constant (Ka) of the L4-Al3+ complex was found 2.8 × 107 M-2. The obtained limit of detection (LOD) value (1.37 × 10-6 M for Al3+) exhibited the considerable sensitivity of the chemosensor L4 to Al3+ ion. DFT/TD-DFT calculations have also been employed to support the binding mode and photophysical properties of the complexation of chemosensor L4 to Al3+ ion and also to investigate the enhancement of L4 fluorescence by Al3+ ion.
Collapse
Affiliation(s)
- Reza Salavati
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Yaghoub Sarrafi
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran.
| | - Mahmood Tajbakhsh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
| |
Collapse
|
42
|
Sarkar S, Chatterjee A, Biswas K. A Recent Update on Rhodamine Dye Based Sensor Molecules: A Review. Crit Rev Anal Chem 2023; 54:2351-2377. [PMID: 36705594 DOI: 10.1080/10408347.2023.2169598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Herein we have discussed such important modified rhodamine compounds which have been used as chemosensors for the last 7-8 years. This review covered some chemosensors for the detection of metal ions like Al(III), Cu(II), Hg(II), Co(II), Fe(III), Au(III), Cr(III), and some anion like CN-. The selectivity, sensitivity, photophysical properties (i.e., UV-Vis spectral studies, fluorescence studies giving special emphasis to absorption wavelength in UV-Vis spectra and excitation and emission wavelength in fluorescence spectra), binding affinity, the limit of detection, and the application of those chemosensors are described clearly. Here we have also discussed some functionalized rhodamine-based chemosensors that emit in the near-infrared region (NIR) and can target lysosomes and detect lysosomal pH. Their versatile applicability in the medicinal ground is also delineated. We have focused on the photophysical properties of spirolactam rhodamine photoswitches and applications in single-molecule localization microscopy and volumetric 3D light photoactivable dye displays. The real-time detection of radical intermediates has also been exemplified.
Collapse
Affiliation(s)
- Soma Sarkar
- Department of Chemistry, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, India
| | - Abhik Chatterjee
- Department of Chemistry, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, India
| | - Kinkar Biswas
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| |
Collapse
|
43
|
Kaya C, Ugurlar F, Ashraf M, Alyemeni MN, Moustakas M, Ahmad P. 5-Aminolevulinic Acid Induces Chromium [Cr(VI)] Tolerance in Tomatoes by Alleviating Oxidative Damage and Protecting Photosystem II: A Mechanistic Approach. PLANTS (BASEL, SWITZERLAND) 2023; 12:502. [PMID: 36771587 PMCID: PMC9920640 DOI: 10.3390/plants12030502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 01/17/2023] [Indexed: 05/13/2023]
Abstract
Chromium [Cr(VI)] pollution is a major environmental risk, reducing crop yields. 5-Aminolevunic acid (5-ALA) considerably improves plant abiotic stress tolerance by inducing hydrogen peroxide (H2O2) and nitric oxide (NO) signalling. Our investigation aimed to uncover the mechanism of tomato tolerance to Cr(VI) toxicity through the foliar application of 5-ALA for three days, fifteen days before Cr treatment. Chromium alone decreased plant biomass and photosynthetic pigments, but increased oxidative stress markers, i.e., H2O2 and lipid peroxidation (as MDA equivalent). Electrolyte leakage (EL), NO, nitrate reductase (NR), phytochelatins (PCs), glutathione (GSH), and enzymatic and non-enzymatic antioxidants were also increased. Foliar application of 5-ALA before Cr treatment improved plant growth and photosynthetic pigments, diminished H2O2, MDA content, and EL, and resulted in additional enhancements of enzymatic and non-enzymatic antioxidants, NR activity, and NO synthesis. In Cr-treated tomato seedlings, 5-ALA enhanced GSH and PCs, which modulated Cr sequestration to make it nontoxic. 5-ALA-induced Cr tolerance was further enhanced by sodium nitroprusside (SNP), a NO donor. When sodium tungstate (ST), a NR inhibitor, was supplied together with 5-ALA to Cr-treated plants, it eliminated the beneficial effects of 5-ALA by decreasing NR activity and NO synthesis, while the addition of SNP inverted the adverse effects of ST. We conclude that the mechanism by which 5-ALA induced Cr tolerance in tomato seedlings is mediated by NR-generated NO. Thus, NR and NO are twin players, reducing Cr toxicity in tomato plants via antioxidant signalling cascades.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, 63200 Sanliurfa, Turkey
| | - Ferhat Ugurlar
- Soil Science and Plant Nutrition Department, Harran University, 63200 Sanliurfa, Turkey
| | - Muhammed Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54600, Pakistan
| | | | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Parvaiz Ahmad
- Department of Botany, GDC, Jammu and Kashmir, Pulwama 192301, India
| |
Collapse
|
44
|
Arif M. Catalytic degradation of azo dyes by bimetallic nanoparticles loaded in smart polymer microgels. RSC Adv 2023; 13:3008-3019. [PMID: 36756456 PMCID: PMC9850705 DOI: 10.1039/d2ra07932a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
The contamination of water by azo dyes is increasing rapidly due to their waste use in textile industries. These dyes are very toxic for living things. Therefore, it is very important to remove these dyes from water. Various materials are reported for this purpose. Here, the most effective system of bimetallic nanoparticles in smart polymer microgels was prepared. The microgel system of N-isopropylmethacrylamide (NMA) (monomer) and methacrylic acid (MAa) (comonomer) was synthesized by a free radical precipitation polymerization method and then bimetallic (Ag/Ni) nanoparticles were encapsulated into the P(NMA-MAa) microgels by in situ reduction of both silver and nickel salts by NaBH4 (reductant) after insertion of both (Ag+/Ni2+) ions. The P(NMA-MAa) microgels and Ag/Ni-P(NMA-MAa) hybrid microgels were characterized with FTIR, UV-vis, TGA, XRD, DLS, EDX, and STEM. The pH and temperature responsive behavior of Ag/Ni-P(NMA-MAa) was also evaluated. The catalytic efficiency of Ag/Ni-P(NMA-MAa) was assessed for degradation of methyl orange (MOr), congo red (CRe), eriochrome black T (EBlT) and methyl red (MRe) dyes under various conditions in aqueous medium. The apparent rate constant (k 0) value for MOr, CRe, EBlT and MRe was found to be 0.925 min-1, 0.486 min-1, 0.540 min-1 and 0.525 min-1 respectively. The Ag/Ni-P(NMA-MAa) was found to be an excellent recyclable catalyst.
Collapse
Affiliation(s)
- Muhammad Arif
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| |
Collapse
|
45
|
CHORFI Z, AGGOUN D, HOUCHI S, MESSASMA Z, El-MAKSOUD MSA, FERNÁNDEZ-GARCĨA M, LÓPEZ D, BENSOUICI C, OURARI A, OUENNOUGHI Y. Interaction of a Novel Inorganic Nickel Complex with Tyrosinase as Potential Inhibitor: Synthesis, Spectroscopic, DFT, NBO, Docking and ADMET Properties. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
46
|
Human telomeric G-quadruplex DNA enabled preferential recognition of copper (II) and Iron (III) ions sensed by a red emissive probe. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Rodzik A, Railean V, Pomastowski P, Žuvela P, Wong MW, Buszewski B. The influence of zinc ions concentration on β-lactoglobulin structure – physicochemical properties of Zn–β-lactoglobulin complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
48
|
Moustakas M, Dobrikova A, Sperdouli I, Hanć A, Adamakis IDS, Moustaka J, Apostolova E. A Hormetic Spatiotemporal Photosystem II Response Mechanism of Salvia to Excess Zinc Exposure. Int J Mol Sci 2022; 23:11232. [PMID: 36232535 PMCID: PMC9569477 DOI: 10.3390/ijms231911232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Exposure of Salvia sclarea plants to excess Zn for 8 days resulted in increased Ca, Fe, Mn, and Zn concentrations, but decreased Mg, in the aboveground tissues. The significant increase in the aboveground tissues of Mn, which is vital in the oxygen-evolving complex (OEC) of photosystem II (PSII), contributed to the higher efficiency of the OEC, and together with the increased Fe, which has a fundamental role as a component of the enzymes involved in the electron transport process, resulted in an increased electron transport rate (ETR). The decreased Mg content in the aboveground tissues contributed to decreased chlorophyll content that reduced excess absorption of sunlight and operated to improve PSII photochemistry (ΦPSII), decreasing excess energy at PSII and lowering the degree of photoinhibition, as judged from the increased maximum efficiency of PSII photochemistry (Fv/Fm). The molecular mechanism by which Zn-treated leaves displayed an improved PSII photochemistry was the increased fraction of open PSII reaction centers (qp) and, mainly, the increased efficiency of the reaction centers (Fv'/Fm') that enhanced ETR. Elemental bioimaging of Zn and Ca by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) revealed their co-localization in the mid-leaf veins. The high Zn concentration was located in the mid-leaf-vein area, while mesophyll cells accumulated small amounts of Zn, thus resembling a spatiotemporal heterogenous response and suggesting an adaptive strategy. These findings contribute to our understanding of how exposure to excess Zn triggered a hormetic response of PSII photochemistry. Exposure of aromatic and medicinal plants to excess Zn in hydroponics can be regarded as an economical approach to ameliorate the deficiency of Fe and Zn, which are essential micronutrients for human health.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter (ELGO-Demeter), 57001 Thermi, Greece
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61614 Poznań, Poland
| | | | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
49
|
Kinetic Characterization of Cerium and Gallium Ions as Inhibitors of Cysteine Cathepsins L, K, and S. Int J Mol Sci 2022; 23:ijms23168993. [PMID: 36012257 PMCID: PMC9409168 DOI: 10.3390/ijms23168993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
Heavy metal ions can disrupt biological functions via multiple molecular mechanisms, including inhibition of enzymes. We investigate the interactions of human papain-like cysteine endopeptidases cathepsins L, K, and S with gallium and cerium ions, which are associated with medical applications. We compare these results with zinc and lead, which are known to inhibit thiol enzymes. We show that Ga3+, Ce3+, and Ce4+ ions inhibit all tested peptidases with inhibition constants in the low micromolar range (between 0.5 µM and 10 µM) which is comparable to Zn2+ ions, whereas inhibition constants of Pb2+ ions are one order of magnitude higher (30 µM to 150 µM). All tested ions are linear specific inhibitors of cathepsin L, but cathepsins K and S are inhibited by Ga3+, Ce3+, and Ce4+ ions via hyperbolic inhibition mechanisms. This indicates a mode of interaction different from that of Zn2+ and Pb2+ ions, which act as linear specific inhibitors of all peptidases. All ions also inhibit the degradation of insoluble elastin, which is a common target of these peptidases in various inflammatory diseases. Our results suggest that these ions and their compounds have the potential to be used as cysteine cathepsin inhibitors in vitro and possibly in vivo.
Collapse
|
50
|
Affiliation(s)
- Assunta D'Amato
- University of Salerno: Universita degli Studi di Salerno Chemistry and Biology "A. Zambelli" Via Giovanni Paolo II, 132 84084 Fisciano ITALY
| |
Collapse
|